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Abstract  

The problem of solving the gap equation for S-wave pairing in pure neutron matter is considered 
for the case that the pairing matrix elements V ( p , p  ~) are calculated directly from a realistic bare 
neutron-neutron potential containing a strong short-range repulsion. The original gap equation is 
replaced identically by a coupled set of equations: a non-singular quasilinear integral equation 
for the dimensionless gap function X(P) defined by A(p)  = AFX(P) and a non-linear algebraic 
equation for the gap magnitude zlF = A(pr)  at the Fermi surface. This reformulation admits a 
robust and rapidly convergent iteration procedure for the determination of the gap function. The 
treatment may be extended to singlet or triplet pairing in non-zero angular momentum states. 
S-wave pairing is investigated numerically for the Reid-soft-core interaction. Although the pairing 
matrix elements of this potential are everywhere positive, non-trivial solutions of the gap equation 
are obtained on the range 0 < pF < Pc = 1.7496.. .  fm - l  of Fermi momenta, with the gap 
parameter AF reaching a maximum of some 3 MeV near p r  = 0.85 fm -1. Numerical results are 
also provided for the highly realistic Argonne Vl4 and vl8 interactions. Within the context of the 
new computational scheme, a condition for closure of the gap is derived in terms of the first 
zero p0 of the gap function A(p) .  It is shown that ZlF vanishes exponentially not only in the 
low-density limit pF ---~ O, but also as the Fermi momentum rises and approaches the upper critical 
value Pc specified by PF = PO(pF), beyond which there exists no non-trivial solution of the gap 
equation. The numerical results for the function A(p)  in neutron matter display a remarkable 
universality of structure, visible especially in the stability of po under variation of density. Upon 
renormalizing the gap equation in terms of the vacuum S-wave scattering amplitude, this behavior 
is seen to be a manifestation of the resonant nature of the neutron-neutron interaction at low 
energy, which leads to a scattering amplitude of nearly separable form. 

I. Introduction 

There is heightened interest  in nuclear  matter at large neutron excess. In the astrophys- 

ical context, this interest  is dr iven by observat ions bearing on the rotational dynamics  

0375-9474/96/$15.00 (~) 1996 Elsevier Science B.V. All rights reserved 
SSDI 0 3 7 5 - 9 4 7 4 ( 9 5 ) 0 0 4 7 7 - 7  



VA. Khodel et al./Nuclear Physics A 598 (1996) 390-417 39 I 

and thermal evolution of neutron stars [ 1 ], and, in nuclear physics, by measurements 
on light nuclei with neutron halos [2] and by increasing experimental access to heavier 

nuclei near the neutron drip line [3]. A central theoretical issue is the nature of pairing 
in neutron-rich assemblies. In this article, we shall focus on pairing in dilute neutron 
matter, with a two-fold purpose. Our first aim is to introduce a new method for numer- 
ical calculation of the gap A(p)  in the single-particle spectrum of a superfluid Fermi 

system, as determined by the standard BCS equation with a singular kernel. This method 
is designed to overcome certain technical problems that obstruct the solution of the gap 
equation in neutron matter at the relevant densities, especially when the pairing force is 

furnished by a realistic bare nucleon-nucleon (NN) interaction. The new procedure is 
also applicable to physically more realistic gap equations containing dressed versions of 
the pairing interaction and single-particle energies (for example, see Ref. [4] ). 

Our second aim is to expose several novel features of the pairing problem in dilute 
neutron matter, stemming mainly from the fact that the neutron-neutron (nn) interaction 
is almost attractive enough to produce a two-body bound state at zero energy. This prop- 

erty is reflected in the resonant structure of the vacuum S-wave nn-scattering amplitude 
F ~°), which is dominated by a pole term that reflects the large negative nn scattering 
length in vacuum, ann ~ -18 .5  fm. It will be one of the tasks of this article to make 
explicit the interplay between the contributions to the gap coming from this pole term 

and from the usual logarithmic term in the particle-particle propagator. 
To provide a benchmark for studies of neutronic subsystems of nuclei and neutron 

stars, it is desirable to carry out a precise evaluation of the energetics of pairing in 
pure neutron matter. Such an investigation is stimulated, for instance, by the fact that 
some many-body treatments of the normal phase [5,6] show a significant flattening of 

the equation of state of the neutron system (i.e. of the energy per particle g versus 
baryon density p) relative to the ideal Fermi gas, in the density region corresponding 

to Fermi momenta PF "~ 0.2 fm - j .  In addition, an effective particle-particle interaction 
derived microscopically within variational theory has been found to yield IS0 gap values 

dF = A(pF)  as large as half the Fermi energy eF (Ref. [4] ). Consequently, the negative 
pairing contribution to g (i.e. minus the condensation energy per particle g,.) might prove 
to be of qualitative importance, producing a noticeable reduction of the pressure P ( p )  

and the compressibility modulus K ( p )  and significant further softening of the matter 

toward instability. 
A minimal prerequisite for a quantitative investigation of pairing phenomena in neu- 

tron matter is the availability of an accurate method for solution of the BCS gap equation 
for "realistic" NN potential models that have been adjusted to fit free-space two-body 
data. The gap equation for singlet S-wave pairing can be written in the general form 

d ( p )  = - / V ( p , p ' ) A ( p ' )  d~", (1)  
2E(p  I) 

where V(p ,  p ' )  is the angle-average of the effective particle-particle interaction at zero 
total momentum and E ( p )  = [~:2(p) + A2(p)] 1/2 is the quasiparticle spectrum in the 

superfluid state, with sO(p) = ep - I.t. In turn, e e is the single-particle spectrum in the 
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normal state and/z  is the corresponding chemical potential. We adopt the abbreviation 
d~" = ( p ' )  2 dp '  /2cr2. 

Commonly, a straightforward iteration scheme is applied to the solution of Eq. (1),  
starting with some initial guess d I°l (p~) for the gap function A ( p ' )  appearing on the 
r.h.s, of the equation. The simple ansatz d l° l (p  t) = constant is often used, a popular 

estimate for this constant gap being provided by the BCS weak-coupling formula [7] 
ABCS = 2 t O c e x p [ - 1 / N ( O ) g ] ,  where g is a coupling constant and N(0) = MpF/27r 2 

(with h = 1 ) is the density of single-particle states at the Fermi surface. It is customary 

to take Wc = epF and g = - - V ( p F , P F ) .  

Even if we exclude interaction models containing infinitely hard cores, difficulties may 
arise when one attempts such an iterative solution of the gap equation. The situation 
encountered for the Reid-soft-core (RSC) potential [8] - a staple of the nuclear many- 
body theory - is symptomatic of a more general problem. For the Reid case one must 
face the immediate obstacle that the bare pairing interaction V(p,  p ' )  is positive on the 
Fermi surface, p = p '  = PF. (In fact, V ( p , p  ~) is never negative!) This feature rules out 
A ( p )  = constant = d as a viable approximate solution of Eq. (1); in particular, the BCS 
weak-coupling ansatz becomes meaningless. Although "softer" NN interaction models 
- notably the Urbana/Argonne v14 and via [9,10] and Paris [ 11 ] potentials - do have 
negative values for V(pF,  PF),  an intrinsic difficulty persists. As is now well known, the 
pairing matrix elements of realistic NN forces are such that the momentum integration 
in the gap equation must be extended to very high values o f p '  (some 10-50 fm - l  ) to 
achieve satisfactory accuracy [ 12]. 

What is not generally appreciated is that the contribution from this high-momentum 
region, which is proportional to ,4 under the presumption of a constant gap, can pro- 
foundly modify the conventional picture of pairing. Schematically, the gap equation ( 1 ) 
becomes 

,4 = - N ( O ) g , 4  In d + y,4, 

with y as the constant of proportionality, leading to the relation 

1 - y = - N ( O ) g l n , 4 ,  

which would otherwise (i.e. for y = 0) verify the weak-coupling formula. The high- 
momentum contribution can change the sign of the l.h.s, of this relation, presaging the 
possibility of a solution of (1) when the pairing interaction is positive on the Fermi 
surface. 

This raises the following point, especially relevant for nuclear interactions. While 
negativity, in a given two-body channel, of the angle-average of the pairing interaction 
on the Fermi surface, p = p '  = PF, is sufficient for the existence of a pairing instability 
in that channel, it is not necessary. In particular, the gap equation for S-wave pairing, 
Eq. (1),  may have solutions at densities for which V ( p  = p F , p  t = PF) = VF > O. 

Moreover, as we shall demonstrate for the Reid interaction, pairing may exist over a 
substantial density range even if VF > 0 f o r  all PF. The door to pairing by a positive 
pairing force is opened by the argument we have just sketched, but the possibility of 
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this phenomenon may be understood in simpler terms by direct inspection of Eq. ( 1 ). 
Since the denominator of the integrand on the right-hand side is always positive, we can 
of course make the quantity A(p) on the left-hand side positive at PF with a negative 
pairing interaction V ( p , p ' )  and with d (p  ~) consistently positive at all momenta. This 
corresponds to the familiar, textbook view of the gap equation. On the other hand, with 
V(p, pt ) positive for p = PF within some range of p~ including pF, we can also achieve 
a positive gap at PF if the gap function A(p ~) in the integrand exhibits a negative 
excursion over some range of momenta pt > PF, sO as to produce a net negative 
value for the integral in Eq. (1).  Such a solution zl(p) will be start out positive but 
must turn negative at some momentum P0 > PF. The occurrence of a finite-momentum 
zero in the gap function A(p)  is thus an inevitable concomitant of the existence of 
a non-trivial solution of the gap equation for pairing forces typically encountered in 
infinitely extended nuclear systems. In detail, it is found that A(p)  displays a shape 
like that of the curves shown in Fig. 4 or Fig. 10, with damped oscillatory structure 
and a substantial negative swing for p values in the approximate range 2-8 fm -I .  
Such oscillatory behavior is not restricted to potentials having VF > 0 at the density in 
question; indeed it is seen quite generally for realistic NN interactions, which necessarily 
have positive pairing matrix elements V(p, p~) over extended momentum domains. From 
these considerations, one naturally suspects that the Fermi momentum at which the gap 
AF closes must be intimately related to the first zero P0 of the gap function d (p ) .  It 
will be one of our tasks to explicate this relation. 

In earlier work, the difficulties and complications associated with pairing in nucleonic 
matter have been eliminated or suppressed by replacing the given interaction with a 
softer phase-shift-equivalent potential [ 13,14 ], or with a suitable microscopic [ 4,16,14 ] 
or (semi-)phenomenological [17-19] effective potential including medium effects, for 
which straightforward algebraic or iterative solution of the gap equation proceeds without 
much difficulty. (Also, a solution for a "hard" potential like the RSC interaction may 
sometimes be reached by using the solution for a soft phase-shift-equivalent potential as 
a starting point [ 13,20].) Another strategy, followed in Ref. [ 12], is to solve the gap 
equation for the reduced interaction introduced by Anderson and Morel [21], the input 
pairing interaction being renormalized by high-momentum effects to achieve a separation 
of low- and high-momentum regimes. (Within this approach one can still encounter 
problems for the RSC potential.) We shall instead formulate and apply an efficient and 
accurate method of solution that does not call for any alteration or renormalization of 
the original pairing force for use in the gap equation. The need for such a numerical 
approach is especially acute in the case of pairing in non-zero angular momentum 
states (namely in the 3p2-3F2 channel), which may occur in neutron stars at densities 
beyond that of ordinary nuclear matter [22-27]. At these higher densities the superfluid 
properties become sensitive to the off-shell character of the assumed interaction, and 
hence replacement of the best available NN interactions (fitted to a variety of few-body 
data) by more tractable phase-shift-equivalent potentials becomes suspect. 

In pure neutron matter, the unusually large nn scattering length has the important 
consequence that the limiting domain of low density, characterized by pFlann[ << 1, is 
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strictly reached only at exceedingly low densities in more familiar terms, well below 
10 -5 times the equilibrium density/90 of symmetrical nuclear matter. The pairing effect 
in the 1S0 channel, which is the chief concern of this paper, is known to peak at a 
density that is far higher, yet still only about one tenth of P0. The matter in this regime 
of maximal singlet pairing will be termed "dilute", acknowledging the fact that the mean 

particle spacing is much larger than the length scale set by the repulsive core of the NN 
interaction, while making a distinction from genuine low-density matter. 

In Section 2 we reformulate the pairing problem in the 1S0 channel and propose a 

new method for solution of the integral equation for the gap function. As explained in 
Section 3, the new perspective on the gap problem allows us to establish the anticipated 
link between the (density-dependent) first zero of the gap function zl(p) and an upper 
critical density at which the gap AF vanishes. Section 4 presents results from numerical 
application of the method to S-wave pairing, primarily for the test case of the Reid- 

soft-core interaction. Section 5 is devoted to a formal analysis of the nature of solutions 
of the singlet-S pairing problem, with specific attention to the observed structure of 
the gap function A(p) and its relation to the resonant character of the nn interaction. 
In Section 6 we summarize our findings and indicate several outstanding problems that 
must be overcome to arrive at a quantitative understanding of pairing in infinite nucleonic 
matter. Appendix A adapts the proposed strategy for the solution of gap equations to 

the special situation of vanishing VF, while Appendix B shows how this new approach 
may be extended to examples of  triplet pairing. 

2. Procedure for solution of the gap equation 

In this paper we shall concentrate on the problem of S-wave pairing in pure, ho- 
mogeneous neutron matter, as described by the gap equation (1). To avoid unjustified 
complications, the particle-particle interaction V and the single-particle spectrum ep are 
taken in their simplest forms: we set V equal to the bare or free-space nn potential and 
e t, equal to the free single-particle energy. Thus ep = p2/2M, the chemical potential/z 

being just the Fermi energy eF = epe. 
It is assumed that the interaction V(p,p  ~) has no zeros on the Fermi surface, that 

is V(pF,PF ) ~ 0. (The special case of vanishing V(pF,pF) is considered in Ap- 
pendix A.) The key step of our method consists of decomposing the potential V(p,p  t) 
into a separable part and a remainder W(p,p  ~) that vanishes when either argument is 
on the Fermi surface: 

V(p,p ' )  = VFdp(p)qb(p') + W ( p , p ' ) .  (2) 

The choice ~b(p) = V(p, pF)/VF, with VF = V(pF,pF) ~ 0, meets the required 
conditions W ( p r , p  ~) = W(p, pF) = 0 for all p ,p'. The gap equation then takes the 
form 

/ ztz~p')Zl(P') ' '  . f , A(p') A(p) + VFqb(p) q b ( p ' ) ~ ,  ,, aT" -e W(p,p  ) ~ ,  ,, dr = 0 .  (3) 
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Defining a dimensionless gap function (or shape function) X(P)  through A(p) = 
AFX(p) ,  and dividing Eqs. (1) and (3) by AF -- zl(pr), we have 

X(P)  + / W ( p , p ' )  
X (p  I) 

2[sC2(p, ) + A2FX2(p,)] l/j dr' = 6 ( P ) .  (4) 

(We note in passing that the function X(P)  represents an interaction amplitude calculated 
for the residual interaction potential W when one of the two momentum arguments of 
this amplitude lies on the Fermi surface.) 

On the other hand, setting p = PF in (3) and remembering that W(pF, p)  is identically 
zero while q~(PF) = 1, we obtain the equation 

qb(p ' )d(p ' )  
A F = -- VF l / 2 d'g t (5) 

2[(2(p ') + A2FXz(p')] 

for the gap value AF at the Fermi surface, a result conveniently expressed as 

+ VF f qb(p ' )x (p ' )  = 0. (6) I A2 , 2( nt'~ ] I /2 dT"t J 2[(2(P ') + F,.i ~P" /j 

Thus, the original gap equation (1) has been replaced, without approximation, by the 
two equivalent equations (4) and (6). The essential effect of the substitution (2) is that 
for p ~ PF the integrand in the second term of Eq. (4) vanishes and the near-singular 
situation is circumvented. The corresponding integral then becomes insensitive to any 
reasonable variation of d(p ' )  = AFX(P') within the E(p ' )  denominator. In other words, 
the shape function X(P)  is practically independent of A(p ' ) .  For specified AF, Eq. (4 )  

is an integral equation with non-singular kernel, effectively a linear integral equation 
("quasilinear") because the non-linearity induced by the presence of X(P' )  inside the 
square root is inconsequential. Eq. (6) is a non-linear algebraic equation that can be 
solved by Newton's method and related algorithms when a solution exists. For both 
lbrmal and computational purposes, it is advantageous to rewrite Eq. (6) as 

 2(p) d ,=  f (p) - x(p)] f 2[(2(p) .+_ A2X2(p)]l/2 ---VFF + - - - -  ' 2[(2(p ) + A2FXZ(p) ] I/2dr (7) 

observing that the identity X(PF) = qb(pF) = 1 renders the right-hand side almost 
independent of the behavior of A(p)  and hence of AF. 

A simple iteration scheme for determination of the gap function A(p)  = AFX(P) is 
suggested by the extremely weak dependence of the function X(P)  on the behavior of 
the gap. 

(i) Replace the quantity AFX(p) in the denominator of the integrand in Eq. (4) by 
a (very small) constant scaling factor AIF °l and solve the resulting linear integral 
equation by matrix inversion on a suitable grid, to obtain a first approximation 
X Il l(p) for the shape function X(P) .  

(ii) Substitute Xlll(p) for X(P)  in Eq. (7) (or Eq. (6)) and solve the resulting 
non-linear algebraic equation, to obtain a first approximation A[F II for the scaling 
factor  A g. 
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(iii) Repeat step (i) with A~IlXII](p) as input for AFX(P) in the integral term, 
generating a second approximation Xt21(p) to X(P); and repeat step (ii) with 
X TM (p) as input for X(P), generating a second approximation A~ 21 to AF; and so 
on until satisfactory convergence has been achieved in both X(P) and AF. 

In actual calculations with realistic nn interactions, the convergence of this algorithm is 
so rapid that accurate results for X(P) and AF are already achieved in the first iteration 
cycle (i), (ii). Moreover, the r.h.s, of Eq. (7) is so insensitive to AFX(p) that it is 
immaterial in step (ii) whether, in the square root, this quantity is treated as AFXII] or 
simply replaced by the constant A~ °1. 

The above iteration procedure exploits the quasilinear nature of Eq. (4) for X(P), 
replacing this equation, in each iteration cycle, by a linear integral equation susceptible 
to elementary computational methods. The quasilinearity of Eq. (4), residing in the 
insensitivity of the integral term with respect to what one inserts for ClFX(P') in the 
denominator of the integrand, is emphasized by rewriting the equation in the generic 
linear form 

X(P I) .d,r t 
X(P) + / W ( p ,  pl)2[~2(-~) T~2]I/2 = ~ ( P )  • (41) 

The similar property of Eq. (7) is similarly highlighted by rewriting it as 

~b2(p) 1 [ . . .  [~b(p) - X(P)] _ f (7') 

In writing (4 ~) or (U), it is implied that any reasonable input for the quantity 6 will 
suffice (e.g. AtFnlX lnl from some iteration cycle n, and in many instances simply A[F °l ). 
The ~ notation will prove useful in forthcoming arguments, serving as an economical 
reminder of the essential mathematical and numerical behavior of the reformulation of 
the gap problem expressed in Eqs. (4) and (7). 

An analogous decomposition of the gap problem may be carried through in higher 
partial waves. The extension of our approach to triplet pairing is sketched in Appendix B. 

3. Condition for gap closure 

The reformulation of the gap equation expressed by Eqs. (4) and (7) is fruitful not 
only as a platform for efficient numerical solution but also as vehicle for the exploration 
of certain fundamental aspects of the gap problem that transcend the application to 
neutron matter. 

One important analytical result that can be extracted is a condition relating the critical 
density at which the gap closes to the first zero of the shape function X(P). This 
condition determines the upper extent of the density range in which a positive pairing 
force - more specifically an interaction having VF > 0 - can still yield non-trivial 
solutions of the gap equation. 
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Thinking for the time being in terms of the Reid interaction, for which V(p ,p  ~) is 
everywhere positive, and recalling the argument given in Section 1, it is clear that in 

order to satisfy (1) or (6) and obtain a positive (or non-zero) value of AF at a given 
PF, the functions d (p )  of (1) and X(P)  of (6) must pass through zero at some point 
P0 and become negative. In deriving a condition for gap closure in terms of the position 
of this first zero, it is important to realize that, given any reasonable choice of V(p, p' ), 
the integral Eq. (4) will admit a solution for X(P)  at any density, whether or not 
Eq. (6) has a non-trivial solution for the gap amplitude AF. 

Now consider the recast version (7) of Eq. (6). As we have already stressed, the 
right-hand side of this equation is virtually independent of the gap AF, a fact reflected 
in the surrogate form (7 ' ) ,  which captures the quantitative behavior of (7) with any 

reasonable input 8. On the other hand, the left-hand side of Eq. (7) is a positive, 
monotonically decreasing function of AF, dropping from infinity to zero as AF ranges 

from zero to infinity. Therefore a positive solution of (7) exists if and only if the 

right-hand side of this equation is positive. 
In outline, the situation is as follows: The sign of the right-hand member of Eq. (7) 

depends primarily on the sign of X(P)  in the p domain relatively near the Fermi 
surface that is essential for the integration on the r.h.s, of Eq. (7). The latter sign, 

in turn, depends on the location of PF with respect to P0. In the lower density region 

defined by PF < P0, the identity X(PF) = 1 imposes a positive sign on X(P)  for p < P0 
and a negative sign for p > P0 (within the relevant p domain). The contribution to the 
integral from the negative-going portion of X(P)  prevails and ensures a positive sign for 

the r.h.s, of (7).  In the higher density region where PF > PO, the function X(P)  must 
instead be positive for p > P0 (and in the relevant p range), since it is constrained to 

equal 1 at p = PF > PO. Consequently, as PF increases past P0, the sign of the r.h.s, of 
Eq. (7) changes and a non-trivial solution of the gap equation can no longer exist. The 

behavior of X(P)  that is responsible for the shift of sign is documented numerically in 

the next section. 
The operative behavior of X(P)  as a function of momentum p and density p = 

p-F/3~', in the neighborhood of the zero p = P0, can be characterized mathematically 

by 

x ( p ;  p )  = x ( p ;  p )  p - p o ( p )  . (8) 
PF -- Po(P) 

In this expression, x(p; p) is a smooth function of p near p = P0 and incorporates the 

property X(PF) = 1 through the normalization x (p  = PF;P) = 1. If  x (p ;p )  is also a 
smooth function of p, then X(P; P) will have a simple pole at a density corresponding 

to PF = Po(P). 
Now suppose that, as the density rises and approaches a critical value Pc, the gap 

AF approaches zero (gap closure). Then the 1.h.s. of Eq. (7) diverges logarithmically 
as p -~ pc. Hence a non-trivial solution of this equation can exist only if its r.h.s. 
also diverges. Noting that for any density the integrand on the r.h.s, has a finite value at 
p = PF, we see that equality of left and right members of the equation can be guaranteed 
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only if X(P; PF), as a function of PF, has a pole at PF = Pc -- (3~'2pc) 1/3. Assume for 
the sake of argument that Pc 4~ Po. This assumption immediately entails a contradiction, 
since it implies that x(p; p) diverges when p approaches pc and thereby violates the 
condition x(pr; Pc) = 1. On the other hand, with Pc = Po the function x(p; p) remains 
well behaved in the closure regime. We are forced to conclude that the critical Fermi 
momentum for gap closure coincides with the first zero of the shape function X(P) (or 
the gap function A(p))  at the corresponding density. Thus, 

Pc. = Po(PF =Pc) • (9) 

A further analytical result stemming from our reformulation of the gap equation 
establishes the functional form of the gap d r  as the Fermi momentum PF approaches 
the critical point Pc from below. In solving Eq. (7) near the critical density, x(p; Pc) 
may be used in place of x(p; p) in expression (8) for X(P).  Adopting the 6 notation 
introduced in Eq. (4 ') ,  we can determine x(p; Pc) independently by means of the 
homogeneous equation 

r(p)  = W(p,p ' ;pF =Pc)2[~Z(p,) +82]l/2r(p')dT"' (10) 

for the residue r(p)  of the function 

r(p)  
x ( p ;  p )  = - -  ( I l )  

PF -- Pc 

at the simple pole Pv = Pc. The vanishing of W(p,p  ~) for p on the Fermi surface has 
the important consequence that r(p = Pc) = 0. On comparing (8) and (11) we infer 
that 

r(p) 
x(p; Pc) - P _ Pc (12) 

This relation determines the normalization of r(p)  via the condition x(p  = pc; pc) = 1. 
On rewriting r(p) in the form 

dr(p)  t,c (p - Pc) (13) r(p) - ~ 

applicable near p = Pc, it is seen that the required solution of Eq. (10) obeys 

dr(P)dp pc = 1. (14) 

Eq. (8),  with x(p; p) given by Eq. (12), may now he inserted into Eq. (7). Estimation 
of the gap AF from the resulting expression is simplified by the fact that for PF ~ Pc, 
w h e r e  /I F is necessarily very small, only the momentum region close to the Fermi 
surface is pertinent. Thus we need only retain the portions of (7) that are divergent 
when AF goes to zero. Introducing the integral 

1 = ] p ~ - 2 1 p 2 d p ,  (15) 
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we arrive at the relation 

In ~1  ÷const .  ~ lP-------L--F (PF - P c  ~ 0 - ) .  (16) 
/IF PC -- PF 

Therefore the gap vanishes exponentially as the critical density is approached, according 
to the asymptotic formula 

d F ~ T c e F  exp[  lp____F__F] (PF--Pc- -~  0 - ) ,  (17) 
L Pc - PF J 

where ~7c is a prefactor of order unity. Patently, this formula only applies for PF < Pc, 
since we have shown that AF -- 0 for PF >/ Pc. 

The foregoing analysis has been framed for the Reid interaction, whose VF is always 
positive. However, it may readily be generalized to other realistic NN interactions, such 
as Argonne vl4 and v18, for which VF is negative below some Fermi momentum (near 
0.7 fm- t  in these examples). The association of the critical point Pc with the condition 

PF = PO(PF) still applies, since clearly VF will be positive in the vicinity of the gap 
closure density. Likewise, the argument leading to an exponentially vanishing gap as 

P - Pc --~ 0 -  may be carried over immediately, upon appealing once again to the fact 

that for PF ~ P~. only momenta in the immediate vicinity of the Fermi surface participate 

in the tormation of the gap. 

4. Numerical applications 

The procedure delineated in Section 2 has been applied to several interactions with 
the intent of gaining a detailed numerical picture of the behavior of the gap function in 

dilute neutron matter. For the Reid-soft-core (RSC) interaction, calculations of A(p )  
and X ( P )  have been carried out at some 200 Fermi momenta in the interval 0.01 fm - l  < 

PF < 2 fm -1 . The integrations over p '  and p in Eqs. (4) and (7) have been extended 
out to 50 fm -1. The proposed algorithm is stable even in regions where AF becomes 
exponentially small and thus facilitates a quantitative study of A(p)  near the upper 
critical point p¢ = Pc where the gap closes. The basic results are displayed in Figs. 1-13. 

The only other published results on IS0 neutron pairing for the bare Reid interaction 
are those of Takatsuka [ 13], which are available at points in the interval 0.14 fm -1 < 
PF < 1.30 fm - I  . These results were obtained by an iteration scheme that starts with the 
solution of the gap equation for a Gaussian-core potential that is approximately phase- 
shift-equivalent to the RSC interaction. The results for AF cannot be compared directly 
with those of Fig. 1, since the single-particle energy et, entering the quasiparticle energy 
E ( p )  was parametrized by an effective mass M* less than the bare mass. In particular, 
the effective mass in the ansatz ep - / . t  = (p2 _ p Z ) / 2 M .  was determined from pF/M* = 
(del , /dP)  tt,=l,~ using a Brueckner-Hartree-Fock approximation to ep for the RSC po- 
tential. We repeated our gap evaluation for the same effective masses; the discrepancies 
between the predictions for A F from the two approaches is nowhere larger than 1-2%. 
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Fig. 1. Neutron-matter S-wave energy gap :iF = A(pF) at the Fermi surface, plotted against Fermi momentum 
Pr ,  for the Reid-soft-core (RSC) interaction as pairing force, a free single-particle spectrum ep = p2/2M, 
and a chemical potential equal to the Fermi energy, p = epF = 8F. 

At this point we would like to inject a caveat regarding the use of an effective-mass 

approximation in the neutron-matter problem. While a reasonable variation of the density 

of states near the Fermi surface may be achieved in such a treatment, one must pay a 

price in terms of an incorrect behavior of the quasiparticle spectrum at large momenta 

and a significant departure from the vacuum scattering length. The complicated issue of 

the real behavior of the neutron mass operator at large momenta must be deferred until 

a future investigation, since the primary goal of the present article - the development 

of a new method for solution of the gap equation - is technical rather than physical. 

Accordingly, the general discussion to follow will focus on the case M* = M. 

Figs. 1 and 2 show plots of the gap amplitude dF = A(p = PF)  and the condensation 

energy per particle Cc as functions of the Fermi momentum PF, calculated by our method 
for the RSC potential with M* = M. The gap AF reaches a maximum value of 3.00 MeV 

at PF = 0.85 fm - l ,  while the maximum value 0.29 MeV of Ec occurs at a somewhat 
lower density corresponding to PF = 0.63 fm -I  . Pairing corrections to the pressure P 

and compressibility K differ from the ideal-gas values by less than 10%. 

A non-trivial solution for the gap exists in the density interval 0 < PF < Pc, where 

Pc is determined by the location p = P0 of the first zero of the gap function A(p; p) 

in momentum space. The location of this zero is almost independent of the density 
p (see Fig. 3). In the low-density regime PF << 1~ann, the crossover occurs at p = 
P0 --~ 1.90 fm - l .  With increasing density, the first zero of A(p) is slowly driven 

toward smaller p, but accelerates noticeably as PF approaches a critical value Pc for 
gap closure, specified by the condition PF = Po(PF) = Pc. For the RSC interaction, we 

find Pc ~ 1.7496 fm -I .  At densities with PF >/ Pc, there is no non-trivial solution for 
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Fig. 2. Condensation energy per neutron, £c, plotted against Fermi momentum PF, for the RSC interaction, 
ep = p2 /2M,  and I.t = eF. 

the gap A r  and A ( p )  vanishes  identically.  Because  o f  the linear scale used for AF in 

Fig. 1, it is not apparent that a finite gap survives beyond PF ~ 1.6 fm -1 ,  decaying 

to exponentially small values in accord with Eq. (17) and reaching zero precisely at 

PY = Pc. 

Thus,  our numerical  f indings for the RSC example  bear out, in full detail, the analysis  

2O 
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Fig. 3. Schematic behavior of the position Po of the first zero of the momentum-dependent S-wave gap function 
a(p)  (or of the dimensionless gap function X(P)  ), as a function of Fermi momentum PF. The critical point 
pc is defined by the condition Po(PF) = PF = pc. The Reid-soft-core interaction is assumed, together with 
e t, = p 2 / 2 M  and # = eF. 



402 V.A. Khodel et al./Nuclear Physics A 598 (1996) 390-417 

i 

0.8 

0 .6  

0.4 

~ 0 .2  

0 

- 0 . 2  

0 .4  

- 0 . 6  

- 0 . 8  

R S C  
1S o 

\ .  / 
I " - - - (  ~ I 

2 4 6 8 i0 

p (fro -~) 

Fig. 4. Dimensionless gap function X(P) versus momentum p, at different densities (with pF = 0.3, 0.6, 0.9, 
12 and 1.5 fm-I  for the solid, longer-dashed, short-dashed, dotted and dot-dashed curves, respectively). Here 
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Fig. 6. Same as Fig. 5, but at a "moderate" density corresponding to PF = 0.9 fm -I  , near the location of the 
peak of the gap AF. 

offered in Sect ion 3 - a l though the remarkable  insensi t ivi ty  of  P0 to the densi ty calls for 

further explanat ion  (see Sect ion 5) .  The evolut ion of  the solut ion of  the gap equat ion and 

the ul t imate quench ing  of  the gap at PF = Pc may be  tracked by s tudying the evolving 

behavior  of  X ( P )  and (;b(p), which is i l lustrated in Figs. 5 - 8  fo r a low density, an 

intermediate  densi ty and densit ies jus t  below and jus t  above the critical point .  One  

should especially take note of  the dramatic change in the structure of  X ( P )  as the 
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Fig. 7. Same as Fig. 5, but at a "high" density corresponding to PF = 1.74 fro- 1, just below the critical Fermi 
momentum PF = 1.7496... beyond which the gap is found to vanish. 
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and at Pr  = 1.75 fm - I  (dashed curve), respectively just below and just above the critical Fermi momentum 
PF = Pc = 1.7496... beyond which the gap is found to vanish. The function X(P)  is normalized to unity at 
p = pF. The RSC interaction is assumed, together with ep = p 2 / 2 M  and Ix = eF. 

critical point is passed. 
Numerical results for the RSC singlet-S pairing gap Ar closely similar to those of 

Fig. 1 have been recently been obtained by Pieper and Wiringa [20], based on the 
original form (1) of the gap equation (with the baseline choices ep = p2/2M and 

tz = eF). They applied an iteration procedure in which the 4 ( / )  input for the nth 
iteration is given by a linear admixture of the outputs of the (n - 1)th and (n - 2)th 
iterations, the output from the (n - 1)th step entering only in small proportion. For 
convergence of this approach, it is necessary to choose a reasonable initializing ansatz 
for A(p). 

In Figs. 9-11 we present selected results from application of the method of Section 2 
to the Argonne vl4 and vl8 interactions. Some calculated values of the gap at the Fermi 
surface are plotted in Fig. 9. The computational scheme should be modified near the 
Fermi momentum where VF passes through zero (see Appendix A). The numerical 
results are consistent with the analytical findings of Section 3. We note that the function 
A(p),  plotted in Fig. 10 for the Vl8 case at PF = 0.8 fm - l ,  again displays a first zero 
around Po = 1.7 - 1.8 fm - l  . The shift of sign of the function X(P) as PF passes through 
po(Pr) is illustrated for the via potential in Fig. 11. Further studies within our approach 
have been carried out for the soft-core potential "V" constructed by Malfliet and Tjon 
[28] (MT). The functions 4'(P) and X(P) corresponding to this example are shown 
in Figs. 12 and 13, for a density near the peak of the gap. 

The most important message to be drawn from these numerical exercises is that the 
structure of the solution for A(p) below the critical point is nearly independent of 
density, as demonstrated by the plots of X(P) for the Reid case (Fig. 4). This structure 
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Fig. 9. Neutron-matter S-wave energy gap 4F = A(pF) at the Fermi surface, plotted against Fermi momentum 
PF, for the Argonne vl4 and Vl8 interactions as pairing force. Points indicated by a plus sign [by a diamond] 
refer to the tq8 [respectively, v l4l  interaction, with the standard choices ep = p2/2M and # = eF of  
single-particle spectrum and chemical potential. 

remains approximately the same if the RSC interaction is replaced by the Argonne ui4 
or t'18 potential or the Malfliet-Tjon potential "V". The reason for the robustness of 

the structure of X(P) and d(p) in dilute neutron matter will be revealed in the next 

section. 
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Fig. 10. S-wave gap function A(p)  in neutron matter at PF = 0.8 fm - I  as a function o f  momentum p, based 
on the Argonne vl8 interaction as pairing force, ep = p2/2M and p = eF. 
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5 .  A n a l y s i s  o f  g a p  s o l u t i o n s  

In this section we examine and explain some extraordinary features of the numerical 
results for J So neutron pairing. The analysis will lead to new insights into the pairing 
phenomenon that reflect fundamental properties of real interactions. 
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Fig. 12. Potential factor dp = V(p, pF)/VF for the Malfliet-Tjon (MT) potential "V" (Ref. [28]), plotted 
against momentum p at a Fermi momentum PF = 0.633 fm -!  somewhat below the peak of the gap AF. 
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Fig. 13. Dimensionless gap function X(P) for the Malfliet-Tjon (MT) potential "V", plotted against momen- 
tum p at a Fermi momentum pF = 0.633 fm -1 somewhat below the peak of the gap AF. The single-particle 
spectrum and chemical potential are taken as sp = p2/2M and/.L = sF. 

It will be helpful first to rewrite the original equation (1)  in terms of  the vacuum 
S-wave scattering amplitude F (°), which is determined by the usual integral equation 

F (°) ( p , f )  = V(p ,p ' )  - f V(p ,p")  ~ F ( ° ) ( p " , p ' ) d ¢  ' , (18) 

where e(p)  = p2 /2M as before. The objective of  this renormalization is to obtain a 
closed equation for A(p) in which the momentum integration is concentrated near the 
Fermi surface. Multiplying the integral equation for F(°)(p, pl ) by A(p l ) /2E(p l  ) and 

integrating over the momentum variable pl while performing a simple transformation 
using Eq. (1 ) ,  we arrive at [29] 

/ { " } Pl /PF -- 1 A(pl " dpt 
A(p)  = - M  I'(°)(P,P') [(p~/p2 _ 1 )2+dZ(p j ) ]U2  ) ~ 2 '  (19)  

with d(p)  = A(p) /eF and er  = pZ/2M. At large momenta, Pl >> PF, the factor in 
curly brackets falls as 1/p4, ensuring rapid convergence of  the integral in (19) .  

Consider now an expansion of  the vacuum S-wave nn scattering amplitude F (°) (p, p')  
in terms of  unit-norm eigenfunctions ¢ ,  (p)  of  the Schr6dinger kernel, satisfying 

O,,(P) = -vn 2-~--~l) U(p, p l ) O . ( p l ) d r l  = - v . M  V(p. p l )On(pl)  27r2. 

(20)  

The eigenfunction ~/'n (P) is the Fourier transform of  the (n + 1 )th Schr6dinger S-state 
wave function ~,n(r) with zero energy. The eigenvalue u, appearing in Eq. (20)  is 
the enhancement factor that must be applied to the potential V to make it support 
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a marginally bound, discrete S-state orthogonal to states of the same character with 

smaller n and fewer zeros. We know that the lowest eigenvalue, v0, lies very close to 1, 
since only a small change of the 1S0 nn potential is enough to move the dineutron pole 
down to zero energy and produce a bound state. Such behavior is indicative of a nearly 

separable form for the scattering amplitude F (°) (Pl, P2). To demonstrate this feature, 
we invoke the Hilbert-Schmidt expansion for the kernel of (20), 

1 M V ( p l , p 2 )  = - ~ - ~  l ~ o . ( p l ) O n ( p 2 ) ,  
2 rr2 ~'n 

n 

(21) 

which may be verified in a straightforward manner. After substituting this representation 

into Eq. (18), simple algebra yields 

1 
1 MF(O)(p t ,p2)  =~-~ vn - 1 ~n (p l )~n (p2 )  

2rr 2 
n 

1 
- ~P0(pl )~'0(p2) + background. 

v0 - 1 
(22) 

Insertion of the resonant term of (22) into Eq. (19) leads to the key result X(P) o( 

~P0(P). This result holds to an excellent approximation for Fermi momenta PF suffi- 
ciently less than the momentum P0 where the eigenfunction ~P0(P) first changes sign, 
i.e. sufficiently below the critical momentum Pc. The nearly separable form of the nn 

scattering amplitude F (°) therefore provides a natural explanation of the striking degree 

of universality of the structure of the gap function in momentum space, observed in the 
all of the published calculations on singlet-S nucleon-nucleon pairing based on realistic 
forces. In particular, for the case of the RSC interaction the first zero of d ( p )  is closely 
tethered to a momentum value in the range P0 ~- 1.75 - 1.90 fm -1, being pulled down 
very slowly toward Pc = 1.7496.. .  fm -1 as the density increases, with a noticeable 

speedup as PF nears Pc. The quantitative details of the function Po(PF) and thus the 
critical Fermi momentum Pc are presumably determined by the structure of the repulsive 

core of the two-body interaction. In this connection, we observe that X ( P )  shows no 
finite-p zero for a rectangular potential well, a Malfliet-Tjon potential without inner 

repulsion [28] or a one-term Yamaguchi separable potential [30]. 
As a dividend, the formula (22) provides a link between the near-resonance scattering 

length a,,, = M F  (°) (0, 0)/4zr  and the enhancement factor (v0 - l ) - I ,  namely 

a,,,,- ~r¢~(O) (23) 
2 v o -  1 

We may now proceed to investigate the nature of solutions for the gap AF in three 
density regimes. These are the limiting domain of low density, the intermediate or 
moderate-density region wherein the gap reaches a maximum, and the "high-density" 
regime where the gap closes. 
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Low density 

The low-density region is defined by the condition that the mean particle spacing is 

large compared to the scattering length, or equivalently by PFlannl << 1. In this regime 
the gap d ( p )  varies slowly with p in the vicinity of the Fermi surface. Appealing to 

the rapid decay of the integrand of (19) as Pi moves away from PF, we may neglect 
the momentum dependence of both A(pl ) and F ~°) (p, Pl ) and work with the simplified 
equation 

1 = -a,,,,pF [(Z2 - 1)2 + d~]l/2 - 1 , (24) 

where de = d(pF) .  Since the gap becomes exponentially small in the low-density 
regime, a quantitative result can be achieved by evaluating only the leading logarithmic 
term in (24), which can be done analytically. Routine manipulations yield the asymptotic 

result 

dr  ~ 8eFexp[ - - l / ,~ - -  2] (PF ~ 0 ) ,  (25) 

where we have introduced the effective coupling constant A = --2pFa,n/~.  This simple 
analytical tbrmula, which gives reasonable results even if the coupling ,~ tends to infinity 

(and an, to -cxz), becomes exact in the low-density limit, ~ ,-~ 0. In the context of the 
IS0 neutron superfluid, this formula is obviously preferable to the BCS weak-coupling 
estimate of the gap based on wc = eF and g = - -V(pF,PF) .  For the RSC interaction, 
which has a, ,  = -17.1 fm, a comparison with results from numerical solution of 
(4) and (6) shows that the approximation (25) retains good accuracy up to p r  "-' 
0.05 fm - I ,  deviations between the two evaluations amounting to at most a few percent. 
The accuracy of the low-density analytical treatment can be improved by including the 
corrections linear in d, at the expense of a more cumbersome expression. Also, simple 

numerical calculations based on Eq. (24) can improve upon results from the analytical 

formula (25). For example, in the limiting case ann = - o o  (or ,~ = ~ ) ,  a numerical 

calculation gives AF ~-- 1.16eF instead of AF --~ 1.08eF from (25). 
It is noteworthy that formula (25) is applicable even if the scattering length ann 

changes its sign from negative to positive, corresponding to the formation of a real two- 
particle bound state. The gap value smoothly increases with declining positive an,. The 
deeper the vacuum bound state lies, the more closely the pair wave function resembles 

the wave function of this state. A detailed analysis of the strong-coupling limit may 
be lound in Ref. [3 t ] ,  along with a discussion of the transition between weak- and 

strong-coupling regimes of pairing (see also Ref. [32] ). 

Moderate density 
Consider next the case of moderate densities, where the product pF[ann[ exceeds unity 

while PF remains safely below Pc. In this regime the scattering amplitude F ~°) is still 
adequately described by its resonant portion, but we can no longer ignore the structure 

of ~Po(p). Eq. (19) leads to the approximate result 
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[ ~r0~ (0-) ] (26) 
A F '~ "rime F exp 2annPV~b 2 (pF) j , 

where r/,, is a suitable prefactor of order unity. For the RCS potential, the ratio 
~P0(0)/~00(p) -~ x ( O ) / x ( p )  may be extracted from Fig. 4. It is seen that the gap 
Ax(p) first grows with density due to the factor 1/pr in the (negative) exponent and 
attains a maximum in the region PF = 0.8-0.9 fm -1 where the product pF~2(pr) has 
its maximum. Thereafter the value of AF drops off, as PF continues to increase toward 
the point PO(PF) at which X(P) crosses the p axis. In the vicinity of the critical point, 
the separable, resonant form of F <°) ceases to apply and a different approach is required 
to establish the behavior of AF (see Section 3). 

"High" density 
In the interest of completeness, we may reiterate here our earlier result (Section 3) 

for the behavior of AF as a function of PF in the higher-density region where the gap 
closes. Based on the reformulation of the gap problem embodied in Eqs. (4) and (7),  

we have shown that AF vanishes exponentially as the Fermi momentum Pr  approaches 

the critical point Pc = PO(PF = Pc) from below, 

[ IpF ] (pF_Pc__~O_).  (27) d F ~ rice F exp Pc -- PF J 

The constant 1 has been determined through Eq. (15), but we have left a prefactor r/c 
of order unity undetermined. Our arguments show that the S-wave energy gap A F ( p F  ) 

becomes exponentially small at both edges of the PF range (O, pc) in which it is non- 
zero, a non-trivial solution of the gap equation normally being precluded for larger 

PF. 

6. C o n c l u d i n g  r e m a r k s  

In summary, considering the case of Is0 neutron pairing in pure neutron matter, 
we have divided the problem of solving the gap equation for d(p)  = AFX(P) into two 
more elementary tasks: (i) solution of the non-singular quasilinear integral equation (4) 
for the dimensionless gap function X(P) and (ii) solution of the non-linear algebraic 
equation (6) for the scaling factor A F = A(pr).  This reformulation has been achieved by 
splitting the pairing interaction V(p, p ' ) ,  identically, into a separable part VF~b(p)qb(p ~ ) 
and a remainder W(p ,p ' )  that vanishes when either p or p '  lies on the Fermi surface. 
Joint solution of Eqs. (4) and (6) may be accomplished by a rapidly convergent 
iteration procedure that produces highly accurate results even for realistic neutron- 
neutron pairing interactions containing very strong repulsive cores. The new formulation 
and its sound computational setting facilitate a study of fundamental aspects of the 
pairing phenomenon in neutron matter. In particular, we have been able to trace the 
remarkably universal structure of the S-wave gap function A(p) - most notably the 
insensitivity of its first zero p0 to changes of density and of (realistic) potential input - 
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to the resonant nature of the nn interaction at low energies. We have also been able to 
gain new analytical insights into the behavior of the gap magnitude Ar near the critical 
point PF = P .  = P O(PF)  at which the gap closes, establishing an exponential approach 
to zero as PF -- Pc -+ 0 - .  

In this exploratory investigation, a robust and accurate procedure has been developed 
for numerical solution of the standard gap equation. The associated reformulation of the 
gap equation has served to illuminate the mathematical nature of the pairing problem 
and has led to new analytical results of broad applicability. We have given special con- 
sideration to the implications of the large negative scattering length of the nn interaction, 
hut we have bypassed a number of other physical issues that are pivotal to a satisfactory 
understanding of nucleonic pairing in extended matter. The most important of these 
are the effects of (i) strong short-range geometric correlations in the nucleonic medium 
arising mainly from the inner repulsion of realistic nucleon-nucleon interactions and (ii) 
longer-range correlations arising from higher-order medium processes, most especially 
the virtual exchange of density and spin-density fluctuations. In general, the pairing 
interaction V ( p , p  ~) and the single-particle energies e ( p )  will experience substantial 
in-medium modifications in the density range in question. Although available calcula- 
tions indicate some degree of cancellation between the modifications due to short-range 
and long-range correlations [4,16,17], a convincing quantitative evaluation of vertex 
and mass-operator corrections is sorely needed. Another physical issue that needs to 
be addressed, and has begun to receive consideration [33], is the proper treatment of 
the neutronic superfluid in the highly inhomogeneous environment of the inner crust 
of a neutron star. The approach introduced herein should prove useful in dealing with 
gap equations that incorporate these diverse physical elaborations, as well as with the 
complex problem of triplet pairing in neutron-star interiors. Adaptation of the approach 
to the latter problem has been initiated in Appendix B. 

Clearly, the procedure we have formulated (along with much of the analysis) is also 
applicable or adaptable to gap equations for nucleonic pairing in infinite nuclear matter 
with arbitrary neutron-proton asymmetry a = ( N -  Z ) / A .  The case of symmetry ( a = 0) 
or of near-symmetry has been thought to be relevant to pairing in finite nuclei. However, 
it is well known (see e.g. Refs. [4,12]) that the primary effect of pairing in infinite 
nuclear matter occurs below the spinodal point of the uniform system. The relation 
of solutions of the gap equation for uniform nuclear matter to pairing in finite nuclei 
must therefore be regarded as problematic. In this connection we may call attention to 
a recent study [34] of pairing in semi-infinite nuclear matter, which has cast serious 
doubt on the validity of descriptions in which a local-density approximation is used to 
transfer uniform-matter gap results to finite nuclei. Simple local-density approaches must 
naturally be viewed with suspicion, since the superfluid coherence length l = 2e, F/7"rpFAF 
lbr nucleonic pairing can easily exceed nuclear dimensions. 

In closing we should point out that the purview of the methodological advances 
reported here extends beyond the domain of nuclear physics. In particular, similar tech- 
niques may be exploited in the study of strongly interacting electronic systems that 
exhibit high-temperature superconductivity. It is straightforward to extend our methods 



412 VA. Khodel et al./Nuclear Physics A 598 (1996) 390-417 

to finite temperature, and opportunities are open for consideration of the highly struc- 
tured single-particle spectra appropriate to complex materials. Of special interest is the 
prospect of deriving improved estimates of the key parameter A(O)/Tc for different 
types of pairing. 
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Appendix A. The case of vanishing VF 

Here we consider the special case VF -- V(pF,PF) = 0 that was excluded in the 
treatment of the gap problem developed in Section 2. In this case, there is no danger 
of a logarithmic divergence of the integral member of the gap equation (1) when it is 
used for the determination of AF = A(p = P F ) .  A straightforward iterative solution of 
the gap equation would therefore appear more promising than in the ordinary situation. 
However, an incipient logarithmic divergence of the pt integral persists for any p ~ Pr. 

Accordingly, it is of interest to develop a procedure for dealing with the case VF = 0 

that shares the computational advantages of the method of Section 2. To formulate such 
a procedure, we assert a different decomposition of the pairing interaction. 

The potential V is split into a portion that is additively rather than multiplicatively 
separable in the variables p and p',  plus a remainder W ( p , p ' )  that again vanishes 
identically when either momentum argument lies on the Fermi surface: 

V ( p , p ' )  = V(p,  pF) + V(pF,p ' )  + W ( p , p ' ) .  (A.1) 

The requirement W(p,  pF) = W ( p F , p  ~) = 0 is obviously ensured by V(pF,PF) = O. 
Inserting the ansatz (A.l)  into Eq. (1) and again writing A(p)  = AFX(P),  the shape 
function X(P)  and the gap magnitude AF are found to obey the equations 

1 - V(p,  PF) f X(P ' )  • , 2-~-~-Tyar - f w ( p , p ' ) ~ d  ; (A.2) X(P)  J 
and 

=- f V(pr ,p)~dr .  (A.3) 
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The function X(P) falls off as p --~ cc in the same way as the gap A(p), so the 
integrals in Eq. (A.2) converge at large p'. By virtue of V(pF,PF) = O, we can 
simplify Eq. (A.3) by replacing A(p) in the denominator E(p) with the generic input 
6 (cf. Section 2), 

I = - f V(pF,p) X(P) 2[ (2(p) + 62] 1~2dr. (1.4) 

However, in contrast to the case Vr :~ 0, the first integral in Eq. (A.2) for X(P) is 
logarithmically divergent if we set A(p ~) = 0 in the E(p t) denominator, which prevents 
us from making the same substitution in this equation. 

Thus a different strategy is needed for the solution of the equation for the shape 
function. Defining the constant 

_ f X(P) dr,  /~ = j ~ (1.5) 

we can rewrite Eq. (A.2) as 

l/2drt, (A.6) X(P') 
X(P) = ! + KV(p, pv) - W(p,p')  2[~ 2(p') + 32] 

after appealing to the property W(p, pF) = 0 and replacing the exact A(p ~) in the 
second integral of (A.2) by the generic input 6. Eq. (A.6) is effectively a standard 
linear integral equation whose solution can be expressed as 

X(P) = Xl (P) + KXz(P) , (A.7) 

where the functions XI (P) and X2(P) are determined respectively by the equations 

f XI(P') X,(P) = 1 - W(p,p')2[gj2(p,) + 62]~/2dr' (1.8) 

and 

X2(Pt) 
X2(P) = V(p, pF) -- W(p,p')  2[ ~2(p') + 32] 1/2d7', (A.9) 

and evidently obey the conditions XI(PF) = 1 and X2(PF) = O. In turn, Eqs. (1.8) 
and (A.9) can be solved without difficulty. Inserting the decomposition (A.7) into 
Eq. (A.3), we have 1 = NI + KN2, so the quantity K of Eq. (1.5) may be evaluated 
from the solutions of Eqs. (A.8) and (1.9) through K =  ( 1 -  N1)/N2, where 

Ni = - f V(pr ,p)  Xi(P) (i = 1,2) . (A.10) 2 [~:2(p) + 82] 1/:~d'r 

Likewise, upon inserting (A.7) into Eq. (A.5) we have K = L1 + KL2, where 

f Xi(P) Li = - 2[ ~2(p) +A2(p)]l/2d~" ( i=  1,2).  (A . i l )  
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Since X2(PF) = 0, the dependence of the integral L2 on the gap zl(p) is very mild. 
Numerical computation of the gap magnitude AF may therefore proceed efficiently based 
on the relation (1 - N1)/N2 = Ll + [(1 -- NI)/N2]L2, recast in the form 

_ /  Xl(P) _ ( 1 - N ~ ) ( I - L 2 )  (A.12) 
2[sc:2(p) + A2(p)] 1/2d7" - N2 

A p p e n d i x  B.  Tr ip le t  p a i r i n g  

In this appendix we take up the extension of the method of Section 2 to pairing in 
higher angular momentum states. Specifically, we shall focus on 3p2 pairing, which is the 
most important example for neutron-star matter. In the interests of a simple presentation, 
it is assumed that the interaction V is central. For this problem, the gap matrix has 5 
complex components dl,m(p) corresponding to the allowed values -I-2, 4-1, 0 of the 
magnetic quantum number m. Time-reversal invariance implies that these components 
are related by Al,,,(p) = ( -1  )mA~_ m and hence are determined by 5 independent real 

quantities. The simplest solutions among the 5 possible types discussed in Refs. [23,25] 
have azimuthal symmetry and involve only a single scalar gap equation. These solutions 
correspond to so-called maximum-lm] coupling, for which only the gap components with 
m = 4-2 differ from zero, and of course to the case where only an m = 0 component 
enters. The relevant gap equations are [23,25] 

a2(p) 2 f v,,(p,p') A2(pt)(3sin2Ot/8~r) 
= - ~" 2 [s¢2 (p ')  + A~(p')(3 sin 2 0')/g~r] 1/2 

3< (pt)2dp! sin O~dOtd~o ' (B. 1 ) 

for the maximum-]m I case and 

2 J [ V l l ( p , p ' )  A°(P')(1 + 3c°s20~)/8~r 
Ao(p) 

= - g 2 [(2(p,) + A~(p')( 1 + 3 cos 2 0')/167"r] ,/2 

× (p')2dpl sin O'dO'd~o' (B.2) 

for pure m = 0, where 0' and ~o ~ are the polar and azimuthal angles and Vl1(p,p ~) = 
(P'IV(3p2) IP) is the L = 1 spherical harmonic of the interaction potential V, as defined 
by Takatsuka and Tamagaki [23,25]. 

We call attention to the fact that it is possible to perform the angular integrations in 
Eqs. (B.I)  and (B.2) analytically. Thereupon Eq. (B.1) becomes 

f A2(p,) .( ')2dpt, 
A2(p) = 2~.  V~j(p,p,)q52(B2(p,)) 2[~Z(p,) + 3z12(P')/8~'] ~/2 P 

(B.3) 

where 
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3[ si" ] qh(/3) = ~-~ sin -I/3 + ~ -~  X,/1 - /32 _ /3 
/3 

with 

/32(p) = 3A~(p)/87r 
(2 (p)  + 3A22(P)/8~ r " 

Similarly, the angular integration in Eq. (B.2) yields 

Ao(p) = 27r f Vlt (P,P')q~o(/3o(P')) 
dO(p') (p')2dp' 

2[~Z(p ') + ,a2(p,)/16~.] ~/2 

with 

' ,/,+ : -  ¢'0(/3) = 

415 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

and 

A~(p)/16"ff 
/30Z(p) = 3sCZ(p) + AZ(p)/16 ~ . (B.8) 

The procedure outlined in Section 2 may be carried over to these two cases without 
significant modification. The pairing interaction VII (p,p~) is again represented in the 
form (2),  i.e. as Vll(p,p') = Vvd~(p)ck(p') +Wlt(p ,p ' )  with ~b(p) = VII(p, pF)/VF. 
Inserting this decomposition into the triplet gap equation (B.1) or (B.2), we are again 

led to a quasilinear integral equation (cf. Eq. (4 ~) ) 

2 / , ~ ,  , ,cP,(/3s(p')2Xs(p') 
X.,.(P) + g ,~ltkP, p ) 2[ ~:2(p') +3211/2 (P')2dp' =~b(p) (B.9) 

for a dimensionless shape function Xs(P), labeled now by s = 2 or 0 for the respective 
[m] = 2 and m = 0 solutions, and defined via As(p) = AFsXs(P) with AFs = ds(pF). As 
before, the vanishing of the W function on the Fermi surface implies that the integral 
over p~ in the equation for the shape function receives significant contributions only 
from momenta removed from PF. Again the dependence of the square-root denominator 
on the gap may be replaced by a generic input 6. Here it is important to note further that 
for momenta departing from PF the quantities/3s become quite small, and that in turn 
q~.~(/3~ ~ 0) ~ 1. Thus, in practice the function qL~(/3s) has no influence on X.,(P), 
and we may work with the simplified (and now linear) integral equation 

2 f Xs(P') X.,.(P) + -- W11(p,p') u](p')Zdp ' = ~b(p). (B.10) 
"/7" [~2(pt) + $2] 

The solution of this equation is independent of the index s; hence, in effect, the two 
gap functions Ao(p) and Az(p) differ only in scale. The corresponding scale factors 
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de2 and AFO are de termined  ( in  the sense o f  Sect ion 2)  by the non- l inear  algebraic 

equat ions  (cf.  Eq.  (7~))  

7r ~p2(P)~s( f l (P) )  2d 

1 2 f o , p )  ( x s ( p )  - dp(p)) =--~r + -  (B.11) 

where  s -- 0 or  2 and the numerica l  factor cs is respect ively 1/167r or  3 / 8 ~ .  

A more  detai led t reatment  o f  the 3P2-3F2 pair ing p rob lem for realistic non-central  

forces and the three o ther  solut ion types ( invo lv ing  respect ively m = 5:1 components ,  

m = 4-2 ,0  componen t s  and all magnet ic  componen t s )  is reserved for a future paper  

devoted  to a numerica l  evaluat ion o f  the relevant  gap functions.  
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