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The Cooper effect in a low-density Fermi gas is studied. The magnitude of the transition
temperature into the superfluid state is determined.

I T is well known that the basis of superconductivity
is the so-called Cooper effect! which consists in
that the existence of an effective attraction between
the electrons in a metal leads to the formation of
electron pairs in a singlet state. The exchange of
plionons between the electrons is the mechanism
that causes the presence of such an attraction. We
consider in the present paper the phenomenon of
superfluidity in a low-density Fermi gas. The main
methodological difference in this case consists in
that in the theory of superconductivity the transi-
tion temperature is expressed in terms of a quan-
tity of the order of the Debye temperature & <« oy
which is used as the natural parameter for a cut-
off, while in a low-density Fermi-gas the only
small parameter is its density, or more accu-
rately, the quantity fipj/v, where f; is the s-
wave scattering amplitude for interparticle scat-
tering, and py and v are respectively the limiting
momentum and the velocity on the Fermi surface.
For our investigation it is convenient to use
quantum field-theoretical methods. We shall as- ,
sume, starting from Cooper’s idea, that the attrac-
tion between the particles leads to the formation
of bound pairs. Such a pair is a Bose formation.
The temperature-dependent Green’s function of a
free boson @& (pw) is of the form?-3

(i, — & (p) + )™, 0, = 2anT
and for wp =0 becomes infinite as soon as the so-
called Bose condensation takes place [u(Ts) =01
The two-particle Green’s function plays the
same role for a bound pair as the Green’s function
of a boson. If one studies the dependence of the
two-particle Green’s function on the total energy
and momentum of the two particles (i.e., on the
energy and momentum of the bound pair as a whole)
one can find the temperature of the transition of the
system into the superfluid state from the condition

that this quantity should become infinite when the
transition takes place. At lower temperatures

bound pairs begin to form and to ‘‘condense.’’ The
normal ground state of attractive Fermi-particles
is thus unstable. The tendency to form bound
pairs will at absolute zero cause a change in the
ground state of non-interacting fermions under
the influence of their mutual attraction. We shall
determine the temperature at which the transition
to the superfluid state takes place and we shall
also study the characteristic singularities of the
vertex part of a Fermi system of weakly mutually
attracting particles at T = 0 which appear be-
cause of the above-mentioned instability of the
usual ground state. For the sake of convenience
we shall start with the study of the vertex part at
absolute zero.

The vertex function T apys(P1s Pos P3apy) is de-
fined through the Fourier component of the two-
particle Green’s function ‘

GO{BYY) (Xl, X2, X3, X4) = <T (\blalpz[s‘l?a;ﬂp:s» (J-)
by the following relation
Gagys (p1. 2, 3, pa)
= (2)° G (p1) G (p2) 18 (D1 — po)d (p2— pa) Bondis
— 8 (p1 — p)d (p2 — p3)d,504,]
+ [(27)*G (p1}G (p2)G (ps) G (p)Tapes (1, p2, ps, pa)d (p1
) +p2-.—p3—p4). i (2)
The Hamiltonian of the interparticle interaction
is of the form

Huni= 5 \V (x — ) W (967 ()9 () w1 () attx v,
V{x—p) =V (x—y)8 (xo — ). (2a)

It was shown by Landau! that the singularities of T
for small values of the momentum transfer (g =pg
—Pj or py;—~py) are connected with the ekistence of
so-called ‘“zero sound.”” We shall study the singu-
larities of the vertex function* as far as the vari-

*A study of these singularities in general form in the theory
of a Fermi liquid was made in an unpublished paper by A. A.
Abrikosov, L. P. Gor’kov, L. D. Landau, and I. M. Khalatnikov.
In the model considered the same approach allowed us to obtain
more detailed results.
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able q = p; + py is concerned. To do this we con-
sider the diagrams of the first orders in perturba-
tion theory (Fig. 1).

Singularities of the ‘‘zero-sound’’ type are con-
nected with the diagrams of Fig. 1a, ¢. As far as
the diagram of Fig. 1b is concerned, it contains an
integral of two Green’s functions of the form
/G (k)G (q~k)d*. Substituting here for G (k)
the Green’s function of a perfect Fermi gas

G(E) = o +p—e (k) +idsign (e (k) — ),

we get after integrating over the frequency

o2 d3k

—QW‘fOS e-+2u—e(k)—e(q—k -6

e(k)>u, e(g—k)>u,

) &%k

QJTlfgg£+2u_g(k)__s(q—k)—-—i6 !

s()<p  e(q—k)<p. ©)

This integral diverges at large k; this is connected
with the fact that in that range it is the same as the
Born correction to the scattering amplitude of two
particles in vacuo. One can thus remove the di-
vergence for large k by renormalizing the scat-
tering amplitude. However, at small q « py and
€ K i the result obtained diverges logarithmically
also near the Fermi surface for k ~ Py- The inte-
gration in (3) leads thus when q and € are small
to a logarithmic term of the order ( pits /v) x
In{qv/u, €/u}. The large magnitude of the loga-
rithm can be compensated by the small parameter
pify /v <« 1.

To evaluate the vertex part in that range of
{qv, e} values perturbation theory turns out to
be insufficient and we must sum a whole ‘“‘ladder’’
~ of diagrams shown in Fig. 1b. We write down the
€quation for the vertex part in such a way that we
explicitly separate off special integrations of the
type (3):

raﬁys {m, Pz, ps, pa) = ﬁlms (pl, Pz, P, pa)
+ 2%31)4 S faﬁin (pl’ Pas kr q— k) G (k) G (5] - k) Fin‘{ﬁ <k7 q
- k’ P3; p4) d4k: (4)

}lere L apys(p1, Py D3, Py) is the totality of those
agrams which are irreducible in the sense that
1€Y cannot be divided by a vertical line into two

4rts which are joint by two fermion lines directed
S one gide.
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The above-mentioned divergence in the large
momentum region can be removed as follows. We
define a vertex function for particles, interacting
in vacuo, using the equation (Belyaev® and Galit-
skii® introduced this quantity )

T (o1, pa, ps, pa) = Ds (p1, p2, ps, pa)
, i

+ s ) Pilen (01, pay £, 9 — £) G () G (9 — &) T8

X (ka q— k: p3yp4)d4/€7

where ng;-ya(pia P2, P3, Dy) is the term of first
order in the interaction, which is equal to

\% (p3 -—pl) (3&-),536 -V (p3 "'pz) Gadéﬁy while
G(k) is the vacuum particle Green function:

GO (B) = (0 — & (k) 4+ id)".

(5)

If we write (5) in the form
D (b1, p2, ps, pa) = LTapys (p1, pe. ps, pa)

= Tabs (01, P pov Pi) — 5753 D, s £, g )

X G (k) G (g — k)T s (kg — &, 13, p1,) ik
and then subtract from both sides of Eq. ) the
integral

i

5§ P8 (01, 2 04— )G (0 G (g — ) D (. g

—k, ps, py) dk,
we get
Llaps (p1, p2, ps, pa) = LT s (pr, pe. ps, pi)
+ Tages (01, p2, ps, pa) ,
s ) L% (1, oy B 4 —B)IG ()G (g — k)
— G (&) G" (g —R) Tzrys (&, q—£&, ps, pa)dik
g § Foten (91, Py pas p2) 6B G (g — #)

X Uens (R, g —k, ps, pa) d*k,

)
I

(6)

where faﬁyé(pp P2, P3, Py) stands for all irreduc-
ible diagrams from the second order in the inter-
action onwards.

We get the vertex part FaB‘y6<p1’ D9s D3, Py) Up
to terms of order pgfg /v inclusive. I is clear that
as the diagrams for I’ do not contain logarithmic
integrations we can restrict ourselves in this order
in the expression for T to terms of second order
in f, (Fig. 2)

Applying to both sides of Eq. (6) the operator
L™! we are led to the following equation

Tapvs (P15 P2y Pss Pa) == Fg)(;vs (P1> P2, Ps, Pi) ZT;T)‘ g {«}Irgiﬂ

APy pay ko g — k) [G (k)G (g — k) — G (k) G (g — k)]
b Fi'ﬁYS (k7 q-— k: Pz p4) d*k + m S f:lp@iﬂ (plu Pa; %, q

— k)G (k) G(q— k) Tenss (kg —k, s, po) dik. (7
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Within the accuracy which we have adopted LT*

= I'* and we have neglected in the terms which do
not contain logarithmic integrations quantities of
second order in f;. As far as T'‘® is concerned
in the integral on the right hand side of (7), we
must evaluate it up to terms in second order in fy:

%, (D1, po by §—R) =V (k — py) azday — V (K — Pa) Donpz

~ g ) [V =PV (k=)

SV (=p) V (1—q+K)IG? (1) G (q—D)bsdsndt
— s\ V=P V (k—aq 1)

+V (1=po) V (k—1)] G (1) G (g—1)Ban0pz d*1.

If we use the relation between the scattering
amplitude for two particles in vacuo and the inter-
action potential

(8)

(9)

—_ — m f ks, 1) F* (ke, 1) @®1
V(o —) = (k, ko) + g [ HEDEe
and the well-known relation between the imaginary
part of the scattering amplitude and the effective
scattering cross section

. mky
16m?

Im f (kl’ kZ) =

8 dn f (ky, k) [* (ks, in),  (10)

we get after substituting (9) and (10) into Eq. (8) an
expression for I‘g)ﬁgn(pi, P2, k, g —k):

Ti0en (P, P2, kg — k) = fo (1 — ifops [ 400) (Bazdpn — Bands).-
(11

When one uses a Green’s function in G (p) one
should, strictly speaking, evaluate its value up to
terms of second order in f;. Galitskii® has, how-
ever, shown that the correction of second order in
fy to the perfect Fermi-gas Green’s function leads
merely to a renormalization of the Fermi energy.
We shall thus in the following use the perfect
Fermi-gas Green’s functions assuming u to be
the renormalized Fermi energy.

The contribution to F’&Bgn(piv Py k, g—k) in
the intervals € << ¢ and ¢ < p, which are of in-
terest to us is equal to

i

G 1 G (DG (P — ke + 1) d% (Bazdpn — Bdic).

Substituting I‘&okén(pi, P2 k, g —k) and
T'%pen(Pes P2 k, 4 —Kk) into Eq. (7) and taking
into account that of the terms of second order in
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fy we need only the logarithmic ones, we get the
following expression for the vertex function:

Topys (P1s P2y P35 Pa) = foo[zys (Py> P2y P3y Pa)

f=ie -

o G(O) (k) G(O) (q _ k)] dtk

2 1
! fo

TWSG(Z)G(p1~k+l)G(k)G(q—k)d4ld4k} -

2

The first of these integrals gives in the denom-
inator of (12) a term

ifob} g2 — g2 -+ id e, e-ovg—id
“ZEE)(“’IH Bap® +”&Flna_uq+ia>°

TG kG —r)

o ngo (

@n)yo
As we need only take into account the logarithmic
term we must, when evaluating the second integral,
put p; = k =p,, €; = w = u after integrating over 1
and we must average over the direction of the vec-
tor k. We get

2f2p% , g2 —— gip?
W(l - 21“2)1HW .

Substituting the results of these calculations
into (12) we get

FaB'{S (Ph P2y Pss p4) = (Qﬂ)2 Up0—2 (6417688

. 1
—Basbie) (2020 P fo| — iz + > — M in 2
. e?— q? L i € g-tqu—id ]
+ I E=EEER 4 St ) (13)

We shall consider (13) to be the analytical con-
tinuation of Faﬁyé(Pia Pg» P3, py) in the upper half-
plane of the variable €. Let q = 0 to begin with.
We see that Faﬁyé(pi: P, D3, Py) has a pole at
€g = iA, where A =p (2/e)?/3 exp {~27n%v/|f,|p3}.
If we express the vertex part I'g8y5(P1, P2, P3, Py)
in terms of €, it has the form

FﬁBYB (pl: Pas. Ps» P4) = (231)‘2 Up()_2 (60(76[55 _— 60;56&()

. . e%—q20?+id e g - vg~—ib 1

x {2+ In—f— En I

For small qv < A the position of the pole €(q)
approaches the real axis: € (q) = iA (1 —qg*v?/6A%).
When q increases further |e(q)| decreases and
it tends to zero when vqp,;3x = €A as

e = (2eAi/m)In (eAlvg) =~ 2¢eAi (Gmax —

The Cooper phenomenon, i.e., the instability of a
fermion system when there are attractions between
the particles, leads thus to the occurrence in the
vertex part of poles in the upper half-plane of the
complex variable € = w; + wy. Only those Particles
for which the total momentum is relatively small
(q <« py) will here display a tendency to form
bound pairs. The quantity A has clearly the

q)/7Gmax-

R
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meaning of the reciprocal of the relaxation time
of the system.

We turn now to the problem of determining the
temperature at which the system makes the tran-
sition to the superfluid state. Because we cannot
apply the usual technique at finite temperatures
we must use the Matsubara quantities.®? In the
Matsubara method we have instead of (2) the fol-
lowing connection between the two-particle Green’s
function and the vertex part

Gapys (@1D1, @oP2, w3P3, Wapa)
= (27)°T 1 {(2n)*T (& (w1p1) & (w2p2)
X Do (P1 — P1) Basdpy — & (@1p1) & (03p2) Do 0d (p1
— P3)0a.B8g5] — 5 6 (01p1) & (02p2) & (wsps) & (0apa)
X Tapys (@1P1, 02P2, 033, @aPa) }

X B, to,—w—a,d (P1 + P2 — pz — pa). (14)

At the beginning of this paper we have already
remarked that one can define the critical tempera-~
ture as the temperature at which the Bose ‘‘con-
densation’’ of bound pairs sets in. At that point
the two-particle Green’s function. or what amounts
to the same, according to (14), the vertex part,
tends to infinity for the first time. We note that
the dependence of the temperature dependent quan-
tity Togys(wiPy, wyPy, waPs, wyp,) on the variable
€ = wy + wy is defined only in the discrete points
€n =2mTi, n =0, +1, £2,... At the critical tem-
perature the position of the pole is ¢ = 0. More-
over, it is clear from similarity considerations
that the Fourier component of the Matsubara quan-
tity Tygys(wy + wy =0, py +py = 0) becomes infi-
nite at the transition.

The remainder of our discussion will refer to -
the case € = wy + wy = 0, q=py+DPy=0.

The diagram of Fig. 1b contains in second order
in fy an integral over the product of two Matsubara
Green’s functions & (wk) for the perfect Fermi
gas of the form

2ifeT 3 S & (©,K) © (—a, — k) %,

which after summation over wyy becomes

.o &k u—e (k)
ﬂlfo Smth—*ﬁ— . <l5)*

The integral (15) diverges for large k. The di-
vergence of this integral can be removed in the
Same way as at absolute zero by renormalizing
the scattering amplitude. The integral diverges,
however, also near the Fermi surface where its
magnitude is ~ (f(z,pg /v) In(T/u) which is compen-—
sated by the smallness of the parameter fop% /v

*th = tanh.
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< 1. To evaluate Tapys(WiP1, WePs, w3b3, wW.Py)
we must therefore again sum a ‘‘ladder’’ of dia-
grams such as Fig. 1b. We write down an equa-
tion for Tgpys(wiPy, WPy, wgps, wyp,) which is
similar to Eq. (5):

Tagys (@1p1, 02p2, @3ps, waps)

= ga(&yﬁ (ﬁ)lplv wzP2, m3p3v (1)4[.74)

T ~
T I np E Szaﬁin (@11, ©aPs, @k, & — o, q—k)

X 6 (0k) 8 (e — 0, g —K)

X Tenys (0nk, & — 0, g —Kk, wsps, wipsd®k. (16)

We obtain an equation to determine the tempera-
ture at which the transition into the superfluid
state takes place from (16) if we take into account
that ¥ has no singularities of the kind (15) and
that we need only to know of the terms in &2
that one which gives a contribution ~ (fp4 /v?)x
In(T/u). Near the point where iaﬁyé(e,q) be-
comes infinite Eq. (16) becomes of the form

— @T,ﬁ)—sZ 1V (01— @ (k) & (—a, k) a2k

©n

T, -
— e 2 ED (011, 0ap, 0k, —,—K) 6 ()

@

X @ (— @y, —k) dBk.

We have here taken into account that ig)ﬁyé
(wiPy, WyPy, wpk, —wy, —k) is independent of the
fourth components of the momenta and is thus the
same as the quantity I‘gbyé(pi, P2 k, —k).

As at T =0, the divergence in the first integral
in (17) far from the Fermi surface can be removed
by renormalizing the scattering amplitude; after
that Eq. (17) is reduced to the form

2f
= — !

1 Tc
Ry Jdgk*@ms

17

fopdy ¢ T th (1 —e () /27,
_W)H p—e (k)

2 gi(z)(mlpli P, (an,

By

—an,—k) & (0,k) & (—w,, —k) d®k. (18)

The contribution to ‘T which contains all irre-
ducible diagrams of second order in the interaction

is given by the expression
far
- _(SR;ZS@ (82, 1) @ (8r +- @ — 0, I + p; — k) @01,

&n

The first integral in (18) gives the contribution

ifopg
47y > (ln

where In y is Euler’s constant.

ng [}

— g (1- (19)
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The evaluation of the second integral in (18)
proceeds taking the same considerations into ac-
count as at the absolute zero. The result of
these calculations is

rifs
12n%02

; 8y
(I +2In2)In T

4

Substituting (19) and (20) into (18) we get
_ 2nt o In [Tcn (<£>’/3J .

lol P2 T2

(20)

The temperature of the transition into the super-
fluid state is thus determined by the relation

Te = (yp/m) (2/6)" exp {— 20/ p3 | Jo [}

or, Tc =yA/7, where A is the previously deter-
mined quantity which has the meaning of the re-
ciprocal of the relaxation time of the system.

It is of interest to note that as in the model
considered the integration practically is per-
formed near the Fermi surface the relation be-
tween the ‘‘gap’’ width and the transition tempera-
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ture must be the same as in the theory of super-
conductivity, and it follows thus that the gap width
at T =0 is equal to the reciprocal of the relaxa-
tion time of the system.

In conclusion we express our gratitude to
Academician L. D. Landau for valuable discus-
sions of the results of this paper.
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