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Abstract. Gapless  semiconductors with the linear electron spectrum  are considered 
taking into account a  quantising magnetic field. Deformation potential  interactions 
with phonons  are  shown  to induce the spontaneous destruction of the zero-gap state 
due  to  the lowering of the effective space dimension in the magnetic field. The 
interaction with impurities is shown  to shift the band inversion point. The 
Bogoliubov-de Gennes  equations  are derived; their  inhomogeneous  solutions  are 
kinks linking the normal and inverted band domains. The  electronic densities of 
states for two-  and  three-dimensional  zero-gap states in a  magnetic field are exactly 
calculated taking into account  the Gaussian random potential and their singularities 
in the vicinity of band crossing  points are  studied. Possible consequences of these 
results for experiments with narrow-gap semiconductors  near the inversion point are 
discussed. 

1. Introduction 

Ever since the  theoretical  work of Abrikosov  and 
Beneslavsky (1970, 1971) on  the  problem  of  the  Fermi 
point  existence the  interest in gapless  semiconductors  has 
persisted up  to  the  present time  (Gel’mont et al 1976, 
Tsidilkovski et a1 1985). In contrast  to  the  type I1 gapless 
semiconductors (a-%, HgTe etc),  which have been well 
studied,  the  problem of type I gapless  semiconductors  is 
yet  to be  solved. The first kind of gapless  state (GS I) can 
for  example, be  realised in solid solutions Pb ,  -,Sn,Te,. 
The  zero-gap  state in this  case  is  not a result of symmetry 
but  as a  result of  the  play  of  parameters (x, pressure  and 
temperature). 

The aim of this work is to  study GS I in an  ultra- 
quantum  magnetic field in the  presence  of  random 
impurities and  electron-phonon  interactions.  The  present 
paper is organised  as follows. In $2 we define the  two- 
band model of GS I and  construct  eigen-states  of Dirac’s 
electron in a strong  magnetic field. We use the relativistic 
holomorphic  representation  for  these  states in the first 
Landau  band.  In $3 we show  the instability of GS I due  to 
the  electron-phonon  interaction.  We use an effective one- 
dimensionalisation of the  system (in the  general  case  the 
dimension is lowered to two). In $4 we suggest  the 
possibility for  domains of the  normal  and inverted bands 
to exist. Sections 5 and 6 are  devoted  to  the  evaluation of 
the  electronic  density of states in the  presence of random 
impurity fields in two  and  three  dimensions, respectively. 
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Our  results  are  summarised  and discussed in the 
concluding $7. 

2. Excitations in gapless  semiconductors 

The  Hamiltonian  for  electronic GS 1 in a one-electron 
approximation is 

.flo = sp 1a1z (2.1) 

where S is a limiting velocity of electrons in Cohen-Blount 
model (Cohen  and Blount 1960), 1z= P-(e /c )A,  p ,  and U 

are  the Pauli matrices in band  and  Kramers  spaces 
respectively. The  corresponding electron spectrum  has  the 
form 

1 -a I f 2  

Eon(P . z )=  k [ ( S P z ) ’  + ( sP, )2(n  + 7) 1 (2.2) 
I \ L / I  

where n = 0, 1 ,  2 . . . are  Landau level numbers, U =  

f l ,  sP, = 2 1 / 2 h ~ / l H ;  = (hc/eH)IfZ is a magnetic  length; 
the  electron  spectrum (2.2) gives the following density of 
states (DOS) 

“ma” 

P H ( E ) = P O H  1 x E [ E ~ - - ( ~ P , ) ~  ( H +  q)] -112. (2.3) 
n = O  a 

We  have  to  sum  over all n preserving the positiveness of 
the expression under  the radical. 
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Let us consider  the  ultra-quantum limit b ( H )  < s P L ;  
p ( H )  is a chemical potential). For n = 0, o= 1 we 
have  for  spectrum  and DOS (Petrov  1979): 

The linear  size L of the  system is equal  to 1. 
So one  can see that a strong  magnetic field preserves 

G S  I and in contrast  to  the  one-band  case  the DOS has a  flat 
domain between the  zero-point  and  the next Landau level 
(see  figure 1). DOS (2.5) has  one-dimensional  form (nhs) - 
and  1/2nl& is a degeneracy  factor ( L 2 =  l). 

from  the following vertex function 
The Bose branch of the  spectrum  can be obtained 

which is a polarisation  operator,  and which must be 
calculated with the  Green  function: 

where 

r 1  0 1  

is a  dielectric constant  taking  into  account  only  lattice 
polarisation;  the  Landau  gauge  was  taken.  After  some 
calculations we have 

where q: = q:+ q: 

Equation (2.8) gives us  the  generalisation  to  symmetry Oh 
of the  results  for GS I in semiconductors with symmetry 
D, (Kulikov 1974). In  particular (2.8) takes  into  account 
left (H -) and right (n +) particles. 

The  quasi-one-dimensional  character of the excitation 
spectrum is obvious  from (2.8) and (2.9). It is easy  to see 
that  the  polarisation  operator  coincides with the  one 
obtained  for  the  Luttinger model without a magnetic field. 
From  the vertex  poles we have  for collective excitations (cf 
Kulikov  1974) 
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Figure 1.  (a )  Energy spectrum and (b)  density of states of 
unperturbed states in a quantising  magnetic  field. 

Only  for q1= 0 there is a gap W ~ = S ( \ / ~ ) / I ~  in the 
spectrum 

W =  f (W; + s2q;)1/2 (2.1 1) 

with y= 81ce2/&,hs-  1. 

be  written in a  simple form  for qz < q1 
When q l  # 0 we have  the  gapless  spectrum which can 

W =  * iq ,  (2.12) 
where 

( 1:: ) (2.13) 
i=s l + -  

a n d f o r q , ~ I , ’ , S = o o / q l > s .  

The excitation spectrum is given in figure  2. 

2.1. Holomorphic representation for CS I 

Holomorphic  representation (HR) is rather fruitful for 
studying G S  I in ultra-quantum limit (Ktitorov  and  Petrov 
1986). We  choose  the  symmetric  gauge  for  the vector 
potential 

A = ; [ H x r ]  H l l e z .  (2.14) 

The  natural  generalisation of the HR for  the  Schrodinger 
equation with a magnetic field to  the relativistic (formal) 
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\ I W  l 

case is (Ktitorov  and  Petrov  1986) 

@i(x ,  y )  = e-cui (0  (2.15) 

where 

x + iy c=-- - x-iy c=- 
21, 21H (2.16) 

where u i  is the ith component of the  spinor; u i  is a 
holomorphic  function of [ in the  Fock-Bargmann  space 
(Bargmann  196 l )  

The  normalised  one-electron gapless state with energy 
given by  (2.4), quasi-momentum  k,  and 0, = 1 read  as 

r 7  

IO, m > = 
exp [ f i E t  + ik,z] (b  + l m  

Jz d m  ~ , o >  1:J (2.18) 

where m=O, 1 , 2 , ,  . . 
(0,O > = [ ( 2 ~ ) ~ / ~ 1 ~ ] - ~ ' ~  exp[-cc]. (2.19) 

Ladder Bosonic operators b and b + can be expressed in 
terms of [ and 4:  

[ b ,   b + ] =  1 [ b , b ] = [ b + , b + ] = O .  (2.21) 

Now we can  construct  the  operators t, a/a[ ,  that only 
change  the  quantum  numbers  corresponding  to  the 
angular  momentum  component in the  magnetic field 
direction but which don't change- the  Landau  band 
numbers.  Commutation rules  for t, are 

L& tl = 1 [t,tI=[t' 41=0. (2.22) 

Equation (2.18) for 10, m j can be written in terms of [, c: 
" 

An  arbitrary linear combination of the  states  (2.23) with 
the different m can be expressed in the  form (2.15). In 
order  to establish the relativistic HR we can use the well 
known  connection of HR with the relativistic coherent  state 
representation  (Malkin  and  Man'ko 1968). The  coherent 
state with the  Landau  numbers n. oZ = 1  can be written as 

I o  I n ' P )  I 
For G S  I n = O  the small components of the  spinor  are 
equal  to  zero. So we have 

where 10, /3> are  the  eigen-states of the annihilation 
operator b 

b10, P> =PI03 P> (2.26) 

L J 

The  function 10, P )  is the  generating  function  for 10, m> 
states with a given m. 

We give here some useful formulae generalising the 
Dirac  &function  on  the  Bargmann  space 

3. Spontaneous mass  generation 

In  the  absence of a  magnetic field electron-phonon  and 
electron-impurity interactions don't generate  electron 
mass  (gap)  spontaneously.  Indeed,  Dyson's  equation in 
the  case of three-dimensional crystal  can be written 

where 61 and M are  bare  and  dressed  masses respectively; 
A and g are electron-impurity and  electron-phonon 
interaction  constants, respectively; A l/a is maximum 
momentum; a is lattice  spacing.  One  can see, that  because 
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of infrared divergency absence in (3.1) while M-0,  the 
spontaneous  mass  (gap)  generation is not possible. 

Effective  lowering of the  dimensions  because of the 
magnetic field influence gives us  some  hope  that  infrared 
divergence appears with resulting mass  generation. 

We  start  from  the  generating  functional 

Z [ J , J ]  = Z , '  1 DqDIC/D$e'd[p3p361 (3.2) 

with the  action &'[v, IC/, $1. 
.B? =del + dPh + aint (3.3) 

a =  I 

N 

. d i n t  =g I'd[ d3x 1 q(xJ)$a(x, t)IC/a(x, t )  
[ a =  I 

n 

+ C V a ( x ,  f>IC/a(x, + $a(X, t ) J a ( X ,  l ) )  (3.6) 
a =  1 1 

where IC/ and $ are  Grassman fields, q(x, f) is a  phonon 
field, g is a  Frohlich  electron-phonon  constant, J/J  are 
anti-fermion/fermion  sources, a is a  number of the 
electron valley running  from 1 to N ,  where N is the 
number of valleys and Zo is a  normalisation  factor. 
Carrying  out  the  functional  integration  over  the  phonon 
field q and  introducing  the  Grassman HR (Faddeev 1976) 
we have 

a 

+ 1 d[ dc d o  dk x ( J a ~ a  + icaJa) (3.8) 
a 

where =g&/wd, W O  is an  optical  phonon  frequency, in 
the  case when acoustic  phonons  are effective, l"=gic/c2, 
where c is the  sound velocity. 

The  process of spontaneous  symmetry  breaking is the 
result of infrared divergence of the  Feynman  diagrams; 
that is why  phonons with wavelengths less than I ,  are 
not essential for a qualitative  consideration.  Corre- 
sponding with Wilson's ideas (Wilson and  Kogut 1974) 
the  contribution of such  phonons  can be treated 
perturbatively, which leads  only  to  a  quantative 
renormalisation of the  constants in the effective action. 
Supposing  that this operation  has been carried  out we cut 
all ultraviolet  divergencies at 1;' instead  of  at  the Brillouin 
zone  boundary. 

The  holomorphic  formalism  leads  to  the usual 
perturbation  theory with propagator, which is the inverse 
of the  operator in the  quadratic  part of the  action (3.8). 
Comparing (2.16) and (3.8) we get the  propagator 

where yi are  Dirac  matrices;  k k,. The  interaction vertex 
has  a  Gaussian  form 

- Igr e2tf. (3.10) 

There is a small parameter in our  theory -N-I  for 
N > 1 that allows us  to solve  this problem for strong 
interaction r. Using a 1/N expansion in leading order we 
have  to  take  into  account only the  tadpole  graph  for  the 
mass  operator. So, we have  an  asymptotically  exact 
equation 

G % , a b ( Z ,   i ' > = G % $ b ( z ,  i') 

where T i s  the  symmetrised vertex 

where p ,  q, r,  S are  spinor indices. 

mass 
Taking  the  trace we have  the  equation for electron 

+ M I ' p - j  " 
de " h h  dk r N -  1 

(3.13) . - m  2 7 ~  ~ 0 2 x  1; k2-e2  + M 2 '  

The influence of impurities  can similarly  be taken  into 
account by using the replica trick.  Carrying  out  the 
integration in (3.1 1) we have 

T ( N -  1) 2A h + MIn-  
4x1; M 

A=-.  (3.14) 
[H 

The  equation (3.14) gives the  dependence of the physical 
mass  (gap) M upon  the  bare  mass rit which is supposed 
to be a  known  function  of  pressure,  temperature, solid- 
solution  components  concentration  etc (See figure 3). 

Let us consider  some special cases. 

(i) When A = 0 (electron-phonon interaction only), we 
have  the  equation 

T N  2A 
Mln--. 

M 
(3.15) 

If the  bare  mass rit is zero, we have  a non-trivial  solution 

21 



S A Ktitorov and Yu V Petrov 
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Figure 3. Spontaneous  mass  generation. ( a )  a= 0 and (b) 
a=A,  0.1 ( 1  1; B, 0.5(2); C, 1 .O. (a=My is electron-impurity 
and electron-phonon coupling  constants  ratio) 

for the  spontaneously  generated  gap 

(ii) When  impurities  are  taken  into  account,  as well, 
we also  have  hysteretic  character of the  dependence,  but 
with a  higher  'coercivity' m,. 

One  can see from  (3.14)  and figure  3 that  the  physical 
gap  monotonously  decreases with the  decrease of the  bare 
gap until it reaches  the  value of spontaneous  gap ELo) and 
then it jumps to the  value  that  corresponds  to  the 
valence and  conductivity  bands inversion. So GS I in a 
magnetic field becomes  unachievable  due  to  the  spon- 
taneous  mass  generation. 

An estimation of the  order of E r )  gives E r ) -  1- 10  K. 
Here we used following conventional values of para- 
meters  for  IV-VI semiconductors S-3 x IO'cm SKI, 

wow 10l2- lOI3 S - ' ,  mass density -8  g cmK3,  spacing 
9 - 6 x lo-* cm  and H -  lo4 - lo5 Oe. 

The effect of spontaneous-gap  generation  predicted 
here can be important  for  the kinetic phenomena in IV-VI 

compounds when temperature  and  chemical  potential  or 
photon  frequency  are less or  equal  to ELo). On  the  other 
hand we can  have  the  case when electron DOS is smeared 
by  impurities so that we can neglect the  gap ELo). We shall 
meet such a case in $ 9  5 and 6. 

4. inversion domains 

The 'newly born'  ground  state is a doubly  degenerous 
normal  phase with a  positive gap  (the  normal position of 
bands)  and inversion phase which has similar macroscopic 
energies. It  can lead to  the  domain-wall-type  solutions, 
linking normal  and inversion phases. 

The  Lagrangian  for  inhomogenous solution is 

N 

-g'&> c f i , (Z )Ua(Z)  - & p 2 ( 4  (4.1) 
a= 1 

where q(z)  is a phonon field, g' is the  electron-phonon 
interaction  constant.  Equivalence of (4.1) and (3.8) can be 
proved  carrying  out  the  integration  over c, 5 in  (3.8), that 
can be done for the slowly varying fields U([), iC(5) on  the 
scale of C-1, (Ktitorov  and  Petrov 1986).  Resulting 
Lagrangian  corresponds  to  the  Gross-Neveu model 
(Gross  and  Neveu 1974). Introducing  the auxilliary field 
p(z) we get (4.1). 

Classical  equations  for  the  stationary  states  are  the 
following 

Introducing  the following new variables 

we get  the  equations 

au1 
az 

ihs - + A(z)U2 = EUI (4.4) 

- ihs - + A(z)Ul  = EU2 a U2 
a Z  

(4.5) 

with the  equation of self-consistency 

staics 

It is easy  to see that  the  homogeneous solution of these 
equations is given just by (3.16). 

Equations (4.4)-(4.6) are  analogous  to  ones  that were 
obtained by a number of authors in the  theory of the 
Peierls systems (Su et a1 1980, Brazovzskii 1980, 
Takayama et a1 1980). These  equations  have been very 
well studied, in particular,  they  have a number of 
inhomogeneous  solutions  (Campbell  and Bishop 1982). 
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Most  interesting  for  us  are  the  kinks linking the  domains 
with the  normal  and  inverted  band position and  polarons 
corresponding  to  completely localised states. 

The kink solution  reads 

A0 

hS 
A(z) = A. tanh - ( z  - zo) (4.7) 

U,@)= -i - sech-(z-zo) (4.8) 
(;:)1/2 :: 

A. 
fZS 

U2(z) = (2) sech -(z - zo) EI~) .  (4.9) 

The  bound  electron  state in the  centre of the  gap  (as a 
matter of fact  the  two-dimensional  band) lives on  the 
surface of the  kink.  Some  energy  (about E‘,O)/2) is 
necessary  to  create a  kink  in a dielectric state  but if we 
have a doped  semiconductor  an  electron  can fall from  the 
conductivity  band  to  the  two-dimensional  band  on  the 
surface of the kink that  makes  this  state energetically 
profitable. 

Notwithstanding  the  mathematically similarity 
between the Peierls system  and GS I, there is a deep 
difference in the  physics.  Two possible versions of 
dimerisation  correspond  to  doubly  degenerate  states in the 
trans-polyacetylene, while in our  case  these  are  the  normal 
and  inverted  electron  bands. 

The  solutions  found  here  can be important  for 
galvanomagnetic  phenomena in the vicinity of the 
inversion  point.  The possibility for  electrons  to  occupy a 
two-dimensional  state  on  the  surface of the kink gives a 
very interesting  method  for  studying a two-dimensional 
electron  gas in a three-dimensional  crystal.  In  analogy 
with the  trans-polyacetylene  one  can  wait electric current 
transport by heavy  carriers - kinks  along  the  magnetic 
field direction; a fractional  charge  can in principle, also be 
observed. 

The possibility of controlling  the  system  parameters  by 
varying  the applied magnetic field is an  important 
advantage of this system  making  the  experiment  more 
manageable. 

We  have  to  answer  the  last  (but  not  least)  question: if 
the  solutions  obtained  are  stable in a one-dimensional 
system,  why  don’t  fluctuations  destroy  them?  The  same 
question  takes  place in the Peierls system  theory.  The 
answer  for  that  theory is as follows. Interchain  interaction 
stabilises the  ground  state  and  suppresses  fluctuations. 
Our  system  as a matter of fact is also a quasi-one- 
dimensional  one. To see it we transform  our  action  into 
the  representation with  definite angular  momentum 
component  on  the z axis 

e ik2 L 

V ) 0 , m ( r ) = ~ ( 2 m + ’ n m ! ) - ’ / 2  
(2L) 

X 
(x + iy)“ x2 + y2 . (4.10) 

Let us  expand  the field operators t,b and t j  on  the full 

orthonormal  basis (4.10) 

The  action (3.8) takes  the  form 

d=d()+diint (4.13) 

Summing m l  and m2 they  tend  to  the  maximum value 

The  system with action (4.15) can be considered  as  an 
array of the  chains with interchain  interaction  that doesn’t 
depend  on  the  number of the  chain. So our  system  has 
quasi-one-dimensional  action.  It is known (Stanley 1973) 
that in the limit 1/2&+ CO, the  saddle-point  (quasi- 
classical) solution is asymptotically  exact  and it does  not 
depend  on m. This  proves  our  supposition  that  our 
solutions  do  not  depend  on  the x and y coordinates,  and 
are  stable. As the mean-field theory is asymptotically 
exact in the limit L/lH+ CO the  obtained  solutions exist in 
some  temperature region 0 < T < A. One could obtain 
these  results in holomorphic  representation using the 
saddle-point  method in the  corresponding  Fock- 
Bargmann  space. 

1/2n1;  (L = 1). 

5. The density of states of the gapless impurities 
semiconductor in a magnetic  field 

In this  section the DOS of the gapless semiconductor in the 
quantum limit is evaluated.  We first describe  the  procedure 
for one-dimensionalisation of the  Hamiltonian.  Then we 
shall  exploit the  correspondence between our model and 
the  one-dimensional electron-impurity system  without  the 
magnetic field. 

Free  action in HR has  the  form 

dhol- dk d o  fik,(hSkff3-E)Uko 
O -1’ (5.1) 

where 

is a Pauli  matrix, k = k,. 
The  term with interaction  after  averaging with  respect 

to  impurity  potential  leads  to  the llq4 theory.  Introducing 
an auxiliary field we have  the effective action 

dcdcdkl  dkzdoG(w)e-cT’Z 
- L 

x Uklw(oVkl -k2([3 r)uk2w(c) (5.2) 
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where u k w ( r )  are  the  Grassmann  holomorphic variables, 
V k , - k 2 ( ( o  is the  Fourier  transform of the  impurity 
potential 

where ( has  a  value of order I,. We  are interesting  by the 
singularities of the DOS in the limit E -+ 0, that  corresponds 
to  excitations with a wavelength L % I,. In this approxi- 
mation we believe that U,@, Q and VK(<, 0 are  smooth 
functions of and 5, Integrating in  (5.2)  with respect 
to ( and c the  ‘sharp’ exponential function  exp ( -  <?J2) 
we finally have 

U ? , =  1 dkl dk2 U,(kl)V(kl- kz)u,(kz)6(~0)  dw. (5.4) 

So far we have  not  considered  the  matrix  structure of 
the  impurity  potential.  We  take  into  account  two kinds of 
interactions:  screened  Coulomb impurities and ‘chemical’ 
defects with potentials r]  and <, respectively, 

where 

is a Pauli matrix. 
The potential ~ ( z )  modulates  the  chemical  potential so 

that  the  conduction  band  and valence band  extrema  are 
moving in the  same direction. The  potential <(z) modulates 
the  gap so that  extrema  are moving in opposite  directions 
(‘chemical’ impurities). In G S  I (for example, in solid 
solutions of the IV-VI semiconductors) iso-electronic 
substitutional defects stand  for ‘chemical’  impurities, and 
deviations  from  stoichiometry  stand for Coulombic 
impurities. 

In the  coordinate  representation (5.1) and (5.4) are 
given by 

a e ~ =  f dz[ U(z)[ 

+ U(z>(r](z> + 015(z)).O))]. (5 .6)  

So in agreement with Wegner’s (Wegner  1983) 
dimensional reduction  theorem  the  problem of the 
influence of impurities on the electronic states is reduced 
to  the  one-dimensional  problem of the particle in the 
random field without  a  magnetic field (Ovchinnikov  and 
Erikhman  1977,  Gredeskul  and  Pastur 1978). One  can see 
that  the  action (5.6)  doesn’t depend on the  quantum 
numbers  corresponding  to  the  angular  momentum 
components  on  the  magnetic field direction, so summing 
up these quantum  numbers we get  the  degeneracy  factor 

If the width of the  potential is considerably smaller 
than  the  distance between  impurities, then for states  near 
the special point of the  spectrum E = 0 a specific form of 

L2/2d$. 

the  impurity  potential is not  important (Liftshitz et a1 
1982). In this case  the  impurity field can be considered  as 
Gaussian white noise. 

We  assume 

(<(z))  = 0 (r] (z ) )  = 0 (5.7) 

(T(Z)<(Z’)) = 2 0  16(z -z’) ( 5 . 8 )  

(r](z)r](z’)) = 2026(z -z’). (5.9) 

Variation of ae f f  with respect  to  the field U 

JJY‘ e r  

6U 
= O  (5.10) 

yields the  system of two  first-order  equations.  These 
equations define the  eigen-states of the  electron  near E = 0 

-ihs-+V(z)u1+((z)u2=Eu1 au 1 

l3Z 

(5.1 1) 

ifis--+ r](z)u2+5(z)u,=Eu2. au2 
l3Z 

The  correspondence between the problem of three- 
dimensional  electrons DOS in a  magnetic field taking  into 
account  only  the first Landau level and  one-dimensional 
problem  without  a  magnetic field follows from  a 
comparison of (5.11) and (5.7-5.9) and  equations in 
above-mentioned  paper of Ovchinnikov  and  Erikhman. 

The  correct  ground  state is defined by introduction of 
the real vectors f and (o: 

f l  + q 2  f2-y1 
U ]  =- +i- (5.12) 

2  2 

f1-Cpz . f Z + ( o l  

2 2 .  
u 2 = - -  1- (5.13) 

Substituting  (5.12)  and (5.13) in (5.11) we can  show  that 
the  equations for f and (o coincide and  correspond  to  the 
spectrum  (5.11);  what is more we can see that  the function 
p H ( E )  is symmetric relatively the point of intersection of 
the  bands E = 0. Therefore we can consider the  case E 0. 

Following  Liftschitz et a1 (1982) we obtained  the 
Fokker-Planck  equation  for distribution P(z, x) = ( 6 ( x  - 
x(z))) of the  phase of x(z) = f 2  / flP(z, x) is the  functional 
of the  random fields r](z) and ((z). We have 

az 
- D  7 ax [(X’- 1)’P] = O  (5.14) 

The  number of states in energy  range (0, E )  is obtained 
from  the oscillation theorem  (Ovchinnikov  and  Erikhman 
1977)  and coincide  with the poles of the  function x(z) in 
the region (0, L ), L -+ CO. 

Finally we represent  some  appropriate  results  for DOS 
in the G S  I quantum limit 

where F is a  degenerate  hypergeometric  function. 
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In  the  absence of the 'chemical'  defects (D 1 = 0)  the 
expression (5.15) is equal  to  the  free DOS pOH.  For  DZ-0, 
as  can be seen from (5.15) DOS has  a singularity in limit 
E-0 

(5.16) 

Calculating only the  Coulomb  potential gives rise to  a 
finite value of the DOS even for E, # 0 

(5.17) 

where 10 is Bessel function of the  imaginary  argument.  The 
DOS (5.17)  for E,=O is equal  to  unperturbed one.  If we 
take  into  account  only 'chemical' defects  the  number of 
states is equal  to 

where J, (x) ,  N,(x) are Bessel and  Neuman  functions, 
U =  E,hs/2D.  It  can be shown  that  the DOS ~ H ( E )  has 
the  Dyson's  singularity  for E + 0 

2nD 
hsEln3(hsE/4D)' pH(E)= -POH (5.19) 

For E,= D we obtain  from (5.18) the DOS corresponding 
to  the free one ( 2 . 5 ) .  This is a  rather  surprising  result: we 
find that  the  energy  gap is closed. If E , s 2 D  we have 
usual energy  dependence of DOS in the  second  Landau 
sub-band 

The  results  obtained  can be useful for  a discussion 
of the  experimental  data in narrow-gap  Kane-type 
semiconductors.  In G S  11 where  near  the  intersection  point 
there is additional heavy parabolic  band except  linear ones 
our  results  can be useful if the  contribution of the  heavy 
band  can be separated. 

Note  that  Dyson's singularity leads  to  the 
delocalisation of the  states  near E = O  so that localisation 
length /I,, - (Ep(  E)/N(E)) - - CO when E + 0. It  can be 
essential  for the  galvanomagnetic  phenomena.  For finite 
gap I~,, -(DFTz~s~)". 

6. Two-dimensional  electronic  gapless  states  in 
magnetic  field 

Two-dimensional  electronic G S  on  the  surface of a 
semiconductors were shown to exist in the  works of 
Volkov and  Pinsker  (1977)  and  Djakonov  and  Haetsky 
(1981).  Another possibility  for two-dimensional G S  to 
appear  was suggested  by  Volkov and  Pankratov  (1985).  It 
is shown  that  electrons living in the  interface between 
IV-VI semiconductors with normal  and inverted bands 
comprise  the gapless  fermionic branch.  Corresponding 

electron  states  can be described by two-dimensional  Dirac 
equations.  These  states  are really influenced by  lattice 
irregularities,  impurities  etc. The  electron density of states 
(DOS) is particularly sensitive to  the irregularities while a 
strong  magnetic field perpendicular  to  the (interface) 
surface is applied. Such  a  problem in the  case of one- 
component  (Schrodinger)  electron  state  was  exactly solved 
by Wegner (1983)  and then using a  more elegant method 
by Brezin et a1 (1984). 

Our  purpose here is to generalise the  above  works  on 
the  case of the  two-component  (Dirac) electron states. 

The  Hamiltonian of two-dimensional  electrons in the 
strong  magnetic field in the presence of the  random 
potential  reads 

z= 3 0  + V ( r )  (6.1) 

= Vdr) + 0 1  V2(4 

( V i ) = o  (Vi(r)V,(r '))  = A i 6 ( r - r f ) d i j  (6.2) 

where VI is the  screened  Coulomb  potential  modulating 
the  chemical  potential  and V 2  is the essentially short-range 
potential  modulating  electron  mass (gap). 

Calculating  the  Green  function  and  averaging it over 
all configurations of the  random potential we get 

(G) = J P [ V]G(x, X'; V(x))D (6.3) 

x exp [ iJ dzrf'@(E -X + id)q I )  
x (i DqD@ exp [ i s  d2rf'@)E - + id)q 1 )  - l  (6.4) 

and  substituting  the result  (6.3) into  the  general  formula 
for DOS 

1 
p(E) = - - Im  Tr  (G(E + id, x, x)) (6.5) 

we can  calculate  the electronic DOS. Making use of (6.4) 
we can write 

Gii(r, r) = - i  DuDiiDuDVui(c)iii(c)e  -Io2/*eid 

n 

J (6.6) 

-i  dcdce"42/2(i(Vu + !?Vu) (6.7) 
_I. 

where U and U are  the  commuting  and  anti-commuting 
(Grassmannian)  spinor fields, respectively. 

The  corresponding  free  equation  reads 

X& = 0 

Therefore,  there exists at  least  one  zero eigenvalue of the 
problem (in the  absence of impurities), that is a  necessary 
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condition  for  supersymmetry (ss) to exist. Note,  that  the 
action used in the  work by Brezin et a1 (1984) is not 
supersymmetric.  We  show here that  taking  into  account 
the ‘chemical’ impurities (V2-potential) does  not violate 
this  intrinsic ss. It is necessary  not  to  confuse it with the 
extrinsic ss used  here  for the  averaging of connected 
G-functions. 

Averaging (6.6) with the  distribution P [ V(r)] we get 

where 

One  can see 

&a) = ln)  eiavP [ V]D V. (6.11) 
. W  

- W  

that  (6.10) is invariant  under  magnetic 
translations with a Jacobian  that is equal  to unity  since the 
fermionic part is the inverse of the  bosonic  contribution. 
Let us write the  Greens  function in the manifest ss 
invariant  form 

(Gii(r, r ) ) =  -ie-142’2(ui(r)i(i(~)) (6.12) 

where (ui(()ii(c)) =ciie142/2 with and 4 independent 
factors cii. Our goal  now is to find these factors. Following 
Brezin et a1 (1  984) we introduce superfields 

ai(<,  a)=ui(C) + ( d j P i o i ( O  (6.13) 

62(<, e>=ci<e> + <di>vi(t>6i. (6.14) 

Let us fix our  normalisations by listing the  basic  formulae 

j ‘ d 6  d@l ,  or 6, or 6)=0 (6.15) 

where 

(6.17) 

This  action is SS invariant 

~ i ( z , 6 ) = ~ i ( z - a a , 6 - ~ ) e x p [ ~ ( z ~ + 6 ~ ) - d ( I a ~ Z + ~ ~ 1 2 ) I  

62 = W6 66=wz. (6.18) 

The  problem of the  Green  function  calculation is reduced 
to  the  calculation of the  average value 

exp [ - ; (c<+ ~ 8 ) ] ( ~ i (  c, 6)6t(<, B))=Cii. (6.19) 

It is clear that in order  to find (6.19) we have  to  calculate 
the  Gaussian  integrals in the  superspace  (super- 
determinants). But  these superdeterminants  are unities 
due  to  mutual  compensation of bosonic  and fermionic 
ones.  The  problem of the  calculation of the  perturbative 
corrections  to  the  Green  function is reduced  to  the  cal- 
culation of the  symmetry coefficients of proper  graphs. 
These coefficients can be calculated with a derivative 
function  that gives us the expression  for the  sum of the 
graphs 

Cii= -i dy, d@ exp  [2nlk(is@y, + h[@y,])]  .i 
x ( j’ dy, d@ exp [ 2nl;(i~@y, + h [ @ y , ] ) ]  1 ”  

- 
” - dy, d@  exp  [27~1~(is@y, + h[@y,])]  (6.20) 

where E = E + id. 

indices we get 
Making use of (6.5) and  taking a trace over the  spinor 

1 a .OC 
p ( E ) = - I m - l n ~  an 8s dxdyexp[ i a s (x+y)  

where a=2n1;, x=Iull 2 , y=Iu212, ui are  spinor 
components.  As it can be derived from (6.21) the full 
number of free states is twice the  one in the  one-band  case 
(Schrodinger  case) 

Anomalous behaviour of the DOS p ( E )  is connected with 
impurities potential  modulating  the  gap  (Ktitorov  and 
Petrov 1986). Therefore we may  restrict  our  study by the 
case A I  eA2. Carrying  out  the  integration in (6.21) we 
have in the limit A 1 = 0,  A 2  # 0 

i 
1 
- ex2 \ 

where 

‘X 

F (x)=e-X2 1 eU2du 
-0 

is a Doson integral. As  can be shown  from (6.2 1) there is a 
singularity of DOS in the  centre of the  band  spectrum. 
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From (6.2 1) we have  the following expression for ,l I < ,lz Note,  that in the  case 1 = , l 2  = w/8 we have  the result 
coinciding  with one  obtained  by Affleck (1984) up  to a 
factor of two. 

(6.24) 

where A = (A ]/,l2) 

The  corresponding DOS is depicted in  figure 4. For 
E near  the  centre of the  bands  we  have  the following 
asymptotic of the DOS 

P(E) 
1 2 

[ ? d d  1 

One  can see that  the  singularity (6.24) at E = 0 is smeared 
over  the  range - (21 l/a)1’2 due  to  the influence of 
Coulomb impurities. In  the  case of the  absence of 
‘chemical’ impurities  the  singularity is also  absent 

(2/Al)”2 ex* 
P(E)= 4, ’lH 2 

x=E (5) (6.26) 
2 1 1  

I 
l l I I 

L 

- 0  8 - 0  4 0 0 . 4  0.8  

X 

112 
v=E(  %) . (6.27) 

At  large energies  for E 2  9 412/a % 41 ] /a  we have 

and  the DOS coincides with the  results  obtained by  Brezin 
et a1 (1984) and  Wegner (1983). Equation (6.28) also 
was  obtained by Affleck (1984) in the semi-classical 
approximation. 

A narrow  peak  appears in disordered GS I when 
impurities  have a Lorentzian  distribution.  Indeed after 
averaging we have h(x)= -Alxl. The effective action  has 
the  form of the  free  one.  This  case  leads  to  the 
generalisation of the well known  Lloyd model (Lloyd 
1969) for two-dimensional gapless states.  The DOS has  the 
form 

p(E)=- 27~~1;  l ( h +  A: + E Z  + A -  + E ~  ) (6.29) 

whereA,=Al iA2 .  
From (6.29) it follows that  for close  intensities of the 

correlators (A -0) in E = 0 the DOS have a singularity. 
Note,  that in the  work  by Brezin et a1 (1984) the 
singularity of the DOS appears only in the  case of the 
Poisson  distribution. 

7. Conclusion 

The  basic aim of the  present  work  was  to investigate 
the  energy  spectrum  and density of states in gapless 
semiconductors of type I in the  presence of a strong 
magnetic field, random impurities and  electron-phonon 
interaction.  We used  a two-band  semiconductor model in 
which the  electronic  states  and  spectrum  are  described by 
quasi-relativistic Dirac  equations.  In  the  quantum limit 
there is a GS I in the  absence of interaction leads to  the 
appearance of gapless collective excitations of the Bose 
type. 

The  electronic  states  are described in terms of 
holomorphic  representations. 

We investigated the effect of the  phonon  and  the im- 
purities on  the  energy  spectrum of three-dimensional GS I.  
The  results  are very surprising.  We  found a spontaneous 
gap  generation  phenomenon.  As a result, GS I absolutely 
unachievable.  In  material with an  inverted  band  structure 
the  conduction  band  and valence band  have  to  invert 
without  crossing  zero while the  gap is finite. When  the 
impurities  are  taken  into  account we also  have a 
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hysteretic  character of the  dependence  but with an higher 
‘coercivity’ m,. 

Thus  the ‘newly born’  ground  state is doubly 
degenerate. In  this  situation we obtain  the Bogoliubov-de 
Gennes-type  equations.  The  corresponding  solution  leads 
to  the  domain-wall-type solitons,  linking normal  and 
inversion phases.  Two-dimensional  electrons  are localised 
in the  domain walls. The possible implications of these 
results for semiconductors IV-VI will be described 
separately.  They  may be important in the  galvano- 
magnetic effects. 

We  have  considered  the  problem of a non-interacting 
electrons in the  presence of impurities with &correlated 
distributions. To calculate  the  three-dimensional DOS we 
reduced the  problem  to  the one-dimensional one  without a 
magnetic field. From  the  basic  Fokker-Planck  equation 
the  number of electronic states is evaluated.  The 
corresponding DOS is singular  at E =O. We  have  shown 
that  there is Dyson singularity in the middle of the  band, 
as a consequence  the  states  on  the  centre of the  band 
remain  extended. 

For  two-dimensional  electrons  the  &function 
singularity of DOS is found in the  case of gap-modulating 
impurities that is a  result of the  supersymmetry being 
preserved in this  case. ‘Relativistic’ two-dimensional 
electrons  can be found  on  the IV-VI semiconductor 
surfaces,  corresponding to the  ‘supersymmetric’  interfaces 
(Volkov and  Pankratov 1985) and in domain walls, as 
predicted in this work.  The  electron DOS singularities can 
be observed in galvanomagnetic,  optical  and tunnel 
spectroscopy  experiments. 
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