can be readily obtained from (12)-(17) by respectively replacing in all formulas the double signs + and − by + and −, replacing τ and τ by ±Δ and ±Δτ in the trigonometric functions of (13) and (16), and replacing Δ and ±Δτ by ±Δ and ±Δτ in the trigonometric functions of (14) and (17).

It is easy to see that the sum

\[w(K_1) = w(K_0) + w(K_2) \]

does not contain any "beats" that are linear in |R|, in full agreement with Sec. 4 of this paper (the expression \(w(K_0) + w(K_2) \) does contain such "beats," see Sec. 3).

Thus, for many experiments with \(K_1^2 \) pairs in a medium (Secs. 3 and 5), the previously known formulas \(D_{i,j} \) are valid only accurate to terms of order \(|R| \), and these terms produce "beats," which depend on the sign of the mass difference of \(K_1 \) and \(K_2 \), even for states with definite orbital angular moments. For other experiments, in which the states \(K_1 \) and \(K_2 \) are fixed, the corrections connected with the account of the medium are of the order of magnitude \(|R| \) (Sec. 4). The parameter \(|R| = 9 \cdot 10^{-4} a_0 / A\) (18)

where \(\rho \)—density of the substance, \(A \)—its atomic weight (the quantity \(\delta \) in (3) was set equal to 1.5).

We see therefore that for such as \(|R| \gg 10^{-12} \) cm and \(\rho / A \ll 10^{-4} \) for the majority of dense media \(D_{i,j} \), we have \(|R| \gg 10^{-7} \). The net total of the correction terms that are linear in \(|R| \) (Secs. 3 and 5) can amount to 10% of the fundamental terms pertaining to the free pair, and generally speaking cannot be neglected.

As regards \(|R|^2\), this quantity does not exceed \(10^{-4} \). Consequently, accurate to several tenths of \(10^{-2} \), we can assume that when the orbital angular momentum of the pair is even, the pair cannot decay into \(K_1 \) and \(K_2 \), and for odd orbital angular momentum decay into \(K_0K_0 \) is impossible.

Translated by J. G. Adashko

270

Soviet Physics JETP
VOLUME 20, NUMBER 5
MAY, 1965

ENERGY DEPENDENCE OF THE LIFETIME OF QUASISTATIONARY STATES

A. I. Baz

Submitted to JETP editor May 16, 1964

A formula is obtained for the dependence of the lifetime of a quasistationary state on the precise value of the energy.

The problem treated in this note arises in the following way. Suppose that in the scattering of particles there is a resonance with width \(\Gamma \), located at energy \(E_0 \). We want to know the lifetime \(T \) of the quasistationary state as a function of the energy \(E \) of the scattered particle. There are several approaches to this problem.

1. One approach is based on the work of Wagner. Let us consider a wave packet, scattered by a potential of radius \(R \). For \(r \gg R \) we have

\[\chi(r) = \chi_0 + \chi_{\text{as}} = \left[\exp \left(-i \frac{r - E_0}{\hbar} \right) + \exp \left(-i \frac{r + E_0}{\hbar} \right) \right] \left(1 + \exp \left(i \frac{2a}{\hbar} \right) \right) \]

where \(\hbar \) is the reducing factor. The center of gravity of the incident packet is determined by the condition that the phases of the two terms in the expression for the amplitude of the wave function is a maximum. This gives for the law of motion of the packet incident on the scatterer:

\[\frac{d \chi}{dt} = - \frac{i}{\hbar} \chi \]

For the scattered packet we get similarly

\[\frac{d \chi_{\text{as}}}{dt} = \frac{2a}{\hbar} \chi_{\text{as}} \]

From these formulas we see that the incident wave reaches the edge of the potential at the time \(T_0 = \sqrt{R / \hbar} \), while the scattered wave passes this point at the time \(T_1 = R / \hbar + (2a / \hbar) / R \). The difference of these times

\[T(E) = T_1 - T_0 = \frac{2a}{\hbar} \frac{\sqrt{R / \hbar}}{R} \]

is the lifetime of the state formed in the scattering.

Near resonance,

\[\delta = \tan^{-1} \left(\frac{\Gamma / (E_0 - E)}{\Gamma} \right) \]

and we get, neglecting the term of passage \(R / \hbar \),

\[T(E) = \frac{2a}{\hbar} \frac{\sqrt{R / \hbar}}{R} \]

The lifetime reaches a maximum \(T(E_0) = 2a / \hbar \) for \(E = E_0 \), and falls off according to the Lorentz law as one moves away from the center of the resonance.

2. A second approach is based on the following model.

Let us consider a potential with a barrier, within which and in some small neighborhood of which there is a magnetic field \(B \) directed along the \(x \) axis. Suppose that we scatter particles of spin \(1/2 \) polarized along the \(y \) axis. The equation has the form

\[\psi + (i \hbar - \mu) \psi = - \frac{2m_0eB}{\hbar} \psi - a \psi \]

where \(\psi \) stands for the column vector \(\psi = \begin{pmatrix} 1 \\ i \end{pmatrix} \)

and \(\mu \) is the magnetic moment.

We shall assume that \(R_0 = 0 \), so that we can use perturbation theory. The zeroth approximation gives

\[\psi_0 = \chi_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

In the next order of perturbation theory we have

\[\psi = \chi_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \chi_0 \begin{pmatrix} a / 2 \exp(\hbar eB) \\ -a / 2 \exp(-\hbar eB) \end{pmatrix} \psi_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

We have stopped the integration at the radius \(R \) of the potential, since near resonance \(E_0 \) is very large inside the barrier, and the integration over the whole region where the magnetic field is located can be replaced by an integration over the interior of the sphere \(r < R \).

The total wave function for the outgoing wave has the form

\[\psi = \chi_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \chi_0 \begin{pmatrix} a / 2 \exp(\hbar eB) \\ -a / 2 \exp(-\hbar eB) \end{pmatrix} \]

where \(a \) is the magnetic moment and \(\psi_0 \) is the ground state.

The energy dependence of the lifetime is given by

\[T(E) = \frac{2a}{\hbar} \sqrt{R / \hbar} \]

for \(E < E_0 \) and

\[T(E) = \frac{2a}{\hbar} \sqrt{R / \hbar} \exp(-\hbar eB) \]

for \(E > E_0 \), where \(\hbar \) is the infinite barrier.

Translated by J. G. Adashko
\[e^{i(\alpha r + \delta)} \frac{1}{i 2\pi} (i - \beta) \int_{0}^{R} \chi_{\alpha}^2(r) dr. \]

This wave function corresponds to a rotation of the spin through an angle \(2\beta\) around the \(z\) axis. Near resonance

\[\int_{0}^{R} \chi_{\alpha}^2(r) dr = \frac{\hbar}{\pi} \sqrt{\frac{2E_{0}}{m}} \frac{\Gamma}{\Gamma (E - E_{0})^2 + \Gamma^2}. \]

We obtain the angle of rotation

\[\phi = 2\beta = \frac{2\Gamma}{E - E_{0})^2 + \Gamma^2}. \]

Dividing this expression by the Larmor frequency, we again get for the lifetime the familiar formula

\[T(E) = \frac{\phi}{2\mu H/\hbar} = \frac{2\hbar}{\Gamma (E - E_{0})^2 + \Gamma^2}. \]

It is a pleasant duty to express my gratitude to Ya. B. Zel'dovich for numerous discussions.

Translated by M. Hamermesh 271