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Abstract. Oscillatory effects in a strong magnetic field B and magnetic susceptibility are 
investigated,as applied to 2D systems. in which the twofold spin degeneracy is lifted by the 
spin-orbit-interaction Hamiltonian HSO = LY(V X k )  . v. The term HSO is shown to change 
greatly the usual patterns of B-’-periodic oscillations; some oscillations are strongly sup- 
pressed due to the diminishing of the gaps between adjacent levels, and new oscillations 
appear due to intersections of levels. 

1. Introduction 

Experimental data on the combined resonance (i.e., electric dipole spin resonance) and 
the cyclotron resonance of 2D electron gas (EG) at the interfaces of GaAs-Al,Gal -,As 
heterojunctions, reported recently by Stein er a1 (1983) and by Stormer er a1 (1983) has 
unambiguously made manifest that the spin degeneracy is lifted in inversion layers. The 
dispersion law for carriers in such layers is unusual because of the existence of a ring of 
extrema (Rashba and Sheka 1959, Rashba 1961, Casella 1960) where the energy reaches 
minimum. The theory of electron resonances in 3D semiconductors with such spectra, 
developed earlier (Rashba 1960), enabled us (Bychkov and Rashba 1984) to describe 
from the same point of view the experimental data from the papers of Stein er a1 (1983) 
and Stormer et a1 (1983), and to determine the spin-orbit- (SO-) coupling constant a. 
The theory proposed is based on the following expression for a so Hamiltonian: 

Here, the U are Pauli matrices and vis a unit vector perpendicular to the surface. The 
operator Hso lifts the twofold spin degeneracy at k # 0 and determines the so band 
splitting near k = 0. 

The possibilities for experimental studies of de Haas-van Alphen (dHvA) oscilla- 
tions in 2D EG were demonstrated recently by Haavasaja et a1 (1984) and by Fang and 
Stiles (1983). In this paper we investigate the general patterns of the oscillatory 
phenomena (dHvA and Shubnikov-de Haas (SdH) oscillations) in 2D systems with the 
so Hamiltonian (1). The magnetic susceptibility (MS) is investigated in more detail. 
These phenomena provide new possibilities for the independent determination of a. 
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2. Energy spectrum and oscillatory phenomena 

The effective-mass Hamiltonian with the spin-orbit term (1) has the form 

(2) 
k 1 .  The energy spectrum consists 

H = h2k2/2m + a[ cr x k] v. 

Here k is the two-dimensional quasimomentum, k = 
of two branches: 

E(')(  k )  = h2k2/2m ? ak. 

The lower branch, E - (  k). reaches a minimum on the 
(3) 

, , I  
ing (or the circle) of extrema, the 

The energy spectrum for a magnetic field B is determined by the formulae (Rashba 
radius of which is ko = am/h2. E - ( k o )  = - a2m/2h2 = -A .  

1960) 

Es' = ~ W E :  E o =  6 E; = s t (62+ y2s)1'2 sa 1 (4) 
where the s are integers and 

w = eB/mc y = 2(A/hw)q2 6 = 4(1 - mg/2mo). ( 5 )  

Here mo is the mass of the free electron andg is theg-factor. Figure 1 shows the dispersion 
E'(k) and figure 2 shows the function Ex*, which can be obtained from E: by 
substituting for the integers with the arbitrary number x .  

It is seen from figure 1 that there is a 'pocket' on the curve for E-(k)-the region 
where E-(k) < 0. Its radius is equal to 2ko, and it is completely occupied by EG at the 
concentration 

I t , ,  = n2m2/xh4 = y2nL nL = eB/hc (6) 
where ItL is the multiplicity of Landau levels (per unit area). 

It follows from (4) that the energy levels of a 2D system in a magnetic field show 
some peculiarities. When the fieldis weak, i.e. when y2 % 1 (or hw A) ,  the quasiclass- 
ical description holds and the number of levels in the energy region where E,' s E is 
proportional to the corresponding area in the k,k,-plane. For example, the number of 
levels in the pocket outside the ring of extrema is three times as large as that inside the 
ring. When B increases, the levels move to the right along the curves E,' (figure 2). This 

t t 

Figure 1. The dispersion law E = ( k ) .  Figure 2. The function E,' 
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means that on the branch E -  the levels that are on the left (right) of point - A  move 
downwards (upwards); see, e.g., levelssl and s2 in figure 2. As a result, the intersection 
of levels occurs at definite values of B. The same happens for E > 0. Despite the fact 
that with increasing B the levels move in the same direction, namely upwards, on both 
branches, the motion of levelsproceeds faster along branch E -  than along E'. Therefore 
the levels belonging to different branches also intersect. 

It follows from ( 4 )  that if 

so - 62/so < y' < so + 1 - 6*/(SO + 1) (7) 

then for arbitrary B there are SO negative eigenvalues on the branch E - .  Since usually 
8 s 1, it follows from (6) and (7) that the number of levels in the pocket is = y 2  = 
n,,/nL. The last negative E--level leaves the pocket at yZr= 1 - 8 - 1. 

Oscillatory effects (both dHvA and SdH oscillations) are determined by the depend- 
ence of energy levels on B and by the redistribution of carriers between various levels. 
When the term Hso is absent, the period of oscillations is well known to be e/chn = 
Bo' in the B-'-scale. However, the intersection of levels belonging to different branches 
mentioned above has to introduce new features into the oscillation patterns. To obtain 
a realistic picture of the energy spectrum and the occupancy of different levels, we have 
computed with the aid of ( 4 )  the position of the levels for the parameter values of the 
device used by Stormer et al( l983)  in their investigation of SdH oscillations. These are 
m = 0.5 mo, n = 5 X 10" cm-*. From the cyclotron resonance data we have found 
(Y= 0.6 X 10-'eVcm and A = 10-4eV (Bychkov and Rashba 1984). Hence, 
n = 10 ncr. The value of 6 remains unknown, and we put 6 = 0.5; this affects only the 
position of a few first levels. The position of levels in the vicinity of Fermi energy is 
shown in figure 3. In figure 3 and below in this section, the magnetic field B is measured 
in units of Bo = 206 kG; Bo corresponds to the complete occupation of the first Landau 
level. Therefore, when B-' is an integer, the B-' lowest Landau levels are occupied and 
the other levels are empty (temperature T = 0). The last occupied level is encircled in 
figure 3 for all integer values of B-'. With increasing B-' the occupation of the next 
level begins. 

I 
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Figure 3. The positions of Landau levels near the Fermi energy versus the non-dimensional 
inverse magnetic field. +: the branch E';  - :  the branch E - ;  0: the level Eo. Full and broken 
curves connect + and - points, respectively. 
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When B-' rises, three types of redistribution of carriers between Landau levels are 
possible, as is seen in figure 3. 

Case 1. Each time that B-' only slightly exceeds an integer, the level following the 
encircled one starts being filled. These two levels may belong to the same branch or to 
different branches. So, when 5 < B-' < 6 the level E; (following E:), when 6 < 
B-' < 7 the level E; (following E;) and when 7 < B-' < 8 the level E; (following 
E?) are being filled. 

Case 2. A partly filled level intersects an empty level, belonging to the other branch. 
Two such intersections, at 3 < B-' < 4 and 13 < B-' < 14 are seen in figure 3. They are 
indicated by arrows marked with the number 2. 

Case 3. A partly filled level intersects a totally occupied level, belonging to another 
branch. Two such intersections, at 11 < B-' < 12 and 18 < B-' < 19, are seen in figure 
3. They are indicated by arrows marked with the number 3. 

It is also necessary to stress the following peculiarity seen in figure 3. The gap between 
the last occupied level and the nearest empty level strongly depends on B- ' ,  It is large 
at B-' s 3, but shows pronounced minima at B-' = 4,7,11,14,18,21, . . . . All integer 
B-' must correspond to the minima in the SdH conductivity (Ando eta1 1982). However, 
when a particular gap is small the corresponding minimum will be smeared due to the 
finite temperature and the finite level width. Hence it may disappear from the experi- 
mental patterns. It follows from the data of Stormer et a1 (1983) on SdH oscillations for 
2D holes (see figure 2 in their paper) that the first six oscillations follow one another 
regularly with the period in B-' consistent with the value of n. However, for larger 
B-' the mean period increases by a factor of about 2.5. It is very tempting to attribute 
this fact to the quasiperiodic change in the gap seen in figure 3 (there is no problem with 
the point B-' = 4, since E; is highly sensitive to the value of 6). However, to check the 
correctness of this hypothesis much more detailed experimental data are needed. 

3. Magnetic susceptibility 

The properties of the MS in a 3D semiconductor with a ring of extrema (the wurtzite 
lattice) were investigated by Boiko and Rashba (1960). It was shown that the MS has a 
singularity when the chemical potential p = 0, and the oscillatory part of the MS must 
show beats caused by existence of two close Fermi surfaces. These were soon discovered 
in crystals with the cubic zincblende lattice (Whitsett 1965, Roth er a1 1967). It is natural 
to expect a non-trivial behaviour of the MS also to occur in 2D systems with a similar 
spectrum. However, when comparing the properties of 3D EG with those of 2D EG, it is 
important that in the first case ,U = constant follows from n = constant in the whole 
quasiclassical region while in the second case at n = constant, p changes abruptly with 
the steps about fiw ( T  = 0). This fact excludes the beats in dHvA and SdH oscillations 
for 2D EG (Vinter and Overhauser 1980), but the beats in the gap discussed above may 
be considered to be their relics. 

Let us now calculate the MS x(  B). We shall do this for T = 0 and consider the effect 
of finite T only qualitatively. One has to distinguish between the MS at p = constant, 
i w ) ,  and that at n = constant, 2"). The direct calculation o f f )  at arbitrary values of n 
and B is highly intricate due to the cumbersome form of p = p(n ,  B )  for the energy 
spectrum (4). However, it seems plausible that the condition n = constant is the more 
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adequate for a variety of real experimental situations. Hence we shall start by deriving 
a general expression that connects $n) and iv) for a 2D EG. 

It is useful to introduce a new quantum number N which includes both s and the 
index of the branch (+ or -), increases with energy ( E N +  > E.&,) and equals unity 
( N  = 1) for the ground state. Then the thermodynamic potential 52 and the total energy 
E are 

Q(p. B )  = nL E‘ (EN’ - p) 

E ( n ,  B )  = n~ E E,y8 + [n - ( N  - l ) n ~ ] E , y .  

(8) 

(9) 

N ’ 

‘A‘’ < ,v 

Nis the partly filled level. The prime in X‘ indicates that EN,  < p. This condition is very 
important, because it ensures complete definition of the derivative (dQ/aB), , which has 
a finite discontinuity at p = E,v due to the nL-fold degeneracy (per unit area) of the 
Landau levels. It follows from (8) and (9) that 

E ( n )  = (Wu> + nE,v),=Ev. (10) 

Here and below we omit the argument B. It follows from (10) that ~ ( ~ 1  = 
-B-’(aE/aB), is given by 

(11) 
~ ‘ “ ’ ( n )  = ~ ‘ u ’ ( p )  ~ , = E , ~ . - O  - [ ( n  - ~ L ( N  - l ) ) / B ]  dEh;/dB 

p ( p )  = -B-’(aQ/aB),. 
To calculate X(,)it is convenient to transform (4), as usual, using the Poisson formula. 

Then, for 6 > 0 and -A < p < -6hw (cf figure 2) we get 

and for p > 6hw 

A x 1  + x 2 )  + Q ( p )  = n ~ h w  [ [’ E+(x) dx + i,” E - ( x )  dx - hw 
r 

- 2 Re c (1’ e2,n’- dE’(x)dx + 6’:e2*m’-dx)] d E - ( x )  (13) 
I =  1 2nd dx dx 

where &*(xl) = E - ( x ~ )  = dhw. Everywhere in what followsxl andx2 must be expressed 
in terms of pusing these conditions. Expressions for 51 at - 6 < p/hw < Smay be written 
analogously. The last terms in (12) and (13) are transformed using integration by parts. 

In the limit of weak fields B ,  when y2 + 1 then x2 9 1, but for x1 we may have either 
x1 = 1 or x1 + 1. The last inequality holds only when 1 pi S (hwA)’/*. It is convenient to 
integrate the last integrals in (12) and (13) once more by parts, since only a non-integral 
term must be retained in them in the leading order (this corresponds to the expansion 
inxi’, x?’ 4 1). Then expanding (12) and (13) in B and retaining the terms up to B 2 ,  we 
obtain 

Q(p,  B )  = Q 0 ( p )  + (rB2/2n){-6’[(A + p)/A]”*e(-p) - (6’- 6 + &)e@) 
+ ;B*(xJ(A + p)1/2/lA1’2 - (A + p)”21 

+ 1B2(~2)(A + p)”’/[A’” + ( A  + ,u)”~]}, 
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where r = ez/mc?. Here O(z) equals 1 or 0 for z > 0 or z < 0, respectively. The function 
B2(x) is the second Bernoulli polynomial, which is equal to Bz(x) = x2 - x + Q at 
0 s x < 1 and is periodic in x modulo 1. 

When 1 pi is small, 1 p( 1 < (hwA)’i2, the third term in R is large and is not described 
by (14). It gains its value from the region X I  - 1 and has the order of magnitude 
R l  - ryB2,  yS 1. 

x ( + ) =  (r/n){6’[(A + p)/A]lizO(-p)+ (6’- 6 +  Q)O(p) 

From (14) we get that $’”)is given by 

-1Bz(x2)(A + p)112/[A1/2 + ( A  + ,u)”~]} 

+ ( n L p 2 ) ( p  + A ) ~ / ~ { ~ A ~ / ~  - ( A  + ,U)l’ZIB1(X1) 

+ + (A + ,U)”’] B1(xZ)}. (15) 

Here Bl(x) is the first Bernoulli polynomial, which is equal to Bl(x) = x - 1 at 0 G x < 
1, is periodic in x modulo 1 and is discontinuous at integer values of x (it has steps equal 

The terms in (15) including 0 ( - p )  and O(p) describe the monotonic part of x ( p ) ,  

while the other terms describe the oscillatory part. The final term (i.e. that proportional 
to (nL /B2) )  is of special importance, since it dominates at small B and introduces 
sawtooth oscillations typical of 2D EG (Seitz 1940) due to the discontinuous behaviour 
of Bl(x). The magnitude of the steps in ~ ( p )  is 

to -1). 

xkj= (nL/BZ)(~+A)1’2 /A1/2+  (A+p)1/21-(r/hw)max{lpl ,A}9r.  (16) 
Oscillations may be observed only when T < hw - A/y2. 

The gigantic diamagnetism x - - r y 2  arising from sZ1 can be observed in a wider 
temperature range T < (hwA)’’’ - A/y. However, it arises only when p = 0, i.e. 
n = ncr. At higher temperatures only the first two terms in (15) survive. 

The second case, when the MS may be calculated, corresponds to strong fields B ,  
when only a few levels are occupied, since E ( n ,  B )  includes a small number of terms. 
All the parameters of Hamiltonian (4) can be found in this region from the dependence 
on B of x(”) or ~ ( ’ 1 ) .  

The magnitude of steps X A  in x can be easily determined at arbitrary n and B ,  e.g. 
using (9). The formulae have different forms in the three cases considered in 0 2. 

Case 1. The Nth level becomes totally occupied and the filling of the ( N  + 1)th level 
begins: 

x6“’ = (nL/B2) W E N T  1 - EN). (17) 

x t j  diminishes when the gap E N -  - EN becomes small. 
Case 2.  The Nth and ( N  + 1)th levels intersect (at B = Bcr) with decreasing B:  

The subscripts + and - indicate that the derivative must be taken at the points B,, + 0 
and B,, - 0, respectively. 

Case 3. The two levels that intersect are again the Nth and ( N  + 1)th: 

xb“’ = { [ ( N  + 1 ) n ~  - n]/B,,)[(dE,v/dB), - (dEjv/dB)-]. (19) 
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When N 1, expressions (18) and (19) take values smaller than that taken by (17), 

The analog of (17) for the case when a level i5.v crosses the Fermi energy under the 
by a factor of about (A/E.V)"'. 

condition ,u = constant has the form 

xp' = - (nL/B)  d E ~ d d B .  (20) 

This expression is in agreement with the magnitude of steps following from (15). 
Equations (17)-(20), together with the behaviour of x in strong fields and the 

peculiarities of all the oscillatory effects, connected with the level intersection (§ 2), 
provide us with a new tool for determining all the parameters of the Hamiltonian in the 
magnetic field: m, a and g .  
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