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Abstract 
A review is given of the theoretical and experimental work which has shown the 

possibility of forming bound states of an electron or an exciton with an optical 
phonon. The  specific feature of these bound states is that an unconserved particle 
(a phonon) contributes to their formation; such states are stable only because their 
decay is forbidden by the conservation laws for energy and momentum. As distinct 
from the virtual phonons of a polaron ‘cloud’, the phonon which takes part in the 
formation of a bound state is almost real. 

Most attention is devoted to wide-band systems, in which the width of the 
electron (or exciton) band is larger than the phonon frequency; this is the normal 
situation for semiconductors and ionic crystals. I n  these systems bound states are 
formed near the threshold for phonon emission. The  formation of bound states is 
favoured by strong electron-phonon coupling, small phonon dispersion, and a 
large mass for the particle which interacts with the phonons. Hybrid states occupy 
an intermediate position between bound states and the usual polaron states; these 
arise when the energy of an optical phonon is equal to one of the electronic fre- 
quencies, and under these conditions the distinction between ‘virtual’ and ‘real’ 
phonons practically disappears. A discussion is also given of excitons in molecular 
crystals, which are treated as narrow-band systems; here the existence of bound 
states is not related to the presence of a threshold in the exciton spectrum. The  
existence of bound and hybrid states must have a marked effect on a number of 
physical phenomena, in particular the optical properties, as has already been 
demonstrated in a series of experiments. 

This review was completed in June 1972. 
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Part I .  General 

1. Introduction 

The multiplicity of phenomena in solid state physics is a result of the existence 
of a large number of different kinds of quasiparticles (electrons, phonons, magnons, 
etc), together with interactions between them. These interactions may enable 
quasiparticles to combine with one another, forming new and more complex quasi- 
particles (or quasiparticle complexes, as they are sometimes called). It is therefore 
not surprising that bound states of quasiparticles show up in a number of effects, 
especially in optical properties. The  best known example of this is the Wannier- 
Mott exciton (Wannier 1937, Mott 1938), which is a bound state of an electron and 
a hole. Historically the first example, although it is less well known, was the Bethe 
spin complexes, which are bound states of magnons (Bethe 1931). 

These bound states of quasiparticles have been studied intensively, both 
theoretically and experimentally, over the past ten years. The  clearest picture has 
emerged for molecular and magnetic crystals, where the spectra have been suc- 
cessfully interpreted using the concepts of pair binding: phonon + phonon (Van 
Kranendonk 1959), exciton + phonon (Rashba 1966, Broude et al 1966), and 
exciton+magnon (Freeman and Hopfield 1968, Meltzer et al 1968, 1969). The  
situation is much less satisfactory for ionic and semiconductor crystals ; there are a 
large number of papers, both experimental and theoretical, which use the concepts 
of exciton + exciton complexes (Moskalenko 1958, Lampert 1958), phonon + 
phonon complexes (Cohen and Ruvalds 1969, Ruvalds and Zawadowski 1970), 
exciton+ phonon complexes (Liang and Yoffe 1968, Toyozawa and Hermanson 
1968, Mel’nikov et al 1971), electron(po1aron) +phonon complexes (Johnson and 
Larsen 1968, Mel’nikov and Rashba 1969, Levinson 1970), but an unambiguous 
comparison of theory with experiment has been possible only in a few cases. 

The  subject of the present review is the bound states formed by electrons and 
excitons with optical phonons. We use the term excitons to cover both Wannier- 
Mott excitons in crystals with wide exciton bands and Frenkel excitons (Frenkel 
1931) in crystals with narrow exciton bands. The  physical description of binding 
depends on the ratio of the bandwidth AE for the particle which couples to a 
phonon to the phonon energy wo (the phonon dispersion can almost always be 
neglected)?. 

In  narrow-band systems (AE < wo)  the emission and absorption of a real phonon 
is forbidden by energy conservation and hence phonons in these systems behave as 
conserved particles. If we leave out ‘dressing’ effects, the states of the system can 
be classified according to the number of ‘real’ phonons N = 0,1, ... . I n  particular 
the states with N =  1 can be found from the two-particle problem. There is an 
effective interaction between a Frenkel exciton and an (intramolecular) phonon, 
and in the simplest case this is attractive because the vibrational frequency of an 
electronically excited molecule is decreased by I A I. If this attraction is sufficiently 
strong, that is I A 12 &!.E, then exciton-phonon bound states can exist. These 

t Both here and below we use units such that Planck’s constant F, = 1 and Boltzmann’s 
constant k = 1. 
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states form a single-particle branch of the energy spectrum, which lies below the 
region of two-particle states which are the dissociated states of an exciton-phonon 
pair (figure 1). Since the single-phonon states with N = 1 have energies which 
differ considerably from those of the no-phonon states, N =  0, the inclusion of 
interactions with phonons does not lead to any qualitative change in the spectrum 
of the no-phonon states. 

_-_- 

E 

P -  

Figure 1. Energy spectrum of the states of an exciton-phonon pair in a narrow-band system. 
The region of dissociated states is shaded. The bound state with p = 0 is shown by a 
dashed line. 

I n  wide-band systems (AE > U,,) the situation is rather different, because then 
the emission of a real phonon is allowed (absorption is negligible at low tempera- 
tures T<w,). The  clear distinction between ‘virtual’ and ‘real’ phonons dis- 
appears, and it is no longer possible to classify the states by the number N.  Hybrid 
states which are intermediate between no-phonon and single-phonon states can now 
exist, and under these conditions 0 < iV< 1, Phonon emission is possible for energies 
above the threshold which occurs above the bottom of the band. It is in the 
neighbourhood of this threshold that interactions produce the biggest changes in the 
spectrum and both hybrid and bound states are formed. 

Before explaining the essential features of this problem by using a simple 
model, we point out that the experimental results reported in the past five or six 
years have shown that the features of the spectrum at the threshold are clearly 
evident in a number of optical effects related to magnetopolarons, excitons and 
impurity centres (Johnson and Larsen 1966, Liang and Yoffe 1968, Onton et al 
1967a, b). 

We consider a simple model in which a particle whose spectrum has two 
branches E,@) and E,@) interacts at T = 0 with optical phonons of frequency U,, 

(dispersion neglected), and phonon emission transfers the particle from one branch 
to the other (figure 2). What is the effect of this interaction on the form of the 
upper branch 2 ?  First let us suppose that the interaction with phonons is weak. 
It is then sufficient to consider only the single-phonon states $, (p ,q)  (q is the 
phonon momentum) in addition to the no-phonon states $,(p)  (a particle with 
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momentum p on branch s = 1,2). The perturbed wavefunction for branch 2 is then 

where X,, is the interaction matrix element, and the energy E = ~ ( p )  is found by 
solving the equation 

where 
E - E,(P) = do((., P) ( 1 4 

If the energy E is close to the threshold wo, the denominator can become very small 

L A  I qrp) 

Po b- 

Figure 2. Change in the spectrum of a free particle due to interaction with optical phonons. 
Curves (a ) ,  (b) ,  (c) relate to equations (1.5a), (I.%), (1.5). 

(when q = p  and E, = 0). The  exact energy E in the denominator is thus not 
replaced by the unperturbed energy E,(p), that is, Wigner-Brillouin perturbation 
theory is used. 

Above the threshold ( E  > w o )  there is no single particle spectrum in the usual 
sense; there is just a continuous spectrum of decaying states. We therefore limit 
the present discussion to the region below the threshold ( E  < wo). I n  this region the 
contribution of the no-phonon state d2 to the state y ! ~ ~  is 

I n  other words, the effective number of phonons contributing to the state 24, is 

wo, the value of do as a function 
of E has a singularity as E + O ~ .  The  nature of this singularity is determined by the 
behaviour of the function inside the integral for q near to p .  Hence the behaviour 
of do(€) near the threshold is determined by that of E,@) for p ~ 0 ,  ie the lowest 
point in the spectrum, to which the particle falls after emission of a phonon, and by 

( N )  = 1-2. 
Since the denominator in do can vanish for E 
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the behaviour of X12(q) for q E p ,  ie by interaction with that phonon to which the 
particle transfers its momentum. 

It is sometimes convenient to formulate the problem in a different way, especially 
when we are interested in a particular state of branch 2 (for example p = 0), and this 
state can be dealt with by the introduction of an external parameter, for example, 
the magnetic field H .  E, and do will then be functions of H ,  rather than of p .  
Since E, usually increases monotonically with increasing H ,  just as it does with 
increasing p ,  all future discussion of the dependence of the spectrum on p is 
equally applicable to its dependence on H or on another external parameter. 

If E is not near the threshold, the right-hand side of equation (1.2) is known to 
be small, and by substituting E = E,  we obtain the usual polaron renormalization 
of the spectrum, and this is small in the weak-coupling case now being considered. 
This is the situation in the initial portion of branch 2, and here Z ( p )  N 1, that is, 
we have almost no-phonon states. 

When the momentum approaches p ,  the energy E tends to U ,  and the further 
variation of the spectrum depends on the nature of the singularity in do(€) 
(Pitaevskii 1959). We note that if the dependence of the spectrum on an external 
parameter is being studied, this approach to the threshold is indeed an approach 
to resonance between the phonon frequency wo and the frequency E,- E ,  of a 
spectral transition. I n  such cases the threshold effects take on a resonant character. 

We now consider a number of characteristic types of non-analytic behaviour 
which occur in particular physical problems (see table 1). 
Case ( a )  

&'(E) = - A + B(wo - E) - C(W, - ~ ) 4 ' 2  + . . . (1 .Sa)  

Case ( b )  
do(€) = -A + B(wo-  E)I'~ + . .. (1.5b) 

Case (c) 
A"€) = -A(wo-E)-li2+ ... (1 .5)  

Case ( d )  
do(€) = -A(U,-€)-1+ ... . (1.5d) 

The  quantities A,  B and C which appear here are real; they may be considered to 
be independent of p or H since this dependence does not usually affect the spectrum 
near the threshold. Cases ( a )  to (c) correspond to dispersion laws shown by the same 
letters in figure 2. 

For a highly non-analytic case such as (c) the spectrum extends without limit 
to higher momenta, and the energy becomes practically independent of p and 
approximately equal to El(0) + w, (Johnson and Larsen 1966, Korovin and Pavlov 
1967a, Levinson and Matulis 1970). This phenomenon is known as pinning; one 
speaks of the pinning of branch 2 to branch 1 -k phonon. We now consider the 
structure of the states in the pinning region, ie for E-+w,. I t  is easy to see that this 
also implies Z+O, that is, the unperturbed states +2 play hardly any part in the 
formation of these states. I n  the integration over q in equation (1.3) the major 
contribution comes from the region E,NO, and this means that in the pinning 
region the particle lies at the bottom of band 1 and therefore the energy and 
momentum of the state in the pinning region are almost completely due to the 
phonon. The  lowering in energy of these states compared to the total energy of the 
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particle plus a phonon E,(O) + wo can be interpreted as a binding energy. From this 
point of view states in the pinning region are bound states of a particle at the 
bottom of band 1 and a phonon. 

States with momenta close to p ,  are intermediate between polaron states at the 
beginning of the branch and bound states at the end of the branch. I t  is easy to 
check that Z(po) 2: 4 for these states, that is, they contain equal amounts of both 
no-phonon and single-phonon states. We shall call states of this kind hybrid states. 
I t  is convenient to combine hybrid and bound states containing an appreciable 
contribution from a ‘real’ phonon into a single concept-a complex of particle+ 
phonon. 

If in equation (1.5) we write A = aw;/~,  then a can be regarded as a dimension- 
less coupling constant. It can then be shown that the hybrid states have an energy 
which differs from the threshold by I E - wo 1 - 01’5 U,,, whilst the bound states for 
which Z< 1 have energy differing from threshold by I E - U ~ I  <a2iswo. Thus, as the 
momentum increases we pass from polaron states with ( N )  N a through hybrid 
states with ( N )  N 4 to bound states with ( N )  2: 1, 

For a weaker non-analyticity such as case ( b )  (equation ( 1 , 5 b ) ) ,  the spectrum 
has a limiting point and the approach to this is a tangent to the straight line E = wo, 
that is, pinning still occurs but it is more weakly developed. I t  is evident that 
Z-tO as e+w0, so that near the threshold we again have bound states, and there 
are hybrid states between these and the beginning of the branch. If we write 
B = awol’2 in equation (1.5b), the hybrid states are separated from the threshold by 
I E - wo I N a2 U,,, whilst the bound states occur at 1 E - wo 1 < a2 woe The threshold is 
always smeared in practice, and unless this smearing is very small cases ( b )  and (c) 
in equations (1.5) will be qualitatively similar, since the far portion of branch (c) 
lies in the region of smearing and is not developed. 

The  situation described by equation (1 .5a)  corresponds to very weak non- 
analyticity (case ( a ) ) .  The spectrum has a limiting point which it approaches with 
finite slope. I t  is evident that Z E  1 everywhere, even close to the threshold, that is, 
neither hybrid nor bound states exist below the threshold in this case. 

The  possibility of introducing quasiparticles in the continuous spectrum near 
the threshold is also related to the degree of non-analyticity. This is possible in 
cases ( a )  and ( b ) ,  when the spectrum has a limiting point (since the inverse of the 
quasiparticle lifetime I?( E )  = I m d O (  E )  + 0 for E +  wo). For case (c) I?( E )  -+ cc for 
E+w,,  and therefore there are no quasiparticles close to the threshold. We further 
note that the bottom of branch 1 is lowered by the interaction with phonons; this 
gives a renormalization of the threshold position but does not affect the above 
qualitative description of the spectrum. 

Case ( d ) ,  which corresponds to impurity centres, has a number of distinguishing 
features. E, and E, are independent of p ,  and because the spectrum is discrete there 
is no continuum for E > w,, and undamped states exist both above and below the 
threshold (figure 3). In  this case there is also pinning when the relative positions of 
the levels E, and E, are changed (Kogan and Suris 1966). 

It is clear from the above discussion that in wide-band systems, as distinct from 
narrow-band systems, even weak coupling (for sufficiently strong non-analyticity) 
leads to a qualitative restructuring of the spectrum near the threshold. 

We shall now try to understand physically how the ideas developed above are 
modified as the coupling with phonons becomes stronger. First, the polaron 
renormalization of the spectrum at the beginning of the branch will no longer be 



Electron-phonon and exciton-phonon bound states 1507 

small. This means that the displacement of the threshold will be appreciable, and 
that the polaron states can no longer be described as states with almost no phonons. 
The  bound states near the threshold will not now be single-phonon states, but will 
contain approximately one phonon more than the polaron states at the bottom of 
band 1. Moreover, since the perturbation theory used above is no longer applicable, 
it is possible that additional branches of the spectrum may appear in the region 
E < w ~ .  If these were close to the threshold they could be interpreted as bound 
states. For the case of an electron strongly coupled to phonons such states do in 
fact exist (Mel'nikov and Rashba 1969). 

[ - E  -4 

7 1  

Figure 3. Change in the spectrum of an impurity centre due to interaction with optical phonons. 
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Figure 4. Diagrams for the mass operator which are important near the decay threshold. 

Even for weak coupling the details of the spectra already described are far from 
complete. The  point is that they are based on perturbation theory applied to the 
mass operator: the expression for do in equation (1.3) corresponds to the simplest 
diagram in figure 4. However, even for weak coupling it is only valid to stop at this 
first term if d o ( € )  is finite at the threshold (Pitaevskii 1959). Otherwise the whole 
series shown in this figure should be summed. This gives a mass operator A(€) 
whose behaviour near threshold may differ qualitatively from that of do(€). The 
above description of the spectrum is therefore complete only for cases ( a )  and (6). 
Case (c) is more complicated and the nature of the spectrum depends on the 
behaviour of A(€). For a magnetopolaron below the threshold there is an infinite 
number of additional branches, which for all momenta describe bound states of an 
electron and a phonon (Levinson 1970). On the other hand, for a polaron at 
H = 0, which has the same behaviour of A o ( c )  at p = 0, there are no bound states 
(Mel'nikov and Rashba 1969). 

Part I I .  Polarons 
2.  The polaron spectrum-threshold behaviour and bound states 

The  polaron problem is that of the spectrum of a system consisting of an 
electron interacting with longitudinal optical phonons. The  interaction hamiltonian 
is usually chosen to be of the form 

ZeL = C c, exp (iq . r )  6, + (hermitian conjugate) (2.1) 
9 
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where r is the electron coordinate, q is the phonon momentum, b, is the phonon 
annihilation operator and c, is the interaction matrix element. The  final results of 
calculations usually contain the quantity 

(2.2) 
V 

B(4) = (2n)3 I Cg. l2 
which is independent of the normalizing volume V.  In  the isotropic case the 
magnitude of 93j is a function only of the modulus of Q and it is convenient to write 
it as 

p ,  = (2mwo)’12 

where wo is the phonon frequency (their dispersion is neglected), a is a dimension- 
less coupling constant, m is the electron effective mass and the form factor 

for a deformation interaction with optical phonons-Do 

(2.4) for a polarization interaction with optical phonons-Po. i @ ( q )  = 1 

@ ( q )  = P 2  2 
q2 

For the PO interaction the value of a determined in this way is the same as that 
derived by Frohlich : 

a:=-- 
vo i? 
e 2 1  1 

where K,  and K~ are the high frequency and DC dielectric constants of the crystal. 
It is usual to distinguish between weak coupling (a < l), intermediate coupling 
( U N  l ) ,  and strong coupling (aB 1) .  

2.1. Spectrum with a limiting point-weak coupling 
For weak coupling it is natural to use perturbation theory applied to the mass 

operator A! to study the spectrum, and to the lowest order in the interaction we have 

B(q) 
E -  uo - ( p  - q)”iam + io’ d?O(&p) = 1 d 3 q  

For the DO interaction the integral in equation (2.6) diverges at large q so must be 
cut off at some q = qmax. However, ifp < qmax the singular part of A0 is independent 
of qmax. A direct calculation leads to equation (1.5b) with 

i 2 qmax A = m u o - -  
Po 
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For a PO interaction the integration gives 

For E +  w, and p r p ,  this also reduces to equation (1.91) with 

A = o l w E  O2 

J B = olwol!a. 

Thus both forms of interaction give a spectrum near the limiting point which shows 
weak pinning with tangential contact (figure 2, curve ( 6 ) ) .  This deduction is still 
valid when all diagrams for d? which contain no intersecting phonon lines are 
summed (Whitfield and Puff 1965). 

For p = 0 equation (2.8) reduces to equation (1 .5 )  with A = aw;/~.  This leads 
us to expect that for small p and a PO interaction it is not sufficient to consider only 
the simplest diagram for d.  However, summation of the series of diagrams in 
figure 4 showed that for p = 0 there are no additional branches of the spectrum near 
the threshold E = wo (Mel'nikov and Rashba 1969), at least in this approximation. 
This means that for weak coupling there are no electron-phonon bound states with 
small total momentum. 

These special features in the spectrum near the threshold may be reflected in 
optical effects. Their effect on interband absorption was considered by Dunn 
(1968) for a DO interaction of holes, and by Heck and Woodruff (1971) for a PO 
interaction of electrons and holes. We will not discuss these papers in any more 
detail, since they neglect an important effect, namely the Coulomb interaction 
between the electron and the hole. 

2.2. Bound states-strong coupling 
For strong coupling a polaron consists of an electron, which is in a discrete l ~ e l  

(with E,  N - 0.3301~ U,) in the field of a selfconsistent lattice polarization; the 
effective mass of the polaron is m* N 2.3 x cy4 m (Pekar 1946, Landau and Pekar 
1948, Bogolyubov 1950). The  binding energy of any complex containing a phonon 
must be less than wo. Since the scale of electronic energies a2 U,$ U,, it is more 
convenient to look for bound states in the phonon spectrum of the crystal con- 
taining the polaron. The  problem is simplified by Pekar's observation (1951) that 
for a 9 1  lattice vibrations can be described classically and the state of the electron 
adiabatically follows the ions. Since m* cc a4 is large, polaron recoil due to phonon 
emission can be neglected. Bound states of a polaron and a phonon can then be 
described as localized vibrations of the lattice in the neighbourhood of the polaron. 
The  equations found by such a method are, of course, derived also in the corre- 
sponding approximation of the quantum adiabatic theory (Tjablikov 195 1). 

Consideration of a lattice vibration with frequency w under these conditions 
leads, for the polaron ground state, to the following expression for the electric 
potential of the lattice polarization (Mel'nikov and Rashba 1969) 
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where $n and E, (n  > 0) refer to excited states of the hamiltonian 3, which describes 
the electron in a polarization well corresponding to the polaron ground state (with 
electron wavefunction $o). Equation (2.10) is inconvenient in that the kernel 
includes all #,, but if we transform from equation (2.10) to the corresponding 
variational principle and introduce a new unknown function f defined by 

$ 0 4  = (%-Eo)#of 

we then arrive at the following equation for U :  

(2.11) 

(2.12) 

Lengths on the right hand side of this equation are written in units of (2m32wo)-’/z, 
and since all the parameters cancelled out, the relative binding energies (w,  - w)/wo = 
Wjw,  take on universal values. 

It is interesting that in equation (2.12) all the information on the electronic 
spectrum of the polaron reduces to a single function $o, which can be found to high 
accuracy. Since $,(Y) is spherically symmetric, whilst the right hand side of 
equation (2.12) is positive definite, functions f, for which (2.12) takes extrema1 
values, exist for all angular momenta; there are therefore an infinite number of 
eigenvalues w,<wo. An estimate for the lowest levels gives E$ = w , - w , ~ ( O ~ l O s  
0 . 1 5 ) ~ ~ .  Since all these states lie below the threshold and E$ is considerably less 
than w, (although here it is true that this inequality is numerical rather than 
algebraic), it is natural to interpret them as bound states of a polaron and a phonon. 
If we further take into account the dependence of the energy of these states on the 
total momentum of the system p ,  we conclude that new branches of the spectrum 
are formed below the threshold, at least near p = 0. Since I E,/ $U,, the spectrum 
must contain multiple frequencies nu,, but these states will be damped. 

It is as yet not known how far these bound states extend into the region of 
intermediate coupling. I t  is only known (Matulis 1972) that if cy. 6 tic, where 0 1 ~  is 
some critical value from the intermediate coupling region (aC N 1)) no bound states 
exist. 

3. Magnetophonon resonance in the polaron spectrum 
I n  1966-67 it was observed that the magneto-optic absorption showed a number 

of new features when the cyclotron frequency wc of the current carriers became 
equal to the frequency wLo of longitudinal optical phonons, and the resonance field 
H ,  was thus given by the expression eH,/mc = wLo. This effect was found in InSb, 
where the resonance field is comparatively low (H ,  = 34 kG) because of the small 
electron effective mass (m~0*014m,) .  We note that the effects of this resonance 
on the DC conductivity were predicted by Gurevich and Firsov (1961) and observed 
by Puri and Geballe (1963) and Firsov et a1 (1964). A review of this subject is 
given by Harper et aZ(l973). 

Johnson and Larsen (1966) studied interband transitions of an electron to the 
Landau level 1 = 1 in the conduction band and observed a splitting of the absorption 
line (figure 5 )  in fields near H,. They gave a qualitative explanation of this splitting 
based on the ‘polaron effect’, ie the interaction of an electron with LO phonons. 
However, this explanation completely neglects the ‘exciton effect ), ie the Coulomb 
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interaction between the electron and the hole. We shall therefore consider in this 
section only the features of the intraband absorption, where the polaron effect 
appears in a ‘pure form’. These features were found independently by two groups: 
Dickey et a1 (1967) and Summers et a1 (1967). They observed cyclotron resonance 
in InSb for fields close to H, corresponding to infrared radiation with X 2 :  50 Bm. 

h u - h u o ( H )  ( m e V )  

Figure 5 .  Split interband transition in InSb. The quantity hv,(H) has been chosen so that the 
B components line up. The  resonance field H, = 34 kG. From Johnson and Larsen 
(1966). 

The  experiments were carried out on pure samples at low temperature, so that only 
the lowest Landau level 1 = 0 was populated, and the absorption was due to 
transitions to the 1 = 1 level, which has already been mentioned in connection with 
interband absorption. As the magnetic field was increased, it was found that the 
cyclotron resonance line broadened rapidly near H, and was displaced discon- 
tinuously to shorter wavelengths (for more details see Q 3.2). 

3.1. Energy spectrum of the electron-phonon system: theory 
The  features of the intraband absorption described above can be understood 

by considering the energy spectrum of the electron-phonon system; in this it is 
necessary to consider only LO phonons and their dispersion can be neglected 
(aLo = U,). At sufficiently low temperature and carrier density we may assume 
that all the electrons are near the bottom of the lowest Landau band 1 = 0, near 
k = 0, and that absorption of LO phonons by electrons is negligible compared to 
their emission. In  order to show clearly the physics of this effect we neglect other 
scattering processes (by impurities and acoustic phonons) and assume that the 
system contains only one electron. 

An electromagnetic wave does not interact with LO phonons, but because of the 
electron-phonon interaction the electron-phonon system responds as a whole. If 
we neglect the photon momentum, then the longitudinal (along H )  momentum of 
the electron + phonon system is zero both before and after photon absorption. 
Therefore, when considering absorption, we should examine the spectrum with 
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zero total longitudinal momentum p = 0. Let us first suppose that the electron- 
phonon interaction is not present. The  states of the system with p = 0, which 
contain no phonons ( N  = 0), form a discrete spectrum E = E,(O) (figure 6), where 
E,(k) = Zw, + k2/2m is the dispersion relation for the Zth Landau band. The  single- 
phonon states of the system ( N =  1) are completely determined by the phonon 
momentum q and the number Z of the electron Landau band, since it follows from 
p = k 4 4;l = 0 that k = - 41;. The  energy of this state is E = wo + El( - 4 because 
of the continuous variation of 4,, these energies form a continuum above the thres- 
hold E = wo. Each such state corresponds to a definite state of the electron in the 
Landau band, and hence the density of single-phonon states with p = 0 above the 
threshold has the same singularity as the density of no-phonon states at the bottom 
of the Landau band. This is shown in figure 6 by the crowding together of the lines 
at the threshold. 

[ = 2  

Figure 6. The spectrum of the electron-phonon system. 

We now switch on the electron-phonon interaction. The  level Z = 0, N = 0 is 
repelled by all higher levels and shifts to a lower energy. The  threshold of the 
continuous spectrum with N = 1 is also shifted in just the same way, but since this 
shift shows no rapid changes at wc = wo we need not consider it further. The  
situation with the level I =  1, iV= 0 is rather different. This level is displaced 
downwards for wc < wo and the shift increases rapidly for wc+ wo, that is, when this 
level approaches the edge of the continuous spectrum, where there is a singularity 
in the density of states, from below. When w, > wo this singularity lies below the 
level Z = 1, so the level is shifted upwards. Moreover, for wc > wo the Z = 1 level lies 
within the continuous spectrum and becomes quasistationary. Its decay rate is 
proportional to the density of states at an energy E,(O) in the continuous spectrum, 
and therefore the level width I' increases rapidly as w,+wo. 

At low temperature cyclotron absorption is due to transitions from the level 
I = 0 to the level Z = 1 and, as is shown below, its behaviour is determined by the 
changes in the I = 1 level at w, = wo. 

A quantitative theory using the ideas outlined above was given by Harper (1967). 
I n  terms of the model described in the introduction, branches 1 and 2 correspond 
to the Landau bands Z = 0 and 1 = 1, and H is the parameter on which the spectrum 
depends. The  dipole moment of the transition is calculated using equation (1, l), 
and the electronic contribution to the dielectric constant for the polarization 
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appropriate for cyclotron resonance is found to be of the form 

.(U) = 1- U P 2  

w(w - W O  - A"(w)) 

4me2  
m 

wp2 = - 

where n is the electron density. Here do has the same type of structure as that in 
equation (1.3) and is given by 

The  numerator contains the electron-phonon interaction matrix element between 
Landau functions I = 0 and 1 = 1 ; q1 and 4,; are the components of q transverse and 
parallel to H,  and X is the magnetic length. If we put 

do(€) = h E ( ~ ) - i r ( ~ )  (3-3) 
it is easily seen that A E ( E )  is the shift of the I = 1 level with energy E,(O) = E ,  

calculated in second-order perturbation theory, whilst I?( E) is the width of this level. 

Figure 7. Shift AE and width r of the Landau level 1 = 1. 

The  dependence on E of these quantities is shown in figure 7 ,  which confirms the 
above remarks about the sign of the shift and the size of the broadening of the 1 = 1 
level. It is important to note that at the threshold both the shift and the broadening 
tend to infinity 

(3.4) 
o < E - " o ~ W o  1 qE) = + ~ 2 ( ,  - 

A ( E )  = - + 0 l ~ : ' 2  I E - w0 1-"2 0 < u0 - E < WO 

because of the singularity in density of states above the threshold. 
Equation (3.1) has a simple interpretation. We may say that the effect of 

phonon interactions can be summarized by a shift AE and a broadening I' of the 
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final state when considering the transition frequency we = E,(0)-Eo(O). All the 
observed features of the absorption are due to the fact that AE and r are strongly 
frequency dependent near the threshold. 

When discussing the absorption in terms of equation (3.1) it should be 
remembered that this theory, which covers only single-phonon states, is valid only 
for I w - w o I ~ a 2 w o  (see $4). It is important that in this region l ? , ~ A E ~ < w o ,  
although these quantities can be much greater than their ‘usual’ values which are 
of the order of a:oo, as is clear from equation (3.4). With these reservations, the 
frequency dependence of the absorption can be found from ImK(w); this is shown 
in figure 8. 

U c C  WO 

f - I  

UC’ *o fli 
3 

w -+ 

Figure 8. Variation of the free-carrier magnetoabsorption on passage through the magneto- 
phonon resonance. 

For we < wo a cyclotron resonance peak shifted to lower frequencies by the order 
of aw0 has to be observed, with a width l?’, which is determined by the other 
unconsidered scattering mechanisms (by acoustic phonons, impurities, or by 
absorption of optical phonons), and oscillator strength f N 1. There is also a weak 
absorption peak above the threshold which has oscillator strength f N 01. TWO peaks, 
both with f- 1, should be observed at the resonance field we = w * one narrow 
peak below the threshold with width I?’, and one wide but asymmetric peak above 
the threshold and with a width of the order of a213w0. Both peaks are shifted from 
w0 by the order of a2’3w0. For we > wo a cyclotron resonance peak shifted to higher 
frequencies has to be found, with width and shift of order a:wo and oscillator 
strength f N 1, together with a weak absorption peak with f N a: above the threshold, 

The  sign of the shift in the cyclotron resonance peak and its width can be 
understood in terms of the qualitative discussion of the spectrum given at the 
beginning of this section. I n  order to make clear the physical reasons for the 
appearance of a weak absorption at the threshold and also for the occurrence of 
two peaks close together at the resonant field, we replace the continuous spectrum 
of single-phonon states with a density of states singularity at the threshold by a 
single level at the threshold. The  system will then be reminiscent of an impurity 

01 
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centre and the resultant spectrum will be as in figure 3. At resonance the electron- 
phonon interaction splits two degenerate levels, forming two hybrid states, one 
below the threshold and the other above, and both of these are formed by ‘mixing’ 
the no-phonon states 1 = 1 with the single-phonon states 1 = 0 in approximately 
equal proportions. Because each of these states contains a large contribution from 
the I = 1 state, it is possible to have a transition with comparable oscillator strength 
f2: 1 to either of them from the initial state 1 = 0. This means that the cyclotron 
absorption peak must become a doublet at the resonant field. The  interaction 
between these levels will become less important as the distance from resonance 
increases. One of them will approach E = we and will contain principally the no- 
phonon state I = 1, whilst the other will approach E = wo and will consist mainly 
of the single-phonon state 1 = 0. The  mixing will now be in the ratio 1 :a, and 
hence the oscillator strength in the line whose frequency tends to wo will decrease; 
far from resonance this will be f N a, whilst the line tending to frequency we will 
have f 2 1. 

Further development of the theory has been concerned with the effect of 
temperature on the distribution of electrons in the 1 = 0 Landau band. Its effect on 
cyclotron resonance has been discussed by Korovin (1970) (Boltzmann and Fermi 
distributions), Nakayama (1969) and Klyukanov and Pokatilov (1971) (Boltzmann 
distribution). From a qualitative point of view temperature effects are unimportant 
away from resonance ( w c # w o )  but have a considerable effect for we = wo if the 
thermal energy is comparable with the peak separation, ie T L  a2’3w0. For InSb this 
means that the temperature distribution of the electrons should be taken into 
account for T 2 20 K.  

We limit our discussion to nondegenerate statistics, because this is more relevant 
experimentally. The  effect of temperature on the absorption at the resonant field 
is then as follows (Korovin 1970). If T < a 2 1 3 ~ 0 ,  then the gap between the peaks is 
smeared out for I w - wo 15 T ,  and an exponentially weak absorption appears below 
the threshold for I w - wo [ 9 T ,  due to transitions by electrons from the tail of the 
distribution to the continuous spectrum. The  splitting of the cyclotron resonance 
peak disappears for T 9 01’5 wo, leaving a single peak with centre at w = wo and width 
of the order of T.  The shoulders of this peak are sharply asymmetric; at distances 
[ w - w o l $ T  the absorption decreases according to a power law on the high fre- 
quency side, but decreases exponentially on the low frequency side. 

It was assumed above that the LO phonons had no dispersion. This is of course 
not strictly true, and for long waves the dispersion can be described by the 
expansion 

where p is of the order of the geometric mean of the nuclear and electronic masses. 
The  small parameter describing phonon dispersion is 6 = m/p ,  It is clear from 
equation (3.2) that the important values of 4 are q- h-l, and therefore the spread in 
phonon frequencies Awo - (ph2)-l N Sw, - 6wo. This is to be compared with the 
splitting 01’13 wo, so phonon dispersion is unimportant if 6 < a’’3. This was shown in a 
calculation of the density of states in the 1 = 1 band (Korovin and Pavlov 1968). 
In  InSb a*/3- 10-1 whilst 6 -  and hence phonon dispersion can be neglected. 

Besides the single-phonon threshold at E = wo considered at the beginning of 
this section, there are also multiphonon thresholds in the spectrum at E = 2wo, 
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3w0, . . . . I t  is clear that passage of Landau levels through these thresholds will also 
lead to rapid variations in the spectrum of the electron-phonon system. Let us 
suppose, for example, that the I = 2 level passes through the two-phonon threshold. 
If we replace the singularity of each continuum by a single ‘level’, as was done in 
the previous discussion, we will then have a threefold degeneracy of the following 
states: ( I  = 2, N = 0) ,  ( I  = 1, N = 1) and ( I  = 0, N = 2). For wc = wo we would 
therefore expect to find in the spectrum three narrowly separated ‘levels’ near 
E = 2wo (Korovin 1969). 

The  specific features of the energy spectrum of the e l ec t ron+~o  phonons 
system described in this section were a consequence only of the small dispersion of 
these phonons. Transverse optical (TO) phonons also have this property and hence 
in principle all the effects described could also occur for TO phonons at wo = wTo. 
Additional effects could also follow from the fact that scattering by TO phonons may 
be accompanied by a spin flip (Pavlov and Firsov 1967). In  particular this may 
affect the EPR spectrum when the spin splitting ws = wTo (Korovin and Pavlov 
1967b). 

3.2. Free-carrier absorption in InSb  
The  most complete experimental results for cyclotron resonance in n-InSb 

in fields in the neighbourhood of H, were reported by Summers et al (1968a,b). 
Typical results are shown in figure 9. At low temperature (15 K, upper curve) 
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Figure 9. Variation of cyclotron resonance band position in InSb. From Summers et aZ(1968a). 

impurity transitions (open points) and transitions between spin-up levels (full 
points) are observed. At higher temperature (88 K, lower curves, displaced down- 
wards by 10 meV for clarity) the impurity levels are empty and transitions of free 
electrons with spin up (full points) and spin down (open points) are observed. 
The  shift in the cyclotron resonance line on passing through resonance is clearly 
visible in both cases and its magnitude Awc-O-5 meV. If we take a = 0.02 and 
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wLo = 24 meV for n-InSb we would expect theoretically to find A ~ , N  awLo = 
0.5 meV; this agrees very well with the observed value. The  field dependence of 
the cyclotron resonance line width at 15 K is shown in figure 10. This increases 
rapidly as the resonance is approached from higher fields, which agrees completely 
with the behaviour of I? in figure 7. If from the linewidth we subtract the mono- 
tonic background which is not related to the emission of optical phonons (by 
extrapolation in figure lo), we may compare the remaining width with the 
theoretical behaviour of I?. This is done in figure 11, where the dashed line is 
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Figure 10. Variation of the cyclotron Figure 11. Comparison of theoretical and 

resonance linewidth on passage experimental cyclotron resonance line- 
through magnetophonon reson- widths at 15 K. From Summers et al 
ance at 1 5  K. From Summers (1 968b). 
et a2 (1968b). 

drawn through the experimental points and the solid lines are the theoretical 
predictions for two values of a. If we note that the theory does not take account of 
thermal smearing ( T N  1 meV, which is comparable with I' N 3 kG N 2 meV) the 
agreement is very good. 

There are also experimental results on cyclotron resonance in n-InAs (Harper 
et a1 1970); here A0,2:2 meV which agrees well with awLo = 1.5 me17 for the 
known values 01 = 0.05 and wLo = 29 meV. 

The  theoretically predicted splitting of the cyclotron resonance peak at the 
resonant field was not observed experimentally, probably because the size of the 
splitting a2i3wL0 N 2 meV was of the same order as the frequency range over which 
lattice reflection (aLo - wTo 2: 2 meV) and lattice absorption ( I w - who I 2: 1 meV) 
are important (Summers et a1 1968b). 

The  splitting of the peak at resonance can also be observed in combined resonance 
(Rashba 1964), in which a transition from the I = 0 level to the 1 = 1 level is 
accompanied by a spin flip (figure 12). Since the emission of a LO phonon takes 
place without spin flip, the decay threshold of the final state is w, = wLo, as in 
ordinary cyclotron resonance, although absorption occurs not at frequency w = w c ,  
but at w = w,+w,, where os is the spin splitting of the 1 = 0 Landau level. In  
InSb ws2: 10 meV at H = 34 kG, so the electronic absorption is shifted well away 
from the region of lattice absorption and reflection. The  experimental data for 
InSb at 30 K (McCombe and Kaplan 1968) are shown in figure 13, which clearly 
shows both the peak shift (of order 0.7 meV) on passage through resonance and the 
peak splitting at the resonant field (of order 1.5 meV, which may be compared with 
the theoretical estimate of aZ'3 wLo 2: 2 me\'). 
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It is clear that this effect must also show itself in a number of other ways besides 
combined resonance. Some of these are due to breakdown of the selection rule 
AZ = I 1 and the resultant possibility of observing transitions from the Z = 0 level 
to the 1 = 2 level, for which the onset of decay occurs at half the field we = hwL0. 
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Figure 12. Level diagram and transitions in combined resonance. 
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Figure 13. Position of absorption peaks in combined resonance (the spin splitting energy is 
excluded). From NIcCombe and Kaplan (1968). 

Johnson and Dickey (1970) did not observe this effect but, as the authors point out, 
this may be due to a lack of experimental sensitivity. In  this connection we note the 
remark made by S D Smith in the discussion following the paper of Larsen and 
Johnson (1966), that anomalies were observed in the Faraday and Voigt effects at 
both we = wLo and at we = +wLo. 

Another consequence of this effect is due to the existence in the spectrum of 
multiphonon thresholds at  E = 2wL0, 3 0 ~ ~ 0 ,  . . ., when a new channel becomes 
available for the decay of the final level with the emission of the appropriate number 
of phonons. Anomalies in the intensity of combined resonance, found at H E  70 kG 
in InSb (McCombe et a1 1968), are probably due to the passage of the I = 1 level 
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through the threshold 2wL0 at we = 2wL0. I n  principle, one would also expect to 
find anomalies in the cyclotron-phonon resonance (Bass and Levinson 1965, 
Bakanas and Levinson 1969) when the transition between two Landau levels is 
accompanied by the emission of an LO phonon, However, although a resonance of 
this type has definitely been observed (McCombe et a1 1967, Enck et a1 1969), the 
corresponding anomaly at wc = wLo has not yet been found (Summers et a1 1968b). 

3.3. Impurity transitions in I n S b  
Absorption anomalies at resonant fields are observed not only for free electrons 

but also for bound electrons localized on impurity centres. The  effect of a magnetic 
field on an impurity centre is determined by the ratio 
to the Coulomb energy R = me4/2~ ,2  ..., ie on the 

of the magnetic energy wc 
parameter y = w J R .  For 

N-0 N -  i 

Figure 14. Level scheme and transitions for impurity absorption in a magnetic field. 

electrons in InSb we have R N 1 meV, so y 2: 20 at the resonant field. This means 
that the Coulomb field is a small perturbation, and hardly mixes the states in 
different Landau bands. Since the Coulomb perturbation does not remove the 
axial symmetry about H it does not mix states with different angular momentum 
components along H .  It follows that the impurity field affects only the motion 
along H ;  the result is that each Landau band has beneath it its own system of 
localized levels, which are shifted in practically the same way as the corresponding 
band (Elliott and Loudon 1960) by the application of a magnetic field. It is useful 
to note that for ~ $ 1  and the polarization used in cyclotron resonance a single 
transition between the lowest localized levels in bands 1 = 0 and 1 = 1 is dominant 
(Hasegawa and Howard 1961). 

A typical level scheme is shown in figure 14. The  left hand side corresponds to 
no-phonon states. Two localized levels with binding energies WO and Wh are shown 
below the bottom of the I = 0 band, and a single localized level with binding energy 
W, is shown below the I = 1 band. The  dominant transition is shown by a dashed 
line. The  right hand side of the figure corresponds to single-phonon states to which 
the localized no-phonon states are connected by the electron-phonon interaction. 
Only states related to the 1 = 0 band are shown; the discrete spectrum is associated 
with a localized electron, and the continuous with a free electron. 
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In  InSb W, 2: 3 meV (Kaplan 1966) for fields near to resonance. There are no 
free carriers at helium temperature and only impurity cyclotron resonance is 
observed (Kaplan and Wallis 1968) at a frequency w = wc+(Wo-@), which gives 
WO - W, N 1 meV. 

Let us now consider the changes in the absorption as H increases and the final 
state with energy w,-W, moves upwards. For we = wo-(Wo-Wl) this level 
becomes degenerate with the lowest level of the single-phonon system at U,, - W,. 
This degeneracy is lifted by the electron-phonon interaction so the absorption 
peak at w = wo must be split. At a somewhat higher field, when we = wo - ( Wb - Wl), 
the final state has the same energy as the next state of the single-phonon system, 
with energy wo - Wb; hence a splitting of the peak should be observed at a frequency 
w = wo + (WO - W;). Finally, for we = wo + W, the final state enters the continuous 
spectrum, which must give rise to a split peak at a frequency w = wo + WO together 
with a rapid broadening of its short-wavelength component. 

20 
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Figure 15. Impurity absorption in InSb in a strong magnetic field: A, ~ 0 + 2 1 ;  B,  LO+^; 
C, ~0+(001) ;  D, ~0+(020) ;  E, LO+(OTO) ;  F, LO; G, TO;  H, LO--. FromKaplanand 
Wallis (1968). 

The  experimentally observed splittings and corresponding pinnings agree well 
with this picture. The  most detailed description is given by photoconductivity 
measurements in InSb, whose spectral variation parallels that of the absorption 
coefficient (Kaplan and Wallis 1968). It is clear from figure 15 that the first pinning, 
as expected, occurs at the frequency of the LO phonon, and this is followed by three 
pinnings at frequencies of the LO phonon + the energy of a transition in the impurity 
centre. I t  is important for the interpretation that these energies were determined 
independently by far infrared measurements (Kaplan 1966) (heavy line in figure 14). 
The  absorption peaks in figure 15 denoted by LO & A and LO + 2h have not been 
clearly identified. An attempt was made by Ruvalds et al (1971) to explain the 
pinning at LO + A  by postulating the existence of a bound state consisting of two 
phonons : LO and TA(L) (a transverse acoustic phonon at the Brillouin zone boundary). 

It should be remembered that the above description of the various splittings 
assumed that the size of the splitting was small compared to both the binding 
energies and their differences. This is not always satisfied in InSb, and consequently 
there is an overlap in the field ranges where split peaks are observed, and as a result 
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more than two peaks are observed at the same time. The  experimental results of 
Kaplan and Wallis (1968) have been analysed by Wallis et a2 (1970). 

Two superposed pinnings have also been observed in combined resonance of 
localized electrons (Dickey and Larsen 1968, McCombe and Kaplan 1968). In  the 
former paper the presence of two pinnings was explained by the participation of 
TO phonons as well as LO phonons. However, careful measurements (McCombe 
et a1 1969, McCombe and Wagner 1971) eliminated this interpretation and showed 
that TO phonons do not affect the absorption. 

Meanwhile pinning arising due to coupling of holes to both LO and TO phonons 
was found recently in spectra of acceptor centres in InSb (Kaplan et al 1972). 

The  broadening in the impurity cyclotron resonance peak as the level enters the 
continuous spectrum is similar to that for free-carrier cyclotron resonance (Summers 
et a1 1968a,b); this shows that the broadening is related to the dissociation of the 
localized state. I n  recent experiments of impurity cyclotron-phonon resonance and 
cyclotron resonance harmonics in InSb, Ngai and Johnson (1972) observed 
pinning at various two-phonon energies. 

3.4. Resonant polaron efSects in Cd Te 
For a number of reasons CdTe is a very attractive material for the study of the 

magneto-optic effects of polaron phenomena. There are now available very pure 
samples (n  = 2 x ~ m - ~  at T = 77 K) with high mobilities ( p  = 6 x lo4 cm2 
V - ~ S - ~ ,  which corresponds to a relaxation time T = 3 x s) (Mears et a1 1968). 
Polaron effects should be prominent, as ct = 0.4. For this moderate value of the 
coupling constant it is still reasonable to interpret effects from the point of view of 
the weak coupling theory, or perhaps of some of its improvements, by intermediate- 
coupling methods (Larsen 1964). Finally, because the effective mass (m = 0.096mJ 
is not too large, the resonant field is still attainable experimentally (H,,.E 180 kG). 
A simple spherical band makes quantitative calculations possible. 

Experiments on infrared and far infrared absorption in fields H up to 100 kG 
were reported by Waldman et a1 (1969) and Harper et a2 (1970). The  Landau level 
1 = 2 enters the continuous spectrum at Hrr90 kG and polaron effects should be 
observable. Although these considerations have been applied to the interpretation 
of experiments on the 1 = 1 -+1 = 2 transition, the interpretation is not yet 
unambiguous. 

A more convincing demonstration of the presence of a resonant interaction with 
optical phonons is given by the impurity absorption spectrum for transitions 
between Zeeman levels (Cohn et a1 1970, 1972). For CdTe, unlike InSb, y < 1 even 
in the highest available fields, so that the dominant transitions are the same as for 
H = 0. The  transitions 1s+2pM, M = I 1 were observed, and the position of the 
1s -+ 2p+, line showed a deviation which it is natural to explain by pinning of the 
2p,, level to the level Is + LO phonon at a field HE 100 kG. 

3.5. Raman scattering 
The  electron-phonon interaction has a strong effect on Raman scattering, since 

a free electron with a parabolic dispersion relation gives no inelastic scattering of 
light when it is placed in a magnetic field. This can be understood from the corre- 
spondence principle by noting that such an electron is a harmonic oscillator and 
therefore does not mix frequencies. This follows formally from the selection rules 
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for Z and the equal spacing of the electron Landau spectrum. The  selection rules 
allow Raman scattering with transitions AZ = 5 2 ,  ie with a frequency shift 
~ l ,  = k 2w,, but because of energy conservation and the equal spacing of the spectrum 
the matrix element for this transition is zero. Interaction with phonons does not 
change the selection rules (see $4), but it does disturb the equal spacing of the 
spectrum; this allows scattering with ~ S N  5 Zw,. At low temperature and carrier 
densities, when only the level 1 = 0 is populated, only Stokes scattering associated 
with a transition to the I = 2 level will be observed. I t  is clear that anomalies in the 
Raman scattering must be expected when this level passes through the threshold 
of the single-phonon or two-phonon spectra, ie for w ,  = &w0 or w, = wo, 

The first case was considered theoretically by Harper (1969), who showed that 
the Raman scattering line for wc near &wo behaves in just the same way as the 
cyclotron resonance line for w, near wo (it is shifted and broadened as H increases). 
The  oscillator strength of this line f - a 2 .  At resonance wg = t w o  the Raman 
scattering line becomes a doublet with f - a4/3 and a splitting of order a2/3w0, 

The second case was studied by Ngai (1971) who showed that the Raman 
scattering line splits into a triplet at resonance (see the end of $3-1).  

There have as yet been no experimental measurements of Raman scattering 
effects of the kind described in $3.2. However, we should note in this connection 
the experiments of Vella-Coleiro (1969) who measured the intensity of anti-Stokes 
Raman scattering with frequency shift cij = wLo in CdS for magnetic fields of 
100-250 kG. It was found that this intensity increased in a resonant manner when 
the LO phonon energy was equal to the separation between two Landau levels, 
including the spin splitting, ie wLo = 41wc + Asw, (4Z = 3-8, As = 0, k 1). 

4. The magnetopolaron spectrum near the decay threshold: bound states 
The problem of calculating the magnetopolaron spectrum in the neighbourhood 

of the threshold for emission of an LO phonon arose in connection with the experi- 
ments on magnetophonon resonance in absorption (see $3). The most natural 
approach to the problem was suggested by Korovin and Pavlov (1967), who 
calculated the Green function G of an electron in the 1 = 1 Landau level, taking into 
account only the simplest diagram dl (figure 16) for the mass operator d.  
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Figure 16. Diagrams for the self-energy operator. The dashed lines correspond to phonons 
and the full lines to electrons. 

This corresponds to a model including only no-phonon and single-phonon states, 
as in $$ 1 and 3.1. In  the resonant situation w, = wo, structure with a character- 
istic scale d 3 w 0  appears in the spectrum near the threshold E = wo, and this is 
responsible for the absorption anomalies. It turns out, however, that despite the 
weak coupling (CL< l), perturbation theory for the mass operator (an expansion of 
~ 2 '  in powers of a )  is not valid near the threshold E = wo, and moreover this invalidity 
is not related to the resonance w, = w,,. A calculation of the subsequent terms 
4; and A: in the above mentioned expansion (figure 16) shows that the lowest 
order term dominates only for I E - wo I $ aw,,. This estimate justifies the calculation 
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of the resonant structure of the spectrum on a scale 0 1 ~ 1 3 ~ ~ ;  however, it is natural to 
ask whether there exists some finer structure in the spectrum, unrelated to the 
resonance, in the region near the threshold where perturbation theory is 
inapplicable. 

Diagrams with no intersecting phonon lines (type A!;) become important for 
I E - wo I N awe. These may easily be summed to all orders in 01 (Korovin and Pavlov 
1968, Levinson et a1 1971b); this gives a value of 4 which differs from only by 
a minor renormalization of the threshold by a quantity of order awe. However, in 
the region I E - wo 15 0 1 ~  w,, diagrams with phonon intersections (type A’:) become 
important. A summation of these diagrams was carried out by Levinson (1970), and 
this leads to an integral equation for the electron-phonon vertex F. A study of this 
equation for I? showed that below the threshold in the energy range I E - wo I 5 0 1 ~  wo 
there are indeed additional branches of the magnetopolaron spectrum which form 
an infinite sequence with the threshold as its limit. The  states corresponding to 
these branches are bound states of an electron and a phonon for all values of the 
longitudinal momentum p. 

4.1. The energy-1er;el scheme and the efJect of bound states on the absorption 
We shall discuss here the results of theoretical calculations of the magneto- 

polaron spectrum by Levinson (1970), Levinson et a1 (1971~)  and Kaplan and 
Levinson (1972a). The  theory itself is described in $4.2. The  theory is based on 
the assumptions enumerated in $3.1, together with the assumption that the inter- 
action is weak 01< 1. 

Figure 17. Various branches in the magnetopolaron spectrum. The  shaded region corresponds 
to the continuous spectrum. 

The  structure of the spectrum is illustrated in figure 17. The  thin lines represent 
the unperturbed electron spectrum EE(p) in the absence of the interaction, and the 
heavy lines show the spectrum of the system with interaction. If the bottom of the 
unperturbed band I lies below the threshold wo ( 1  = 0 , l  in the figure), there is a 
threshold momentump, corresponding to this band. For p < p ,  there is only a slight 
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renormalization of the unperturbed spectrum, which for small p reduces to a shift 
in the bottom of the band and a change in the effective mass. Both these effects 
are proportional to 01 (Larsen 1964). I t  is obvious that the lowering of the bottom 
of the I =  0 band leads to a renormalization of the threshold; the true threshold 
eo lies below the unperturbed wo. When p tends to p, and E tends to eo a major 
reconstruction of the unperturbed branch takes place. The  spectrum does not 
reach the threshold for PEP,, but remains below it by an amount proportional to 
01'13. For p >p,  the spectrum asymptotically approaches the threshold, remaining 
below it by an amount proportional to a2. This picture corresponds to the un- 
limited pinning described in $1. 

Besides the branches which are genetically related to the branches of the 
unperturbed spectrum (1 and 2 in figure 17), the true spectrum contains addi- 
tional branches whose existence is entirely due to the interaction (3 in figure 17). 
There are an infinite number of such branches, all lying at a distance proportional 
to a2 away from the threshold and forming a sequence whose limit is at the threshold 
(this is not shown in figure 17). 

The  states in the two types of branches described above differ appreciably in the 
average number of phonons ( N )  which take part in their formation. For branches 
of the first type ( N )  increases as p increases, from ( N )  - cy to ( N )  2: 1 ; but for 
branches of the second kind ( N )  N 1 for all p. Hence the states in these branches 
can all be described as bound states of an electron and a phonon for all p. If we 
write the dispersion relation for these branches in the form 

4P) = Ro(o) +WO - WtP) (4.1) 
where Eo(0) is the displaced bottom of the I = 0 band, then Wis the binding energy. 
This interpretation is supported by the following argument. Since the energy 
~ ( p )  of an elementary excitation is practically independent of its momentum p, it is 
clear that the electron contribution to the total momentum and total energy of the 
excitation is small, otherwise the dependence of E on p would be as strong as in the 
unperturbed spectrum. Hence, the electron is at the bottom of the I = 0 band, and 
the energy and momentum are almost entirely carried by the phonon; the electron 
determines only the charge and spin of the elementary excitation. 

We have a peculiar situation for the resonance at wo = wo for the branch with 
I = 1, since there is a branch of the spectrum which is genetically related to the 
unperturbed spectrum for wc<wo,  but there is no such branch for w,>wo.  We 
now consider in more detail the lowest state with p = 0. For w,<wo this is a 
polaron state with ( N )  - 01, but for wc > wo it is a bound state with (A') 2: 1. At 
resonance, for wc = wo, it is a hybrid state with ( N )  2: 4, lying about cx2~3w0 below 
the threshold. It follows that a transition from polaron states to bound states via 
hybrid states can be made both by varyingp for fixed H and by varying H for fixedp. 

I n  order to clarify the role of the magnetic field in the formation of bound states 
we now consider the emission of a phonon by an electron in the lowest Landau 
band (figure 18). The  transition probability for this process is 

w = 27 I (%I,) l 2  P('- WO>* (4.2) 
This contains the interaction matrix element, whose square is small and propor- 
tional to 01, and the level density in the final state with energy E - W ~ .  If E lies near 
the threshold coo, the final state is almost at the bottom of the band where the level 
density has a singularity. Hence, despite the weakness of the interaction, the 
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transition probability w may no longer be small, and this means that the interaction 
is effectively no longer weak. This is just the reason why bound states may arise. 
Usually the number of phonons in the 'cloud' ( N )  - 01 N w/wo< 1. I t  follows from 
this that to produce a bound state, where ( N )  N 1, we must satisfy the condition 
w - wo. The energy range above the threshold in which this condition is satisfied 

Figure 18. Electron transition with emission of an optical phonon and density of states in the 
Landau band. 

can be estimated by substituting in equation (4.2) the well known expression for the 
density of states 

V 27 2m '12 
p(.) = - - 

(243 x2 (T) (4.3) 

and by writing I (seL) I z  - I cq 1 2 .  Then, by taking w ,  - w,, and CD - 1, we find that the 
range is E - U,, - a2 wo. It is reasonable to suppose that the energy range of bound 
states below the threshold is of the same order of magnitude, ie that the binding 
energy W -  a* wo. 

The  existence of electron-phonon bound states with p = 0 strongly affects the 
spectral dependence of optical effects such as absorption or Raman scattering, in 
which the electronic transition is accompanied by the creation of an optical phonon. 
I n  this type of process the continuous spectrum above the threshold must be 
accompanied by a discrete spectrum below the threshold (Kaplan and Levinson 
1972b), in complete analogy to the way in which this occurs in the well known 
situation of exciton absorption. The  expected form of the electronic absorption in 
the neighbourhood of the LO phonon frequency is shown in figure 19. The  dashed 
curve shows the absorption calculated from perturbation theory, without taking 
bound states into account. 

The  branches of both the true spectrum and the unperturbed spectrum can both 
be labelled by Landau quantum numbers, despite the fact that the electron- 
phonon interaction mixes states with different 1. This apparently paradoxical 
assertion can be justified as follows. The  true spectrum can be regarded as that of 
some effective hamiltonian Zeff instead of the unperturbed A6 = ( l j2m) ( p  - eA/c)2.  
If the electron-phonon system is axially symmetric in a magnetic field, A'& must 
be a function of ( p -  eA/c),2 andp,,2 (the subscripts 1 and 1 1  denote components with 
respect to H )  ; but then the usual Landau wavefunctions will be eigenfunctions of 

I t  is thus clear that the selection rules for transitions between the states of the 
true spectrum will be just the same as those between the unperturbed states. We 
note that the bound state branches exist not only for 12 0, as in the unperturbed 
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spectrum, but also for 1 < 0. The  retention of the term ‘ Landau quantum number’ 
for negative 1 is justified by the fact that transitions with 1 < 0 are governed by the 
same selection rules as for 12 0 (Kaplan and Levinson 197213). Thus, if as in $3.1 
we suppose that there are electrons only at the bottom of the 1 = 0 band, then 
bound states with 1 = I 1 will contribute to intraband absorption of left or right 
hand circularly polarized light. States with 1 = 0, & 2 will take part in Raman 
scattering. The  binding energies w(0) for 1 = 0, & 1, & 2 have the same dependence 

j_ 
\ 
\ 
\ 
\ 
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Figure 19. Effect of bound states on electronic absorption in a magnetic field. 

on H and are of the same order of magnitude. Kaplan and Levinson (1972b) 
showed that for the important case of a polarization electron-phonon interaction 

“ 2 W 0  

It is easy to reach the high-field region for InSb, but the corresponding value of 
W is of the order of meV which is not observable experimentally. One should 
therefore use materials with a greater coupling constant 01 and the lowest possible 
effective mass m. The  best combinations of 01 and m are found in 11-VI compounds 
made up of heavy elements (ionic-metallic binding). In  CdTe (see $3.4) fields in 
which N wO are experimentally attainable, and here we have W -  3 meV. Collision 
broadening is much less than this in pure samples; l / ~ -  0.2 meV. We may there- 
fore expect bound states to be clearly evident in the optical properties, even if an 
unfavourable numerical factor reduces the magnitude of W by an order of 
magnitude. 

4.2. Theory (weak coupling) 
The spectrum of charged excitations of the electron-phonon system is deter- 

mined by the poles of the single-particle (electron) Green function G, or by the 
poles of the two-particle (electron-phonon) Green function K ;  moreover, because 
the number of phonons is not conserved, the spectra of G and K are the same 
(Kaplan and Levinson 1972a). 

Near the threshold E = wo the function G may be found by using a method 
developed by Levinson et a1 (1971c), and based on the ideas of Pitaevskii (1959) 
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on the study of the spectrum near a decay threshold. Technically, the problem is 
simplified by the fact that the exact Green function is diagonal in the Landau 
representation (Holstein 1964, Dworin 1965, Levinson et al1971a), and also because 
a gauge-invariant diagram technique may be used which does not contain the 
electron quantum numbers p ,  or M ,  the choice of which depends on the calibration 
of the vector potential (Levinson et al 1971a). This approach was used to derive 
the spectrum of G for I >  0 and the DO interaction (Levinson 1970, Levinson et al 
197 1 c). 

An equivalent but technically more convenient approach is based on an examina- 
tion of the two-particle function K and of the corresponding amplitude F for the 
scattering of a phonon by an electron. In  this method the spectrum of bound states 
is determined by the poles of 7, and the wavefunctions of these states can be found 
from the residues of K. Separation of the troublesome sections over one electron and 

qL p-k 9: P - k ’  0 [I1 q1 p - x  3- +b---q-;I = ;-;-g&-j-;-: + r;-M-D-r--g---; 
E - %  nk E - W ?  n’k‘ <-a0 iik 

Figure 20. Equation for the scattering amplitude of a phonon by an electron. 

one phonon line in F leads to the equation in figure 20, where has no troublesome 
sections. In  this figure n is the oscillatory Landau quantum number, k is 
the longitudinal (parallel to H )  electron momentum, p is the total longitudinal 
momentum of electron and phonon, E is the total energy parameter and qL is the 
transverse phonon momentum. 

Since both the Green function G of the internal line with energy E - wo N 0 and 
U can be expanded in powers of a, then to lowest order we may replace G by the 
free particle Go and take the diagrams with two vertices for (figure 21). In  the 

Figure 21. Kernel of the equation for the scattering amplitude. 

integration in the troublesome section it is necessary to take into account the con- 
tribution only from states near the threshold, for which a real decay is possible, ie 
ff = 0 and K = 0. If we put n = n’ = 0 and k = k’ = 0, we get an equation for 7 
which is an integral equation in just Q ~ .  In  this we may put E = wo in E and in the 
other regular quantities. The  equation then takes the following form 
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where the square brackets denote the component along H of the vector product, 

Po 
( 2 4  E - w0)  + i0)l’Z 

- 
A(€) = -&WO 

ImA(E)  < 0 

- ......- Po2 PO. ] 
4L2 + P 2  

(4.7) 

In  order to eliminate the phase factor and symmetrize the kernel we replace 9- 
and by the primed quantities according to the prescription 

9-’(4L, 4 3  = [ @ ( P  ; P I )  @(P ; 4;)11’2 exp ( - y [a, 411) F(4l. 43 (4.8) 

and similarly for 0’. It then turns out that E’, and also F’, are functions only of 
the difference in the azimuthal angles + and +’ of the momenta ql. and 4:. We 
expand them in a Fourier series of the form 

I t = a2 qL2/2 
and obtain separate integral equations in t with kernels for each 5. Let us now 
introduce the dimensionless quantities 

(4.10) 

The equation for 6 then transforms to the standard form of a Fredholm equation 
for the resolvent 

R(t, t’) = L(t, t ’ )+AImdtL(t ,  i)R(i, t’) (4.11) 
0 

where the parameter X is a function of E and the kernel L is a function of lp. 
It is now clear that F has a singularity in E when A(€)  is equal to one of the 

eigenvalues X r  of the kernel L. This eigenvalue, as is the kernel, is a function of Zp. 
The singularity corresponds to a bound state if it is below the threshold, ie for 
E < w0 when A ( € )  > 0. We therefore finally obtain the result that the spectrum is 
determined by the positive eigenvalues of the kernel, and from equations (4.6) and 
(4.10) we have the dispersion relation 

(4.12) 
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For 12 0 this spectrum is the same as that of G. For I < 0 we obtain new branches, 
which have not been found previously, since the branches with I <  0 in G have a 
smaller residue than the branches with 12 0. 

The  use of the above approach to the study of the spectrum is determined by the 
form of the kernel L,  which for the most interesting case p = 0 we shall write as 

L,(t, t’) = (@(t)@(t’))‘’zexp -- ( Y’) 
I 

(4.13) 
U 

x 2 A (tt’)n/2 (J,+n (Z(tt’)l/z) - + a,, n+o  n - o  
n=O 

@(t)  = 1 DO 

= oit P O  

o = wo/w,  I 
where Jl is a Bessel function. 

We first consider high fields, o <  1, when only the term with n = 0 is important 
in the summation. An exact solution for equation (4.11) can be found for a DO 
interaction and I f 0  (Kaplan and Levinson 1972a), by using the invariance of 
Laguerre polynomials under a Bessel transformation. The  eigenfunctions and 
eigenvalues are 

p = *(,/5 - 1). I 
Hence, for any nonzero 1 there exists an infinite sequence of positive hf, which 
increase without limit, and according to equation (4.12) this leads to the existence 
of an infinite sequence of states with the threshold as limit. For I = 0 the kernel 
consists of two terms, corresponding to the two in the bracket; one containing Jo 
and whose solution is obtained from equation (4.14) for 1 = 0, and the second with 
( -  1) which corresponds to a factorizable kernel. An equation for X can therefore 
be obtained in the form 

p ( h ) = w z - ,  - ( -  A;)-’ 1 (4.15) 

A graphical solution for h > 0 is shown in figure 22, and from this it is clear that the 
behaviour of the eigenvalues is the same for 1 = 0 as for If 0,  that is, this case also 
has a spectrum of bound states which tends to a limit at the threshold. 

We have not been able to find an exact solution for the physically more important 
case of a PO interaction. However, by comparing the PO kernel with that for the 
DO interaction and by using certain general theorems of the theory of integral 
equations, it can be shown (Kaplan and Levinson 1972a) that the spectrum for a 
PO interaction remains qualitatively the same. 

For weak fields, 0% 1, the kernel in equation (4.13) can be rewritten in a series 
of the form ~ , ( l / o s ) ( t t ’ ) s ~ 2  (Levinson et a1 1971~)  and can be approximated by 
degenerate kernels. The  kernel in this case also has an infinite number of positive 

F(X) = - 1/X 

P2 A- A; 
r=0 
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eigenvalues, which increase without limit, so that bound states also exist in weak 
fields. 

It should be noted that the equation derived by Pitaevskii (1959) for the vertex 
r was algebraic rather than integral. The  integral nature of the equations for and 
.F in the present case is due to the fact that the phonon energy is independent of &; 
hence all states with differing values of ZjL are near the threshold and an integration 
over these states is preserved in the troublesome section. 

i 
/ 

/ 
I 

Figure 22. Graphical solution of equation (4.15). 

The  bound states considered above arise as a result of the usual electron- 
phonon interaction which is linear in the phonon amplitudes. I n  some cases it is 
possible to have an interaction which is quadratic in these amplitudes, and this 
interaction can also produce a bound state of an electron and a phonon in the 
presence of a magnetic field (Levinson and Rashba 1972). These bound states 
have a number of special features, in particular they cannot be found from the poles 
of the function G, but only from the poles of K.  This means that the electron is not 
bound to the phonon which it emits itself, but to a phonon which is already present 
in the crystal. The  probability of finding such bound states therefore increases in the 
presence of a nonequilibrium phonon distribution (see $7.3.). Binding can take 
place either with LO or with TO phonons. 

Part III .  Impurity centres 
5. Resonant electron-phonon coupling in impurity centres 

As was shown above in $ 3  for the example of magnetopolarons, the electron- 
phonon interaction gives the largest effects when wo is in resonance with one of the 
electronic frequencies. These resonance effects are expressed most clearly in 
impurity centres, since the electronic subsystem then has a discrete spectrum, and 
because of the infinite mass of a centre phonon, emission is not accompanied by any 
recoil. 
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I n  the resonant situation two discrete levels arise; one above wo and the other 
below, as was shown in figure 3. These are both hybrid states and are formed by 
the superposition of zero-phonon and single-phonon states in the ratio of approxi- 
mately 1 : 1. They can therefore be considered as a special form of localized vibra- 
tions and have been called dielectric vibrations. Of course, the origin of these 
vibrations is quite different from that of the usual localized vibrations, which are 
due to differences in mass or force constants. 

The  existence of this new type of localized vibration was first pointed out by 
Kogan and Suris (1966), who explained its basic features, using the example of a 
two-level system. The  first experimental observation of these vibrations was made 
by Onton et aZ(1967a,b) for donors in Si, and then in other crystals. If the ioniza- 
tion potential R of the impurity in the crystal is comparable to phonon frequencies, 
it is then quite likely that wo is close to one of the electronic frequencies; the dis- 
tance from resonance can be varied by a magnetic field or by pressure. This is the 
situation which we shall examine below. The  case R<wo,  when the resonance is 
created by a high magnetic field, such that w c ~ w 0 ,  has already been considered 
in $3.3. 

5.1. Theory 
We take as a model system an impurity centre with a nondegenerate ground 

state and a single degenerate excited level. The  eigenfunctions of the excited level 
will be labelled by the index X while 0 refers to the ground state. The  excitation 
energy of the centre is denoted by W. 

Figure 23. Graphical equation for the phonon Green function. 

If we take only a simple loop in the phonon polarization operator, we can solve 
the graphical equation for the phonon Green function, shown in figure 23. Near to 
resonance ( I  W -  w o ]  < wo) this solution has the form 

where 

I cq l 2  DO(EQ) = 
E - w ( q )  + io 

vq = exp ( iq .  r )  

The function D is nondiagonal, since the impurity centre violates the translational 
symmetry. The  quantity A( e) is interpreted as the mass operator for an electron. 
Since the electron has a discrete spectrum and the only source of dispersion in 
the system is w ( q ) ,  the phonon dispersion, this has been taken into account in 
equation (5.2). 

58 
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The energies of excited states are found from the condition 

E- W = & ( E )  ( 5 . 3 )  
which is the usual equation of degenerate perturbation theory; it was discussed in 
this context by Kogan and Suris (1966) and by Rodriguez and Schultz (1969). 
Isolated roots of this equation correspond to local vibrations. If phonon dispersion 
is neglected, & ( E )  takes the form in equation (1.5d), and equation (5.3) then 
always has two isolated roots which vary with electronic frequency as shown in 
figure 3 .  The  separation of the branches is of order 0 1 ~ 1 2 0 ~  at resonance, but away 
from resonance the distances from the asymptotes decrease as awo2/( W -  w o ) .  By 
analogy with 5 3 it can easily be seen that the states near the resonance are hybrid; 
near the asymptote E = wo they are bound states of a phonon at the impurity centre, 
but near the asymptote E = W = E,- E, they are purely electronic. The  localized 
modes discussed here can therefore be described in other terms as complexes of an 
impurity centre plus a phonon. 

It can be seen from equations (5.1) and (5.2) that the quantities 

are essentially the wavefunctions of localized modes. For a PO interaction at 
w ( q )  = wo (Dean et al  1970) then 

where a is the Bohr radius in the crystal. The  nonanalytic behaviour for small q 
should be noted, that is, the limit for q + O  depends on the direction of q ;  this is a 
consequence of the singularity of the polarization interaction. 

The  intensity of light absorption by localized modes is determined by the 
contribution of no-phonon states to the excited state wavefunction. It is therefore 
proportional to 2 (cf equation (1.4)) and decreases as the localized mode is pinned 
to WO. 

On the other hand, Raman scattering of light is determined mainly by the 
direct interaction of electromagnetic waves with phonons. Hence the scattering 
probability k +  k’ with the excitation of a local mode X is 

w ~ + ~ ,  CC I Y,(k’ - k )  1 2 .  (5.6) 
Since k a 4 1 ,  a comparison of equations (5.5) and (5.6) gives the important result 
(Dean et al 1970) that scattering by p-modes is considerably stronger than that by 
s-modes. 

I t  is clear from equation ( 5 . 5 )  that Y,(q) has a characteristic radius a-l, and 
therefore [ Y,(q 2: 0 )  l 2  N a3, Since we always have a3/a 9 1 ( a  is the volume of the 
unit cell) for centres with R N W ~ ,  it follows from equation (5.6) that impurity 
Raman scattering is anomalously large; for a single impurity centre it is a factor of 
a3/u stronger than the intrinsic scattering calculated for a single unit cell. This 
effect has the same origin as the giant cross section for impurity absorption near 
an exciton band (Rashba 1957, Rashba and Gurgenishvili 1962); it is due to the 
coherence of vibrations over a volume N a3. 
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A nonresonant situation was also recently analysed, and it was shown (Rashba 
1972a) that localized modes with all values of angular momentum arise in the 
absence of phonon dispersion. There are an infinite number of modes for each 
value of the angular momentum. Their frequencies lie in a region near wo whose 
width is of order O * l w o ~ o / <  and each mode corresponds to a bound state of a 
phonon at the localized centre. For fixed tc0/t? and R $ w o  the phonon binding 
energy is independent of R, and therefore bound states will also occur for deep 
centres. 

5.2. Experimental results for  absorption and Raman scattering 
In  the absorption spectrum of Bi donor centres in Si the band corresponding 

to the transition ls(A,)+2po (the level classification is that of Kohn (1957)) is 
anomalously broad, and its frequency of 59.5 meV is close to that of TO phonons 
along (100) (58-7 meV). This may mean that because of the finite width of the 
phonon branch, equation (5.3) no longer has isolated roots, that is, the system has 
only a continuous spectrum. This hypothesis was put forward by Onton et a1 
(1967a,b) and also confirmed experimentally; the band splits into two under 
uniaxial deformation, and its high frequency component narrows rapidly. The  
large width of the 63 meV Ga acceptor band in Si (Hrostowski and Kaiser 1958) is 
also presumably due to resonance with the Raman frequency of 64.8 meV (Onton 
et a1 1967b). We emphasize that these results are for a purely homopolar crystal 
with a relatively weak electron-phonon interaction. The  disappearance under 
pressure of the band ls(A,)+ls(T,) in the spectrum of T e  donors in AlSb was 
interpreted in an analogous manner (Ahlburn and Ramdas 1968). 

In  their study of local modes Dean et a1 (1970) used Raman scattering very 
successfully ( s e  also Manchon and Dean 1970). Measurements were made on S, 
Te, Si and Sn donor centres in GaP (Raman frequency w 50.2 meV), and the 
corresponding frequencies for l s+2s  and 2s+2p transitions lie in the range 
58-94 meV. For each of these centres a single impurity band was observed at the 
long-wavelength edge of the intrinsic Raman scattering band, and this impurity 
band was displaced by 0.8-1.6 meV with respect to the intrinsic band (figure 24). 
According to the ideas of 5 5.1 these were ascribed to p-states. 

s-type local modes in GaP were found in the vibronic spectrum accompanying 
the luminescence of excitons associated with neutral donors. Their frequencies are 
displaced by 1.2 meV (S) and 1.9 meV (Te) with respect to the Raman frequencies. 
Similarly, local modes were found in the luminesence spectrum of CdS, displaced 
by 3.3, 2.7 and 1.4 meV with respect to the Raman frequency wo = 38 meV 
(Reynolds et al 1971). These belong to a neutral acceptor with W = 168 meV. 
Although these modes lie in an energy range containing a high density of states in 
the phonon spectrum, their width is fairly small. 

There is no doubt that the local modes found in GaP and CdS are dielectric; 
this was shown convincingly in the papers we have quoted. However, it is clear 
from the results given above that for some of the impurities in Gap, and particularly 
for CdS, that the energies of electronic transitions in impurity centres considerably 
exceed wo, that is, there i s  no resonance. The  estimates of the frequency shifts, 
made by Dean et a1 (1970) and by Reynolds et a1 (1971) using a two-level model, 
are in satisfactory agreement with experiment but a complete analysis must be 
based on a more rigorous theory (Rashba 1972a). It would be especially interesting 
to sort out the sequence of levels with the same angular momentum. 

P *= 
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The  opposite case R < wo was recently investigated with donor centres in CdS 
and CdSe (Henry and Hopfield 1972). In  their spectra features were found which 
may be connected with some quasilocalized modes. 

I E f f e c t i v e  
slit width 
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Figure 24. Impurity bands in the Raman scattering of GaP at 20 K. From Dean et a1 (1970). 

If localized vibrations of the usual type are present in the spectrum of the 
crystal, pinning is expected to occur as the electronic frequencies approach those 
of the localized vibrations. This situation was studied in AgBr by Brandt et a1 
(1970), and a theory was provided by Ivanov (1966) and by Davies and Zeiger 
(1970). 

Part I V .  Excitons 
6. Exciton-phonon complexes 

The study of exciton-phonon interactions was given a new impetus by the 
experiments of Liang and Yoffe (1968), who found a characteristic structure on the 
high frequency side of the fundamental exciton band in ZnO, separated from this 
band by an energy close to or equal to a multiple of w,-the frequency of polariza- 
tion phonons with q = 0. Analogous structures were soon found in the spectra of a 
number of other crystals. 

This structure was explained in terms of final-state interactions, ie an interaction 
between an exciton and a phonon produced in the optical transition. However, no 
detailed interpretation of the experimental results has yet been made. We therefore 
begin by describing the experimental results and formulating the questions which 
arise naturally in their analysis; we then examine the theories which have been put 
forward, and finally we compare, in so far as this is possible, theory and experiment. 

6.1. Experimental results 
The long-wavelength edge of the intrinsic absorption spectrum of ZnO is 

shown in figure 25 (Liang and Yoffe 1968). The  exciton bands A (n  = 1) and 
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B ( n  = 1) correspond to direct allowed transitions from the two successive valence 
bands at the point I? (ie k = 0). These are followed by two close pairs of satellites 
(L,,, Llb and LZa, Lzb) and a further weak satellite L,. Successive satellites 
(L,, L,, L,) are separated by approximately equal intervals Aw Y 73 meV, which is 
close to wo = 71 meV. I t  is therefore natural to suggest that these satellites corre- 
spond to the creation of from one to three phonons together with the exciton. 

3500 3600 3700 
Wavelength ( 1 

Figure 25. Absorption spectrum of hexagonal ZnO at 4.2 K and 295 K. From Liang and 
Yoffe (1968). 

It is usually assumed that the exciton and the optical phonon, produced by the 
absorption of a photon, fly apart immediately and afterwards mo\7e independently. 
I t  is natural to call this two-particle absorption. If this two-particle absorption 
occurs in a region of the spectrum where there are no purely electronic transitions, 
it can easily be calculated by applying second-order time dependent perturbation 
theory to the electron-phonon transitions. This absorption is in the form of ‘steps’ 
which begin at a distance wo from the intrinsic exciton band; its maximum is dis- 
placed from this threshold by the order of R. c Steps’ of this kind are usually taken 
to be a characteristic sign of exciton-phonon transitions. 

An unusual feature of the satellites L,, and L,, is that they show clearly 
developed maxima, and not thresholds, located at a distance A w ~ w ,  from the 
exciton bands. The  sharp distinction between this picture and that described 
above led Liang and Yoffe to put forward the idea of ‘exciton-phonon complexes’. 
They did not construct any detailed model of these complexes, but it was assumed 
that the energy of the complex was not simply the sum of the energies of the exciton 
and the phonon. 

Another important point that should be noted here is that the binding energy of 
A and B excitons, which are 67 and 63 meV, are less than wo. Hence both satellites, 
L,, and Llb, lie in the exciton ionization continuum, that is, where, in the absence 
of exciton-phonon coupling, one would expect continuous absorption corresponding 
to pair formation. This situation is shown schematically in figure 26(a). Con- 
sequently, a correct description of the absorption (even if it is assumed that no new 
types of state appear) must include the change in the no-phonon absorption, 
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calculated according to the same second-order perturbation theory. At the time of 
the experiments of Liang and Yoffe (1968) such a calculation had not yet been 
carried out. 

Continuum Continuum 
Is exciton + phonon e lect ron + hole Continuum 

//////U I s  exci ton + phonon Continuum 
electron t h o l e  

0 0  R €2 
r 

Crystal ground state Crystal ground state 

( a )  ( b )  

Figure 26. Energy level diagrams for (a) R < w,, and (b)  R >wo. 

Table 2. Exciton spectra data indicating satellite structure 

R is the exciton binding energy, w,, is the Raman frequency, and Aw is the separation 
between the phonon satellite and the exciton band. The references are to the papers in which 
Aw was determined. 

Substance R (meV) wo (meV) 
ZnO 65 71 
B e 0  170 136 

85 89 
30 38 

MgO 
CdS 
CdSe 15 26 
CdTe 9.5 21 
TlBr 6 14 

10 15 
TlCl 10 22 

12 22 
AgBr 19 17 

Aw (meV) 
73 

130 
60 
30 
19 
19 

N wg 

(0.6 - 0.7) w o  
2: W O  

(0.6 -0.7) U,, 

15 
13 

Reference 
a 
b 
b, c 
d 
d 
d 
e 
f 
e 
f 
g 
h 

AgCl - 24 18 h 

a, Liang and Yoffe (1968). 
b, Walker et'al (1968). 
c, Whited and Walker (1969). 
d, Dillinger et al (1968). 

e, Bachrach and Brown (1968). 
f, Kurita and Kobayashi (1969, 1970, 1971). 
g, Brandt and Brown (1969) for band excitons. 
h, Kanzaki et a1 (1967, 1968) for impurity excitons. 

Analogous structure was soon discovered in the exciton spectra of a number of 
other crystals; these data are summarized in table 2. It is clear from this that for 
most cases AW < R, that is, the satellite maximum lies in the exciton ionization 
continuum, as for ZnO. This group includes the cadmium chalcogenides, in which 
electron-phonon coupling can be considered to be weak ( a <  l), and TlBr and 
TlC1, which are typical crystals with intermediate coupling ( a  N 3). 

BeO, MgO, AgBr, and possibly AgC1, are somewhat anomalous. The  spectrum 
of B e 0  is shown in figure 27. In  Be0  and MgO we find A w ~ 0 * 7 5 R ,  so that the 
satellite seems to have a natural interpretation as a 2s exciton band (figure 26(b)). 



Electron-phonon and exciton-phonon bound states 1537 

However, the intensity of the satellite in MgO is ~ 0 . 6  of that in the exciton band 
(Whited and Walker 1969), which is in sharp contradiction to the law (Elliott 
1957). I t  was therefore suggested that exciton-phonon coupling plays an important 
role in this material. But if we represent the effect of the electron-phonon inter- 
action in the same terms as those applied to impurity centres in § 5 ,  we would then 
expect to find the biggest effect in BeO, where A w ~ w , ;  however, this does not 
agree with the results of Whited and Walker (1969). I t  is therefore not possible at 
the present time to draw any firm conclusions from the results for MgO and BeO. 

10.2 10.4 10.6 10.8 
f iw ( e V )  

Figure 27. Real, K~ (- - - -), and imaginary, K~ (- ), parts of the dielectric constant for 
Re0  a t  77 K. The exciton peak corresponds to a direct allowed transition at F. From 
Walker et a1 (1968). 

The  experiments on AgBr are interesting, but need to be developed further. 
Here the bands which are ascribed to a complex are observed for both band 
excitons (Brandt and Brown 1969) and for impurity excitons (Kanzaki et al 1967, 
1968). Similar features are also found in the spectra of ionic crystals when the 
exciton radius is relatively large (n  = 1 excitons in LiI and n = 2 in RbI and KI 
(Baldini et a1 1969, Baldini and Bosacchi 1969, 1970)). 

The  experiments listed above have stimulated the development of both a theory 
of exciton-phonon complexes, which are a direct analogy of the impurity centre 
plus phonon complexes, and of a theory of absorption in the exciton continuum. 

6.2. Theory of the energy spectrum and of absorption (weak and intermediate coupling) 
The  hamiltonian of a Mott exciton interacting with polarization phonons has the 

standard form 
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Here ah is the exciton annihilation operator in the state A, 

M = me+m,, 
me and mh are the masses of electrons and holes, and P is the total exciton 
momentum. The  coordinates of the exciton centre of mass have been eliminated in 
the derivation of equation (6.1) (Lee et a1 1953). 

I t  is clear from equation (6.1) that there are two differences between the 
hamiltonian of an exciton and that of an impurity centre: (i) the exciton has a finite 
mass (the third term in equation (6.1)), hence there is a recoil on emission of 
phonons, and (ii) p,(r) replaces exp ( iq .  r ) .  The  first of these is the more important. 
We limit our discussion to the states P = 0 which are the most important in 
absorption. 

6.2.1. Weak coupling. For weak coupling it is sufficient to consider just no-phonon 
and single-phonon states. The  second and third terms in equation (6.1) then reduce 
to 

x W Y Q )  q w q  (6.3) 
4 

where w * ( q )  = wo + q2/2M. Here the exciton recoil could be taken into account by 
introducing an effective phonon dispersion. 

I n  our approximation for the exciton mass operator (the first diagram in 
figure 4) we get 

We take first the situation shown in figure 26(b) and consider the correction to 
the position of the excited exciton level with energy E,  + W, with which are associated 
the Coulomb eigenfunctions $A. If A and A‘ belong to the same term, then 
~d~~ = ~4’6,~.  At resonance, when W N W ~ ,  singularities in 4 arise from the term 
v = 1 (Is state). Unlike the case of the impurity centre (cf (5.2)), the dispersion in 
w*(p) is considerable and is already apparent for momenta q N r ia .  The dependence 
of (A 1 p q  I 1) on Q for small q is therefore important, and this is determined by the 
symmetry of the resonance level (we assume that state 1 is an s-state). 

For s- or d-levels ( A  I pn I 1) N (aq)z and & ( E )  is determined by equation (1.5(a) ) 
with 

where p is the reduced mass, and ab is the Frohlich coupling constant, calculated 
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for mass p (cf equation ( 2 . 5 ) ) .  Hence complexes do not occur here for sufficiently 
weak coupling (cf §1), pinning is absent, and the intensity of absorption hardly 
changes as the level approaches the threshold. There is weak damping proportional 
to { E - ( ( E ~ + w ~ ) } ~ ’ ~  beyond the threshold and the state can be considered to be 
autoionizing. 

It is important to note that the coefficients in equations (6.5) contain pro- 
gressively increasing positive powers? of J4,’p together with the small quantity aP. 
If lW/p+l ,  then it is possible to have B N 1 even in the region of weak binding for 
both particles (aP< 1, = ~,~(iW/p)’~’z< 1). The  contribution of no-phonon states 
2 is then appreciably less than unity (cf equation (1.4)), that is, the resonant 
coupling is large and a complex is formed. In  the case considered B+A/w,, and 
consequently the relative correction to the intensity is greater than the correction to 
the level, since, according to equations (1.4) and (1.5), the first of these is of the 
order of B whilst the second is of the order of Alw,. The occurrence of complexes 
for M / p +  1 is to be expected, since the properties of the exciton must then tend to 
those of an impurity centre. 

For p-states (AI p q  I 1) N aq and A( e) is given by equation ( 1 4 4 )  with 

Therefore exciton-phonon complexes arise for weak coupling and pinning occurs, 
as follows from § 1. We emphasize one condition necessary for the derivation of this 
result: the coordinate matrix element between states 1 and h must be nonzero. 

In  the limit M / p + c ~  the properties of an exciton become identical with those 
of an impurity centre and in this case, as was noted in $ 5 ,  a system of phonon 
states bound to the centre arises even in the absence of resonance. We must there- 
fore expect analogous bound states of a phonon and an exciton when the ratio .W/p 
is sufficiently large. The  appropriate condition is p/A45 0.1(~~/1?) (w,/R) (Rashba 
1972a), which is not excessively severe. 

We now turn to the situation described by figure 26(a); this was investigated by 
Sak (1970a,b). I t  has already been pointed out that for wo> R it is important to 
include the change in absorption in the electron-hole continuum, due to exciton- 
phonon coupling. The  conductivity .(U) cc I m  F ( w ) ,  where F is the exciton 
Green function. Using second-order perturbation theory we have 

In  the second term the residues of FO, describe absorption with the formation of a 
Is exciton and a phonon, whilst the residues of F! and F:, describe the change in 
absorption in the electron-hole continuum. Because of the complexity of the 
Coulomb functions # A  explicit expressions for .(U) were not obtained. However, 

t It  is possible that just this tendency of the binding energy of complexes to increase with 
increasing M is the reason why Aw for impurity excitons in AgBr is less than for band excitons 
(cf table 2). 
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a numerical calculation (Sak 1970a), using the parameters for CdTe, gave satisfactory 
agreement with the experimental results of Dillinger et al (1968); a maximum 
appears in the ionization continuum, near the threshold (figure 28). 

I I I I 
/ 

0.5 
1,58 15.9 16.1 

750 (e\’) 
Figure 28. Imaginary part of the dielectric constant for CdTe: curve A, without exciton- 

phonon interaction; curve B, experiment, at 77 K ;  curve C, theory. The calculations 
(Sak 1970a) are made for me = O.llmo, mh = 0.5mo, K” = 10, K, = 6, wo = 21 meV 
and R = 10 meV. T o  facilitate comparison of theory and experiment, a phenomeno- 
logical width was introduced into the calculation in order to give the right shape for the 
1s  band. 

It is clear from the above considerations that the maximum in the absorption 
derived by Sak (1970a,b) is purely an interference effect?. On the other hand, in as 
much as the results of Sak’s paper were derived by applying perturbation theory to 
the Green function, they cannot in principle exhibit the presence of any type of 
bound states. If, therefore, the results for other crystals with weak coupling can be 
satisfactorily accounted for by using equation (6.7), then the question of the 
existence of ‘complexes’ in ZnO and similar materials does not arise. One cannot, 
of course, automatically extend this conclusion to crystals with intermediate 
coupling. 

6.2.2. Intermediate coupling. Toyozawa and Hermanson (1968) and Hermanson 
(1970) investigated exciton-phonon complexes in the intermediate coupling region, 
using the variational procedure of Lee et al (1953). These papers have played an 
important role in stimulating further experiments. 

First the hamiltonian in equation (6.1) is canonically transformed, using the 
operator exp (iU), where 

U = ~ ( d g V g - d V ~ q f )  (6.8) 
9 

and the parameters dq are chosen to minimize the energy of the Is state of the 
exciton. The  wavefunction of the lowest excited exciton state is then written in the 

-f In this sense it is reminiscent of the Fano effect (Fano 1961). 
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where the sq are determined by a variational method. The  single-phonon approxi- 
mation of equation (6.9) shows the basic limitation of this theory, since it corre- 
sponds to the retention of only the first term in the sequence of threshold diagrams 
in figure4. This approach should then be useful mainly for the description of 
resonance effects. 

The  dependence of the energy of this level on R is shown in figure 29(a) for 
two values of the parameters. The  curves touch the phonon continuum at a finite 

I 

0 
f 

f l l w c  
(6) 

Figure 29. (a) Energy of the first excited exciton state, and (b)  intensity of optical transitions 
to this state. Curve A is for IC’/? = 1, M / p  = 8, and curve B for IC‘/? = 2, M / p  = 8. 
Here IC’ = (p/mo) a, where a is the effective Bohr radius. From Hermanson (1970). 

angle, in agreement with $1. The  threshold values of R at which the single- 
particle branch disappears are N (1-5-2) wo. 

The ratio of the optical transition probability into the state x to the transition 
probability to the Is ground state of the exciton is 

(6.10) 

The  dependence off on R is shown in figure 29(b). A comparison of figures 29(a) 
and 29(b) shows that for given values of the parameters the intensity of absorption 
is very small when the level enters the continuum. The  dependence off  on R is 
non-monotonic and it is in this that the difference from the weak coupling case 
shows most clearly. 



1542 Y B Levinson and E I Rashba 

The  weak-coupling theory includes only the second term in equation (6.10), but 
for the parameters given in figure 29 the first term is the larger. The  magnitude of 
this term is a measure of the contribution of single-phonon states to x, so that we 
may conclude that this is considerable. Therefore, despite the fact that t remains 
finite even at the threshold, it is admissible to consider the resultant state as a bound 
state of an exciton and a phonon. 

We now return to the situation shown in figure 26(a). Toyozawa (1971) put 
forward a variant of the theory and used this, in the spirit of Liang and Yoffe 
(1968), to reach the conclusion that in this case there is a branch of quasi-bound 
states of an exciton and a phonon with c<w0, which lies in the electron-hole 
continuum. However, these states are very broad, and in a typical example con- 
sidered by Toyozawa their width 2I’ = 0 . 8 ~ ~  for a binding energy wb N 0 . 1 5 ~ ~ .  
Because 2I’ 9 wb the validity of these results is not certain. 

7. Magnetophonon resonance in the exciton spectrum 
Effects in the absorption spectrum due to resonance between the cyclotron 

frequency and w,, were first discovered experimentally by Johnson and Larsen 
(1966), in the intrinsic absorption spectrum of InSb. The  physical picture of this 
is, in principle, considerably more complicated than for cyclotron resonance 
(cf 3 3). Interband absorption of a photon simultaneously creates an electron and a 
hole, which then interact both between themselves and with phonons. I t  is impos- 
sible to ignore the Coulomb interaction between electron and hole, since all the 
distinct structure in the absorption edge is due to exciton bands, whose contribution 
to the absorption is increased by the application of high magnetic fields (Elliott and 
Loudon 1960). On the other hand, the phonon interactions are responsible for the 
resonance effect under discussion. Hence the investigation of the spectrum of 
exciton-phonon bound states is equivalent to solving the problem of three interacting 
particles, and naturally this is possible only in limiting cases. The  lower part of the 
spectrum in this resonance situation was investigated by Mel’nikov et a1 (1971) and 
by Rashba and Edel’shtein (1971); the nonresonant case was discussed by 
Levinson (1972). 

7.1. General features of the spectrum 
characterizes the Coulomb interaction energy in an exciton. A 

magnetic field H is considered to be strong if the cyclotron frequencies of both 
carriers we, wh 9 R. An analogous situation for impurity centres was considered 
in $ 3 . 3 .  

Under these conditions the motion of an electron and a hole is quasi-one- 
dimensional ; the transverse motion is practically completely determined by the 
magnetic field, and only the slow longitudinal motion is controlled by the Coulomb 
attraction (Elliott and Loudon 1960, Hasegawa and Howard 1961, Gor’kov and 
Dzyaloshinskii 1967). The  wavefunction of their relative motion is highly extended 
along H ;  its transverse dimensions are of order A, but its longitudinal dimensions 
are of order a / L ,  where L = In ( ~ / 2 h ) ~ .  In  sufficiently high fields L 9 1 and we shall 
assume this to hold. 

Since the exciton is a neutral particle, its momentum P remains an integral 
of the motion in the presence of a magnetic field (Knox 1963, Gor’kov and 

R = 
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Dzyaloshinskii 1967). Because we shall be considering absorption spectra, we limit 
our discussion to states with P = 0. 

Each pair of Landau bands (one electron and one hole, with quantum numbers 
ZI and I,) gives rise to a series of exciton levels E,, with n = 0, 1, ...,CO. For the 
ground state E 0 r  - RL2 and for excited states E,- - R/n2 ( n  2 1). An increasing 
fraction of the total absorption is concentrated in the n = 0 band as H increases, and 
its intensity increases as HL. 

l i = l  

Figure 30. (a) Electron and hole Landau level scheme. (b) Schematic energy spectrum of the 
system when the Coulomb interaction and electron-phonon coupling are included. 

Let us suppose that the resonance condition U ,  2 wo is satisfied for the electront 
but not for the hole. Coupling with phonons is considered to be weak ( a <  1) and 
we shall consider only resonance effects. Consequently the interaction of the hole 
with phonons may be neglected. As yet we place no limitation on the ratio of the 
Coulomb energy R to the resonant interaction energy C Y * ' ~ U ~  of an electron with 
phonons ($3) .  However we shall assume everywhere, with the exception only of the 
end of $7.2, that R $ a 2 u 0  (cf $4). 

A schematic diagram of the electron levels (for P = 0) )  not including the 
Coulomb interaction, is shown in figure 30(a). Allowed electron transitions are 
shown by full vertical arrows. The  dashed arrow 1 shows the energy of a purely 
electronic excitation of the system when the electron and the hole are in bands 
1, = I, = 1, and the dashed arrow 2 shows the energy of an electron-vibrational 
excitation (with the electron in the band lI = 0); these energies are equal for U ,  = wo. 
Figure 30(b) shows by dashed lines the variation with H of all the levels of the 
electron plus hole system which arise from levels 1 and 2 (in figure 30(a)) as a 

This condition, combined with the condition we % R, means that we are now considering 
crystals with wo % R, unlike $6 .  
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consequence of the Coulomb interaction. The  lowest levels of the corresponding 
exciton series are shown by the dashed lines 1’ and 2‘. The  transition to the 1’ 
level is expected to be dominant in the absorption spectrum, but weak transitions 
to higher levels of this series (1”) etc) must also be present, together with transitions 
to the spectral continuum (beyond the dashed line 1). 

By analogy with $8 3 and 5 we may expect that weak coupling with phonons will 
lead to pinning near the intersection of lines belonging to systems 1 and 2. The  first 
pinning for the fundamental band 1’ must occur at its intersection with 2’) but we 
may also expect pinning near subsequent intersections (with 2”, etc). The  levels 
constructed in this way are shown by thick lines in figure 30(b). State B, which can 
be considered as an exciton-phonon complex, is stable with respect to emission of 
an optical phonon, and this is the single-particle branch of the spectrum. Higher 
states can decay with the formation of two-particle states-a free phonon and a free 
exciton (in the state ZI = 0, 1, = 1, n = 0); these are relatively stable oniy for small a. 
When this condition is satisfied, level 1’ must reappear after passage through 
resonance-curve ,4 in figure 30(b). However, it is not obvious how the corre- 
sponding absorption behaves as resonance is approached, and therefore the curve A 
is broken off in this region. The  description given in figure 30(b) should be supple- 
mented by the pinning of 1” and other excited levels. 

We thus see that a number of general features can be predicted by analogy with 
$ 9 3 ,  5 and 6. However, we need to construct a detailed theory before we can 
establish specific features of the spectrum and explain over what range of values of 
H the state B exists, how the intensity of transitions to this state varies with H ,  how 
band A changes near to resonance, etc. The  results of an investigation of the low 
frequency part of the spectrum-on curve B and near the point T-are given below. 

7.2.  Theory for  weak coupling 
The irreducible electron-hole vertices I?,, and Fl which must be included in our 

approximation are shown in figure 31. The  upper line corresponds to the electron, 
the lower to the hole, the dashed line to a phonon, and the wavy line to the Coulomb 
interaction. The  numbers label the Landau bands; the values of Zl and I, in the 

I I 

Figure 31, Vertices for an exciton interacting with phonons. 
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external lines are clear from figure 30(a). We put 1, = 0 in the internal lines, 
because this gives rise to resonance denominators. Vertices of type rz are small for 
a 2 w o / R < 1  (cf $4). 

If we take only the first diagram in figure 4 to describe the electron-phonon 
interaction, then for the Green function F(  E P  I x, x’), which describes internal 
longitudinal motion in the exciton, we find that 

( ~ - u ~ - w ~ - % ‘ ~ ~ ( ~ ) ) F ( x , x ’ ) -  & ( E P ( z , x ” )  F ( x ” , ~ ’ ) d d ’  = 6 ( ~ - z ‘ )  (7.1) 

where the mass operator 

and the electron-phonon vertex y (q )  is 

where UgZz(x) is the Coulomb energy, averaged by the function of the transverse 
motion of an electron-hole pair with momentum P and Landau quantum numbers 
I,, 1,. For 1 z I h all L7bzz2: - ez/l x I but for I x 15 h they are of order - e2/h. For each 
value of we the value of E in equation (7.1) is reckoned from curve 2 in figure 30(b). 

The energy spectrum is determined by the poles of F, whilst the intensity of 
absorption is given by 

u(w) cc I m F ( w , P  = 012 = 0,x’ = 0). (7.5) 

Substitution of F at the point x = x’ = 0 is analogous to the appearance of the well 
known factor I +(O)  I* in the usual formula for exciton absorption (Elliott 1957). 

In  order to clarify whether curve B has a limiting point, we need to find the 
behaviour of ~ ( E P  = 0) near the threshold, when W(figure 30(b)) is small. By using 
equations (2.4), (7.2) and (7.3) we get an equation of the form of equation ( 1 . 5 ( b ) )  
for d, but with wo- E replaced by W. It follows that & is bounded and that 
curve B has a limiting point T, at which it is tangential to the curve 2‘. Near this 
point Z ( E )  cc W-l/~-+m (equation (1,4)), so that near T the branch B is a bound 
state of an exciton and a phonon. Hence the spectrum of a magnetic exciton shows 
a marked difference from that of a magnetopolaron (0 3 )  because of the presence of 
a limiting point. This arises because the transverse mass ML-p(a/h)2/L of an 
exciton is still finite, although it is large. 

We now consider two limiting cases for which it has proved possible to obtain 
explicit results. 

7.2.1. Strong Coulomb interaction, L2 R ~ ( ~ / 2 ) ~ / 3 ~ , ,  (Mel’nikov et a1 1971, Rashba 
and Edel’shtein 1971). We limit our investigation to the lower part of the spectrum, 
and then in a bilinear expansion of the resolvent in equation (7.2) we need retain 
only the first term, which corresponds to the exciton ground state ( n  = 0). 
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The variation of B, the single-particle branch of the spectrum, is shown in 
figure 32. The  effect of the electron-phonon interaction can be characterized by 
the displacement of the level at resonance and by the distance from resonance of the 
limiting point. These are: 

I W, E U: - CU: 2 3.601" LR '1 

and both are linear functions of a. The parameter ax %a: acts as an effective coupling 
constant, and the theory is valid for a Q @ L .  At the limiting point the curve B 
touches the line 2'. There is a region of width of order RL near the limiting 

I 

/' W"/ / 

,ATwo- particle 
absorption - 4 (4 

We- 

Figure 32. Behaviour of the single-particle level and the spectral distribution of two-particle 
absorption for a strong Coulomb interaction. Lines 1' and 2' are those shown in 
figure 30(b). 

point, in which a quadratic expansion is valid for the curve B and its slope is con- 
siderably reduced; in this region 2 is large (see equation (1.4)) and exciton- 
phonon complexes are formed. Thus, complexes are formed only in a narrow 
region near U,' for a* < 1, but if a* N 1 they exist right up to U:, 

l ' he  absorption spectrum consists of two bands, and the intensity of band B 
decreases as T is approached. Besides this there is a two-particle band correspond- 
ing to the formation of exciton plus phonon pairs. This lies above the line 2', and 
the distribution of absorption in this band for different values of U ,  is shown in 
figure 32. 

Since curve B is tangential to 2' at the point T, pinning must occur. However, 
for cy* < 1 it must be weakened by the rapid variation in slope of curve B near T. 
It is possible that the pronounced picture of pinning observed experimentally is to 
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some extent due to the simultaneous presence of one- and two-particle absorption 
for we < w,' and by the existence of two-particle absorption near 2' for we > U:. 

7.2.2.  Weak Coulomb interaction, L2 I?< (a/2)';3w0 (Rashba and Edel'shtein 1971). 
I n  this case we can solve equation (7.1) by expanding 4 in powers of U ,  keeping 
only the linear term. This corresponds to the retention of the first diagram in the 
vertex rl (figure 31); the next is smaller by a factor N R I C L ~ : ~ ~ ~ .  The resultant 
nonlocal potential @(E,  z ,  z ' )  is large only for I z I, I z' 15 I 2 p ~  I-li2 (we assume that 
M - p ) .  If the exciton radius in the single-particle branch is much larger than 
I 2 p ~  1-'/2, the potential % may be replaced by a local potential. In  a logarithmic 
approximation the effect of the Coulomb interaction can then be completely 
described by the effective potential 

where U ( z )  N UY=,(z) 2: U'jLO(z), and &(E) = - 1, W ~ I W , , / E ~ ~ ~ ~  is the electron mass 
operator (cf (3.3) and (3.4)). The first term in 0 corresponds to TO, and the second 

I 

Figure 33. Schematic dependence on we of the energy of a single-particle excitation (curve B) 
and of the intensity of absorption in the single-particle band. The dependence of the 
polaron energy on w e  is also shown. The  separation between curve B and the polaron 
curve gives the exciton binding energy Wx. We is the binding energy of the electron- 
phonon complex. Lines 1 and 2 are those in shown figure 30(b).  

to rl. The quantity ( -  d 4 / d e )  is equal to 4 for we = wz (figure 33); it increases 
rapidly to the right of this point and decreases to the left. Hence at some point to 
the right of wz the effective potential is considerably larger than the initial Coulomb 
interaction and is determined by the vertex Pl. 

Since 
WeB,We, in the present case, we can put E N  -We and consider We, and aes as 

We can find We, and the exciton radius aex by using equation (7 .7) .  
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functions of We : 
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a 
L,( 1 + d&/dW,) 

I t  is clear from equations (7.8) that aex decreases to the right of w i ,  but We, 
increases. It follows from equation (7.5) that 

The  denominator of this expression gives the contribution of the no-phonon state 
to the wavefunction of the electron-phonon complex, whilst the numerator comes 
from the factor I +(O)  I*, Comparison with equation (7.8) shows that the factor 
1 + d&/dWe cancels out, and therefore owe is independent of the magnetic field 
(to a factor Ll (W, ) ) .  

This point deserves careful attention. I t  might have been expected that the 
Coulomb interaction would be of little importance for L2 R Q a213 wo, but in fact 
this applies only to the position of the level B ;  it is indeed near the edge of the 
electron-hole continuum. At the same time the intensity of absorption at the edge 
of the ‘electron-phonon complex plus hole’ continuum in the absence of the 
Coulomb interaction decreases rapidly to the right of ut as (1 + d&/dWe)-l 
(Korovin and Pavlov 1967a). On the other hand, the intensity in the band due to 
the exciton-phonon complex is almost constant ; this provides considerable support 
for the description in terms of pinning. 

Since aex decreases with increasing we, it is at some point comparable with 
(2pl&3-’12. For larger we the intensity of the band corresponding to a bound state 
of an exciton and a phonon decreases rapidly, awe cc We2, and also W,, CC W:’z. 

I t  has always been assumed above that T = 0. Real phonons are present in the 
crystal for T#O, and they may also be created under nonequilibrium conditions 
(Vella-Coleiro 1969, Litton et aZ1970). Therefore exciton absorption near phonons 
must occur with the formation of complexes. I t  wzs shown by Rashba and 
Edel’shtein (1971) that the intensity of this process is very large; a calculation for 
one phonon gave an answer of about five orders of magnitude larger than for exciton 
absorption in an ideal lattice, calculated for one unit cell. This effect has not yet 
been discovered experimentally. 

The  problem of three interacting particles-electron, hole and optical phonon- 
was recently investigated for a nonresonant situation (Levinson 1972). If, as 
distinct from the above discussion, we now put R < a2 coo, it can be shown that 
‘ quasi-bound’ states exist below the threshold for the creation of these three particles. 
The  energy of these states lies in the continuum of electron-hole pairs, and therefore 
they can decay with the annihilation of the phonon; the corresponding width is, 
however, less than the binding energy, which justifies the investigation of such 
states. 
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7.3. Experimental results 
The  experimental results for interband absorption in InSb are shown in figure 5 

and clearly demonstrate the splitting of the absorption peak near we = wo. Exciton 
absorption is dominant at high magnetic fields (Elliott and Loudon 1960), and 
therefore the results of Johnson and Larsen (1966) must be interpreted in terms of 
a model which includes the Coulomb attraction (this was ignored in the original 
paper, where the role of the resonant electron-phonon interaction was explained). 

It was shown later that the spectral structure was considerably more complex 
than that shown in figure 5 .  Part of this structure is shown in figure 34. The  

2401 I I I 
20 25 30 35 

H (kG) 

Figure 34. Magnetic field dependence of the position of various minima in transmission for 
InSb. The  straight lines 1, and I ,  are asymptotes near which pinning is observed. 
From Larsen and Johnson (1966). 

energy levels between which transitions occur and the notation for the bands are 
similar to those in figure 30(a). It can be seen that the line 2 has no special features 
over the range of values of H where A and B show pinning; this directly proves that 
the reconstruction of the spectrum takes place in the neighbourhood of term inter- 
sections. The  general features of the spectrum are similar to those shown in 
figure 30(b), but there is as yet no more detailed interpretation. It is natural to 
ascribe the separation of the asymptotes 1, and Z3 ( N 2 meV) to the effect of the 
Coulomb interaction. It is possible that pinning is so clearly developed as a result 
of the large mass ratio mh/me % 1. 

An estimate of the parameters applicable to InSb for we E wo gives (aj2A)2 N 4.6, 
L E  1.5, ( c u / ~ ) ~ ’ ,  w0z: 0.8 meV, and L2 R N 0.6 meV. The  logarithmic approximation 
is not therefore very accurate and the electron-phonon coupling is of the same 
order as the Coulomb interaction. Nevertheless the fact that the separation of I ,  
and l3 is appreciably larger than L2 R may be due to an increased Coulomb inter- 
action to the right of resonance ($7.2).  There is no absorption in figure 34 which 
might be interpreted as two-particle absorption (cf figure 32) ; its observation 
would be very important for the whole concept of bound states. Unfortunately, 
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I /  

there are no very important data on the intensity changes along curve B, and hence 
more detailed experiments are needed. 

I t  is interesting to compare the features of pinning in InSb (ailr:0.02) with 
pinning in TlBr and TlCl ( a  N 2.5), as measured by Kurita and Kobayashi (1971). 
Their results are shown in figure 35.  Bands 1-3 corresponds to successive terms of 

Figure 35 .  R'Iagnetic field dependence of the energies of absorption peaks in TlBr at 4.2 K. 
The  full triangle marks the limit of the exciton series for H = 0. The open triangle 
corresponds to an energy E,, + U,,, for which a kink in the absorption is observed; the 
broken line leading from this triangle shows the field dependence of this kink, 

the lowest exciton series, and bands 4-7 are due to excitons in subsequent magnetic 
sub-bands. Here wo 9 R 2 wc, that is, magnetic fields of the order of 100 kG do not 
correspond to the high-field limit; although for excited states of the exciton wC is 
larger than the Coulomb binding energy. For this combination of parameters and 
for ~ ~ 2 . 5 ,  the best we can hope for at the present time is a purely qualitative 
interpretation of the observed features. 

It is seen from figure 35 that pinning is clearly developed; the intensity of the 
bands falls to zero in the pinning region. As distinct from InSb, a continuation of 
bands 4-7 similar to A in figure 34 was not observed, and it is natural to explain 
this in terms of the short lifetime of the corresponding metastable states due to the 
large value of a. 

In  the observations of pinning in TlBr there is one important feature which 
Kurita and Kobayashi (1971) noted but did not explain; pinning occurs in the 
neighbourhood of Epin N E,, + wo and not near the energy E,, + wo which corre- 
sponds to the first decay threshold. This feature is naturally explained on the basis 
of the results of 0 6.2.17. It was shown there that it was only if the transition 1 + 2 
was dipole allowed that the term E, could show strong pinning near E, + w0,  with a 
decrease of the intensity to zero. Since states 3-7 are s-type (only these states are 
observable in the optical absorption), their pinning must be associated with p-states. 
This gives Epin = E,, + w,, (n > 2)  which agrees with experiment (within experi- 
mental error). 

p Although these results were derived for weak coupling, it may be expected that they are 
still qualitatively correct for intermediate coupling. 
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8. Vibronic spectra of molecular crystals 
The  exciton absorption spectra of molecular crystals of aromatic type (benzene, 

naphthalene, anthracene, etc) begin with a group of strongly polarized bands 
(Prikhot'ko 1948) which form a Davydov multiplet (Davydov 1951). These are 
followed by a large number of bands which can be ascribed to various intramolecular 
electronic-vibrational (vibronic) transitions. In a number of cases these have been 
successfully interpreted by supposing that an intramolecular vibronic excitation 
moves as a whole through the lattice (Davydov 1951). The  opposite situation of 
weak vibronic coupling has also been considered, using perturbation theory (McRay 
1961, 1963). 

A much fuller description of vibronic spectra has recently been obtained by the 
use of a dynamic theory (Rashba 1966, 1968) in which an exciton and a phonon are 
considered as stable interacting quasiparticles. This dynamical theory was suc- 
cessfully applied to the analysis of experimental results, and spectra corresponding 
to bound and dissociated states of this pair were identified (Broude et al 1966, 1967, 
Sheka 1971). 

This approach also was applied to electron-phonon complexes in crystals with 
narrow bands (Rashba 1966) and was successfully used to describe kinetic effects 
(Munn and Siebrand 1970a). 

8.1, Dynamical theory of vibronic spectra 

can be written in the form: 
The  hamiltonian of a Frenkel exciton interacting with intramolecular vibrations 

where the first term is the exciton hamiltonian, the second is the phonon hamiltonian 
(phonon dispersion is neglected) and &feL is the full hamiltonian for the intra- 
molecular electron-phonon interaction : 

%L = E $; $n{ ((4; + 4 n )  + t A ( 4 ;  + 4 n ) ' I .  (8.2) 

The  first term in equation (8.2) represents the shift in equilibrium positions of the 
oscillators due to electronic excitation of the molecule ; this is nonzero only for fully 
symmetric vibrations (the Jahn-Teller effect is assumed to be absent). The  second 
term described the change in vibrational frequencies due to electronic excitation of 
the molecule. 

Our basic assumption is as follows-that the frequency wo is much larger than 
the exciton band width. Hence, despite the fact that SeL contains terms which 
change the total number of phonons, the dominant contribution to the wavefunction 
comes from states conserving the number of phonons; the contribution of other 
states is of order wO-l, 

We may eliminate from 2 terms which are nondiagonal in the number of 
phonons, by using w0-l as a small parameter. Contributions of this type to the 
second term in SeL are small for I A I < wo and they can immediately be neglected. 
However, the linear term in SeL is in general large; this and the phonon energy 
dominate in 2, and consequently perturbation theory cannot be used immediately. 
It is therefore convenient to eliminate those terms, in which the number of phonons 
is not conserved, in two steps. First we eliminate them from the main terms in S 
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by an exact canonical transformation, and then by a second transformation we 
eliminate them from the small terms by perturbation theory. 

The  first canonical transformation 

where 
(8.3) 

and 

reduces the hamiltonian to the form 
^J = 5iWO 

I n  this hamiltonian the first three terms strictly conserve the number of phonons. 
Contributions which do not conserve the total number of phonons appear only in 
the last term, but now they are multiplied by the small coefficients I%RknI<wo. 
I t  is therefore simple to make a second canonical transformation which eliminates 
terms nondiagonal in the number of phonons to order %Ro; this introduces cor- 
rections of order I%RO,nlz/wo into the diagonal terms, which may be neglected. 
Hence it is sufficient to take only the diagonal part of the last term. We consider 
only single-phonon states and drop the first two terms in equation (8.4), which give 
an additive contribution to the energy. We then find 

2 = C m m n # ; t , + n + A C # , # n d i d n  
m # n  n 

+ y 2  C r " n  #G #n{(d;t, d n  + +i +m) - (d: d n  + $2 dm)I ( 8 . 5 )  
m#n 

where %Rmn = !EO,, exp ( - y*). Since this hamiltonian conserves the number of 
phonons, we have reduced a field problem to a dynamical one. The  hamiltonian in 
equation (8 .5 ) ,  which was first obtained by Rashba (1966, 1968)) forms the basis of 
the dynamical theory of vibronic states, valid for large coo. W'e now examine it in 
more detail. 

The  first term is the renormalized exciton energy, and the second is the exciton- 
phonon interaction energy due to a change in vibrational frequency (Nieman and 
Robinson 1963); the interaction is always attractive, since A < 0. For the moment 
we consider only vibrations which are not fully symmetric, for which the third 
term is zero. The  structure of the resultant spectrum is determined by the ratio of 
the exciton band width 9X to A, and this ratio can vary over a wide range. If I A 1 is 
small, only the two-particle spectrum is present, but when I A 1 becomes comparable 
with g%R a discrete level appears (see figure 1) which corresponds to a single-particle 
state and which is called a vibron. The radius of the resultant state is large when its 
binding energy is small-the exciton moves over a wide region around'the site on 
which the dispersionless phonon is located. As I A 1 increases, so does the binding 
energy, whilst the radius of the state decreases and finally, when 9X < I A 1, the exiton 
wavefunction is almost completely concentrated on the same site as the phonon ; 
this asymptotic case is practically reached for 

The  limiting case %R<lAl corresponds to a model (Davydov 1951, 1964) in 
which an intramolecular electronic-vibrational excitation moves as a whole through 
the crystal. This model was developed further by Craig and Walmsley (1961). 

E I A I. 
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If intramolecular electronic-vibrational transitions are allowed, the vibronic 
absorption in the crystal at T = 0 is determined by the conductivity 

(8.6) 
1 

~ ( w ,  k) = -- ImF(w, k) 

where E ( w ,  k) is the Fourier transform of the two-particle time dependent Green 
function 

7T 

F ( n  - m, t )  = - i(T#"(t) +At) $3) + t ( O ) > .  (8.7) 
For vibrations which are not fully symmetric 

F(w,k) = F ( w )  
1 - - - A ]  1 

F(w) - G(w) 

where G ( w )  can be expressed simply in terms of the exciton Green function 
G ( w ,  k) = ( w  - E(&) + iO)-I: 

Here ~ ( k )  and p ( ~ )  are the dispersion law and density of states in the exciton band. 
T h e  frequencies in U and F are shifted by U,, compared to those in G. 

The  position of the single-particle level is determined by the pole of F ( w )  and 
according to equation (8.8) this can be found from the equation G(w,) = A. This is 
the same as the equation for localized exciton levels in a crystal containing an isotopic 
impurity, if we interpret A as the difference between the excitation energies of the 
guest molecule and the host molecules. There is thus a connection between 
vibronic and impurity spectra; this is discussed in detail in the papers of Rashba 
(197213) and Sheka (1972). The intensity of single-particle absorption is determined 
by the residue of F ( w ) ,  and this is equal to 

(8.10) 

T h e  magnitude of I has a simple physical meaning-it is the probability of 
finding an exciton and a phonon on the same site. This tends to zero as w1 
approaches the edge of the two-particle spectrum but quickly increases to 1 as w1 
departs from it. The  intensity of two-particle absorption is 

.(U) = P(W> (8.11) { 1 - A J p(w') dw'/(w - U')}' + (rAp(w))' ' 

T h e  general features of the absorption are shown in figure 36.  
It is important to note that the problem can be inverted by expressing G(w) in 

terms of F(w) .  This enables us to express p(w)  in terms of U ( W )  (Rabin'kina et al 
1970) : 

(8.12) 

where the integration includes both the single- and the two-particie spectrum. 
Since U ( W )  is directly measured experimentally, this expression enables p(w)  to be 
determined from the vibronic absorption. 
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We now consider fully symmetric vibrations. For these t i 0  and the third 
term in equation (8.5) must now be included. The  parameter y2 which appears 
there is the ratio of the Franck-Condon energy of the intramolecular electron- 
phonon interaction E,, to U,,. For the aromatic molecules, to which most of the 
experimental results refer, this ratio is not small; in fact we usually have y -  1 and 
therefore this last term is important. I t  has an unusual form: the first component 
describes simultaneous transfer of an exciton and a phonon (resonance interaction) 
and the second an exchange of sites between electron and phonon (exchange- 
resonance interaction); the two last terms represent the effect of the phonon on the 
transfer of the exciton. 

0- w- 0- 

(0) ( 6  1 (C) 

Figure 36. Dependence of the vibronic absorption spectrum on A for A < O .  (a)  I A [ small, 
only the two-particle spectrum is present; (b)  two-particle and single-particle spectra 
have comparable intensities; (c) 1 A I large, single-particle absorption is dominant. The 
integrated intensity of the spectrum is independent of A. 

An exact solution of the hamiltonian in equation (8.5) can be obtained if we 
include interactions with only a finite number of neighbours. However, certain 
conclusions can be drawn in the general case. If y2< 1, the third term is small and 
can be treated as a perturbation; if I h I is also small, then only the two-particle 
spectrum exists. For y 2 B  1 the third term dominates, and the eigenstates describe 
an exciton and a phonon which exchange places in turn between a given pair of 
sites. I t  is especially interesting to note that an exact solution also exists for y2 = 1 
(Rashba 1968); it can be shown directly that the function 

Y, = ~ e x p ( i k . n ) + ; 1 ' + ~ / 0 )  
n 

is an eigenfunction of equation (8.5) with y = 1. Moreover, just this particular state 
is 'prepared' at the absorption of a quantum, because both the exciton and the 
phonon occur on the same site. Since this state decays slowly for y r  1, it can be 
regarded as a quasi-single-particle state, even if it lies in the region of the two- 
particle spectrum. A narrowing of the spectrum should therefore be expected as 
y 2  --f 1. In  the general case both single- and two-particle absorption must be present ; 
there may be several single-particle bands, and they may be either above or below 
the two-particle absorption. As distinct from the phonons which are not fully 
symmetric, the structure of this spectrum is determined by the details of the 
exciton dispersion relation e(k) (and not just by the density of states p(w) ) ,  and also 
the energy of vibrons depends strongly on their momentum k. 

There is one unique feature of the hamiltonian in equation (8.5) which deserves 
attention ; the exciton-phonon interaction is completely determined by the disper- 
sion relation in the exciton band and the quantities A and y2, which are known from 
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the spectra of free molecules, that is, the interaction hamiltonian does not contain 
any new unknown parameters. 

Another important point should be stressed. Linear coupling with phonons is 
usually much stronger than quadratic coupling, since EFc is as a rule much larger 
than I Al. However, in the theory of vibronic spectra the role played by quadratic 
coupling is strongly emphasized for %TI < w0,  since E,, must be compared with U,,, 

whilst IAl must be compared with the much smaller quantity %TI. Quadratic 
coupling is therefore as important as linear coupling in the present case. 

The  dynamic model was also applied to multiphonon states (Rashba 1966, 
Philpott 1957), but because of the complexity of the problem only limited results 
have so far been obtained. The  effect of impurities has also been considered 
(Rashba 1966, Broude et al 1967, Philpott 1970a). Rashba (1970) studied light 
absorption at T # 0 involving thermal phonons, which leads to the formation of 
vibrons, and showed that this has a large cross section. The  role of polariton effects 
was analysed by Philpott (1970b), who also discussed (Philpott 1969) certain 
mathematical techniques of the theory. 

It is interesting to note that the historical development of the dynamic model in 
the theory of vibronic spectra of molecular crystals took place in the opposite 
direction to that taken in the theory of bound states of other types of quasiparticles. 
T h e  usual starting point has been the concept of noninteracting particles and the 
theoretical problem was to determine the spectra of bound (single-particle) states. 
On the other hand, the starting point for the spectroscopy of molecular crystals was 
the concept of a composite particle (the vibron), and effects related to its virtual or 
real decay into an exciton and a phonon were considered only much later on the 
basis of a dynamic model. 

The  dynamic approach has also been applied to electrons in molecular crystals 
(Rashba 1966). The  presence of an electron on one of the bonds (or sites) changes 
its stiffness and hence also changes h for the vibrational frequency. If the electron 
band is fairly narrow, we can therefore expect to find bound states of an electron 
and a phonon, analogous to the exciton-phonon bound states? already considered. 
These must have a large effective mass, determined by the phonon dispersion. 

An increase in the electron mass can therefore be due either to the usual 
‘dressing’ by virtual phonons, or to binding of the electron to real phonons. 

8.2. Vibronic spectra of aromatic crystals 
Aromatic hydrocarbons form typical molecular crystals in which intermolecular 

interactions are considerably weaker than those within the molecules. Their lower 
excited states are very well described by the model of Frenkel excitons. Most of 
these crystals show a clear Davydov splitting (Davydov 1951), as a result of the 
fact that their unit cells contain several molecules. In  this group of crystals the 
spectra of benzene, naphthalene and anthracene have been studied in most detail. 
A general analysis of their first vibronic transitions was made by Sheka (1971), using 
the dynamical theory. 

Let us begin with the spectrum of naphthalene, whose unit cell contains two 
molecules. There are therefore two exciton bands, but in k-space these touch on 

t The difference from the exciton case is basically due to the long range of the Coulomb 
interaction. The  effect of this on the theory of localized vibrations was considered by Bryksin 
and Firsov (1970a,b). 
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Figure 37. Exciton and vibron absorption spectra of naphthalene for light polarization parallel 
to a and b crystal axes. K, shows the region of exciton spectra; A,-B, is the first 
Davydov doublet, D, and Dz are the regions of the two-particle spectra for the non- 
fully symmetric vibration wi” and the fully symmetric vibration U/,*’; M, and K2 
correspond to single-particle states. From Soskin (1962). 
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absorption (D1) which follows this is mainly due to two-particle absorptiont, that is, 
it corresponds to dissociated states of the exciton-phonon pair. The  intensities of 
MI and D, are comparable. For the fully symmetric vibration cohz) = 760 cm-l the 
frequency shift A = -58 cm-l, and in this case there is only one single-particle 
branch associated with the A, band. The  band B, and the absorption in the b- 
component of the spectrum which accompanies it are due to two-particle aborp- 
ion. The  criterion coh1))coh2)@%R for the applicability of the dynamical theory is 
satisfied. 

The  correctness of this interpretation can be confirmed by an analysis of the 
spectrum of deformed naphthalene crystals (Broude and Tomashchik 1964, 
Prikhot’ko et  al 1964). As is seen from figure 38, the A,-B, splitting is reduced by 
a factor of two; the width of the exciton band (and hence of the two-particle spec- 
trum) evidently changes in approximately the same way. The  band M, must then 
move away from the edge of the two-particle spectrum, and the magnitude of I a l 2  
must increase rapidly, according to equation (8.10); as a result the intensity of the 

t Part of this band has a different origin and is due to the contribution of external vibrations. 
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band M, must increase and that of the band D, must decrease. I n  fact the D, 
band almost disappears (see figure 38), and only a small shoulder of the M, band 
remains, which is partially related to the effects of external vibrations. The  band 
B, in the second transition is considerably narrowed, because it is now outside the 
region of the two-particle spectrum, that is, this also corresponds to bound states. 

A quantitative analysis based on comparing vibronic spectra associated with 
non-fully symmetric phonons with the excitonic spectra of crystals containing 
isotopic impurities (Broude et al 1967, Rabin’kina et a1 1970) fully confirms this 
interpretation. 

U (cm-1) 

Figure 38. Electronic and vibronic spectrum of naphthalene crystals under homogenous tension 
for light polarized parallel to the b crystal axis. From Prikhot’ko et al (1964). 

Hence, both single- and two-particle spectra occur with comparable intensities 
in naphthalene. The  situation in benzene is quite different; there QIE 60 cm-l and 
for the non-fully symmetric vibration with wo = 606 cm-1 the frequency shift 
A = - 86 cm-’, that is, it is large. Consequently single-particle absorption is 
dominant, and the fraction of two-particle absorption is only 2-5%. 

Anthracene is an example of the third case ; here 5JJl N 250-500 cm-1, whilst 
I A I N 5 cm-l. There are therefore no single-particle states for either the non-fully 
symmetric vibrations or for the fully symmetric vibrations with small y2, There is, 
however, a vibration at wo = 1400 cm-1 with y 2  N 0.9, for which single-particle 
states could in principle occur. A calculation is not possible, because the dispersion 
law is unknown, but analysis of the experimental data shows that all the associated 
absorption lies in the two-particle region. Consequently all the vibronic absorption 
in anthracene is two-particle absorption. This conclusion gives a natural explana- 
tion for an important experimental fact, which has been known for many years, but 
which for a long time was not clearly explained: the vibronic luminescence? at low 
temperature consists of a series of very narrow lines, but the ‘mirror’ absorption 
consists wholly of wide bands. 

We thus find three types of vibronic spectra in the series benzene, naphthalene, 
anthracene, and all three are included in the dynamic model. Bound states are 
dominant in the benzene spectrum, the spectrum of naphthalene shows both bound 
and dissociated states, and there are no bound states in anthracene. 

t This corresponds to transitions from the lower exciton level to the vibrational sublevels 
of the crystal ground state. 
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8.3. Excitons in molecular chains 
Suna (1964) made the first investigations for a molecular chain of the spectrum 

near the edge of the region of two-particle excitations of an exciton, which interacts 
with optical phonons. The  exciton-phonon interaction was chosen to be of the 
form in equation (8.2) with A = 0. The  analysis was carried out using perturbation 
theory, and including the first diagram in figure 4 ;  there was no limitation on the 
ratio iJJl/w,. If 9X > wo the mass operator for the exciton near the threshold for 
phonon emission contains a singularity of the type in equation (1.5c), and the dis- 
persion relation shows pinning similar to that in curve ( c )  in figure 2. A single- 
particle branch must therefore exist for all values of K .  lye  emphasize that in this 
case the singularity is much stronger than in the three-dimensional problem (cf 3 6). 

3 
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Figure 39. Dependence on ys of the position of single-particle levels w1 for a chain. The 
numbers on the curves are the value of the parameter I Aj4 I ;  it is assumed that 1<0,  
gXo1 = 1. The region of two-partlcle states is shown by shading. From Davydov and 
Serikov (1970). 

An additional branch of the spectrum, located directly above the two-particle 
region, was also obtained. According to the ideas of the present review one would 
expect this to be accompanied by bound states; these would be stable for wo > 93. 
However, as has already been pointed out, the whole series in figure 4 must be 
summed in the immediate neighbourhood of the threshold, and the corresponding 
analysis shows that the results for the pinning region are still valid, but the addi- 
tional branch disappears. Fedoseev (1970) summed the diagrams in figure 4 and 
showed that an additional branch appears below the two-particle region when the 
phonon dispersion w(q) is large and certain inequalities for ~ ( k )  and w(q)  are satisfied. 
This also appears when A # 0 (Davydov and Serikov 1971). 

For w,, $ 93, and for arbitrary exciton-phonon coupling, the vibronic spectra of 
chains were considered on the basis of the dynamical theory by Rashba (1968) and 
by Davydov and Serikov (1970). The  results are given in figure 39, which shows 
the positions of single-particle levels with K = 0 as a function of the interaction 
constant. 

8.4. Some related systems 
In  accordance with the basic theme of the present review we have so far been 

concerned with the interaction of phonons with excitons and electrons. Since, 
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however, there are many common features in the spectra, due to the interaction of 
various quasiparticles, in systems which may be regarded as narrow-band, we shall 
now discuss several such systems briefly, but with no attempt at completeness. 

Bound states of two phonons were first studied by Gush et a1 (1957, 1960) in the 
spectra of crystalline para-hydrogen (figure 40). The  detailed theory was developed 
by Van Kranendonk (1959, 1960). The  binding of two phonons is a consequence 
of a reduction in the rotational frequency of a molecule on excitation of an intra- 
molecular vibration. The  physical description is completely analogous to the 
interaction of excitons with non-fully symmetric vibrations. Since the reduction in 
rotational energy is N 18 cm-l for a rotational branch of width - 20 cm-1 and a 
vibrational branch of width -3  cm-l, the conditions are favourable for binding. 

10 
w (cm-1) 

Figure 40. Absorption spectrum of para-hydrogen at 1.9 K. The narrow band corresponds 
to a bound state of two phonons, and the wide band to dissociated states of this pair. 
From Gush e t  a1 (1960). 

Biphonons have also been found in HC1 (Ron and Hornig 1963). The  role of these 
states in Fermi resonance and the effect of impurities on the biphonon spectrum 
etc have also been investigated (Jortner and Rice 1966, Agranovich et al 1970a,b, 
1971). 

The  conditions for the formation of biexcitons were discussed by Trlifaj (1963), 
Patzer (1969) and Kozhushner (1971). 

Bound states of excitons and magnons were discovered by Meltzer et a1 (1968, 
1969); a theory was developed by Freeman and Hopfield (1968). The  change in 
shape of the two-particle spectrum as a result of the exciton-magnon interaction 
was investigated by Elliott et al(l968). 

Spin complexes, ie bound states of several magnons, are a classic topic. The  
possibility of their existence was shown in a pioneering paper by Bethe (1931) for 
the one-dimensional case, and by Wortis (1963) and Hanus (1963) for the three- 
dimensional case. Since then the theory of spin complexes has been developed con- 
tinuously and has received particular attention in recent years (see eg Orbach 
(1958), Boyd and Callaway (1965), Zilberglitt and Harris (1968), Torrence and 
Tinkham (1969a), Majumdar (1970), Ono et a1 (1971) and Oguchi (1971)). These 
years have also been marked by major experimental advances: the study of the 
effect of magnon-magnon interactions on the two-magnon spectra (Elliott et al 
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1968, Fleury 1968), the discovery of cluster resonance in a CoC1,.2H20 crystal 
with a chain structure (Date and Motokawa 1966, 1968), and, finally, the discovery 
by Torrence and Tinkham (1968, 1969b)-also in the same crystal-of spin 
complexes containing up to five spins. 

Part V .  Summary 
9. Conclusions 

(1) Bound states which include phonons have a qualitative difference from 
ordinary bound states : they contain particles whose number is not conserved. 
Such states are therefore stable only if their real decay with disappearance of the 
phonon is forbidden by the conservation laws (of energy for a localized electron, 
and of energy and momentum for a free electron or an exciton). It should also be 
emphasized that the occurrence of these bound states has nothing in common with 
the well known intersection of boson spectral branches, which was first considered 
in relation to the theory of the interaction of electromagnetic radiation and optical 
phonons by Tolpygo (1950) and Huang (1951), although many features of this (eg 
figure 3) are very similar?. The  difference between these phenomena can be made 
clearer by the following example, applied to the resonance situation. For the case 
of intersecting boson branches both resonating states are single-particle states, but 
on the other hand, for the systems which we have considered, one is a single- 
particle state whilst the other is a two-particle state. Different results therefore 
follow : the appearance of limiting points, additional branches, etc. 

(2) T h e  general properties of the spectra of bound states in narrow-band 
systems, including vibronic excitations in molecular crystals, are common to most 
of these systems. There is at the present time qualitative agreement between the 
experimentally observed vibronic spectra and their theoretical description in terms 
of the dynamical model. Quantitative agreement has been reached in a few cases 
for phonons corresponding to non-fully symmetric vibrations. A more detailed 
analysis of transitions which include fully symmetric phonons is probably only a 
matter of time. Unfortunately, there is as yet no direct proof of the existence of 
bound states of electrons and phonons in these crystals. 

(3) I n  wide-band systems, on the other hand, the nature of the bound states 
depends strongly on the type of particle which is coupled to a LO phonon. For 
electron-phonon coupling the effects are strongest when the electron is localized 
at an impurity centre; the energy scale of the spectral structure is of order al’zwLo 
at resonance and awLo away from resonance (it is assumed that a< 1). The  effects 
are weaker for an electron in a magnetic field, which is ‘localized’ only transverse 
to the field; here the scale is of order a213 wLo at resonance and a2 wLo away from it. 
I n  the absence of a magnetic field bound states exist only for strong coupling 
( a 9  l), and possibly for intermediate coupling. An exciton, being a neutral particle, 
is not ‘localized’ by a magnetic field, and therefore there are no such sharp dis- 
tinctions in the behaviour of complexes comprising magnetoexciton plus LO phonon 
or exciton plus LO phonon. However, a strong magnetic field increases the trans- 
verse mass of a magnetoexciton, so that it behaves more like a magnetopolaron, and 
this favours the formation of bound states with LO phonons. An increase in the 

t T h e  intersection of boson branches with the participation of a longitudinal optical phonon 
is considered in the review by Palik and Furdyna (1970). 
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mass ratio of hole and electron in a normal exciton, which makes its properties more 
like those of an impurity centre, has a similar effect. 

(4) For wide-band systems the comparison of theory and experiment is so far 
only in its initial stages, and in a number of cases not even qualitative agreement 
has yet been obtained. 

The  only situation in which there is complete qualitative, and even semi- 
quantitative, agreement is intraband absorption in n-InSb under conditions of 
magnetophonon resonance. For interband absorption under the same conditions 
there is no doubt that the reason for the effect is correctly understood, however the 
quantitative features of the spectrum have not yet been derived. Bound states have 
not been looked for in nonresonant conditions, although their discovery seems 
reasonably likely in crystals, such as CdTe, which are more polar than InSb. I t  
may be expected that such states would produce fine structure in the peaks of 
cyclotron-phonon resonance. 

There is no doubt that bound states of a localized electron and a LO phonon 
(dielectric local vibrational modes) have been observed experimentally, in both 
resonant and nonresonant situations. However, it is not yet quite clear how the 
levels of the theoretical spectrum are related to these results. 

For an exciton with no magnetic field there is practically no correspondence 
between theory and experiment, and the origin of the spectral features in the 
energy region of the electron-hole continuum remains unsettled; it is not clear 
whether they are due to exciton-phonon complexes, or are simply the result of 
interference effects. 

(5)  The most natural way for bound states to show up is in optical absorption 
experiments as a result of the interaction of particles which were themselves pro- 
duced by the absorption of the photon (final-state interaction). The  same bound 
states could also be observed in principle in hot luminescence-this time as a 
result of an interaction in the initial state. In  certain circumstances they may also 
show up in luminescence as a result of interaction in the final state, analogously 
to the way in which bound states of a centre plus a phonon are observed in the 
vibronic luminescence of impurity excitons. 

Bound states can lead to a number of interesting changes in the energy spectrum, 
and these are reflected in various optical experiments. For example, an under- 
standing of bound states with a phonon participation enables us to look afresh at the 
question of valley-orbit splitting of exciton levels, which has been of recent interest 
(Ascarelli 1969, 1971, Dean et al 1969, Shaklee and Nahory 1970). In  impurity 
centres this splitting is due to the mixing of electronic states from a number of 
equivalent valleys. It is clear that this mixing is not possible for the case of an 
exciton, because the exciton state must have a definite momentum. If, however, we 
consider the spectrum of the complex ‘exciton plus phonon’, a state with zero total 
momentum can be constructed from exciton states in different valleys by com- 
pensating each exciton momentum with the opposite phonon momentum. If this 
complex is in a bound state, the problem is analogous to an impurity centre, and 
valley-orbit splitting should occur. On the other hand, there are no grounds for 
expecting a splitting if the complex is not in a bound state. 

Bound states with a phonon participation can also affect a number of other 
phenomena, although the number of examples which can be quoted at present is not 
large. Munn and Siebrand (1970a) constructed a theory of electrical conductivity 
in narrow-band systems, taking bound states into account, and concluded that this 
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mechanism is the determining factor in a number of organic crystals. On the same 
basis, Munn and Siebrand (1970b) put forward a theory of exciton diffusion. It 
was shown by Zeldovych and Ovchinnikov (1971) that phonon anharmonicity can 
lead to a progressive condensation of phonons, with the formation of highly excited 
molecules. 
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