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Lecture I

Graphene background:

Transport properties,
Quantum Hall effect,

brief overview



Electron transport in 
graphene monolayer

Monolayer graphene

Field-effect enabled by gating:
tunable carrier density, 
conductivity linear in density

Novoselov et al, 2004, Zhang et al, 2005

New 2D electron system (Manchester 2004): 
Nanoscale electron system with tunable properties;  

Andrey Geim

Kostya Novoselov

Philip Kim

particlesantiparticles



Interesting Physical 
Properties

Electron band structure: 
hexagonal BZ, at points K and K'
mimic relativistic Dirac particles

K K'

Massless Dirac electrons, d=2
Semimetal (zero bandgap); electrons and holes coexist

Manifestations: pseudo Lorentz invariance, 
Fermi velocity instead of the light speed



“Half-integer” Quantum Hall Effect
Single-layer graphene:
QHE plateaus observed at

Landau level spectrum
with very high cyclotron
energy (1000K)

bilayer

Novoselov et al, 2005, Zhang et al, 2005

Manifestation of relativistic Dirac
electron properties

4=2x2 spin and valley degeneracy

Recently: QHE at T=300K

monolayer



Recent experimental progress

 Spin and valley splitting of Landau levels in 
ultrahigh magnetic fields (Columbia, NHMFL)

 Increase in mobility (with and without 
substrate) (Manchester, Rutgers, Columbia)

 Graphene with superconducting contacts 
(SGS Josephson junctions, Andreev 
scattering) (Delft, Rutgers)

 Energy gap induced by magnetic field 
(Princeton)

 Energy gap induced by substrate (Berkeley)

 Graphene devices (quantum dots, p-n 
junctions) (Manchester, Stanford, Harvard, Columbia)

Up to 200,000 cm^2/sV 
in suspended sheets



Graphene-based devices
Devices in patterned graphene:
     quantum dots (Manchester), 
     nanoribbons (IBM, Columbia);

Local density control (gating):
     p-n and p-n-p junctions 
     (Stanford, Harvard, Columbia)

Equal or opposite 
polarities of charge 
carriers in the same 
system (electrons and 
holes coexist)
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Electronic structure; 
Dirac model for charge 

carriers;
Landau levels in graphene



Electron properties of graphene



Tight-binding model
on a honeycomb lattice

Conduction band

Valence band

Dirac model:

K          K'

Velocity v = dE/dp=10^8 cm/s = c/300

Other effects: next-nearest neighbor hopping; spin-orbital coupling; 
trigonal warping (ALL SMALL)

Density of states linear in E,
particle/hole symmetry N(E)=N(-E)



S and P electron orbitals
after Paul McEuen



Real space, reciprocal space



Graphene tight-binding model





Linearize H near K and K'



Low energy properties I



Low energy properties II





Relativistic electron 
in magnetic field: 

Landau levels



Homework problem 1: Dirac 
electron in magnetic field

H = v .(p-eA)

Hint:   HPauli-Schroedinger =2m(HDirac)^2

Find the energy spectrum of a D=2 Hamiltonian:

in a uniform B field || z-axis



Homework problem 2: massive 
Dirac particles in graphene

H = v .p + 3

Hint:   HPauli-Schroedinger =2m(HDirac)^2

Consider a carbon sheet with an on-site potential 
different for the A and B sublattice: VA = -VB = 

(ii) Find the energy spectrum in a uniform B field

(i) Show that the low energy states are 
described by a massive Dirac Hamiltonian

 

What is the most striking difference 
with the massless case =0?



Dirac Landau levels by energy-
resolved STM spectroscopy

Andrei group 
(2008): 

particle/hole 
symmetry;

sqrt(B) scaling;

splitting of the 
n=0 Landau level



Square root dependence tested by 
infrared spectroscopy

Stormer, Kim group (Columbia)
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Dirac electrons 
in external fields:

 chiral dynamics,
Klein scattering,

transport in p-n junctions



Klein tunneling
Klein paradox: transmission of relativistic 
particles is unimpeded even by highest barriers
Reason: negative energy states;
Physical picture: particle/hole pairs

Example: potential step

Transmission angular 
dependence

Limit of extremely high 
barrier:  finite TChiral dynamics of massless 

Dirac particles: no backward
scattering (perfect 
transmission at zero angle)

Katsnelson, Novoselov, Geim



Confinement problem

Example: parabolic potential  V(x) = ax^2 + E

Tunneling

No discrete spectrum, instead: 
quasistationary states (resonances)

Confinement by gates difficult!

Momentum conserved along y-axis:

Effective D=1 potential



Quasiclassical treatment

Potential  V(x) = U(x/x0)^2 + E

Bohr-Sommerfeld quantization

Finite lifetime

Classical trajectories

Tunneling Turning points:

Silvestrov, Efetov

Degree of confinement can be 
tuned by gates 



Geometric confinement in 
ribbons and dots

Nanoribbons:  quantized ky = /width

Geometric energy gap   = hvF/width

Coulomb blockade in 
graphene

Geim, Novoselov



Electrons in a p-n junction

p-n junction schematic:

gates

+1(-1) for points K(K')

Potential step instead of a barrier (smooth or sharp) 

smooth step:      sharp step:

In both cases, perfect transmission in the forward 
direction: manifestation of chiral dynamics

(nontrivial)          (straightforward)

Cheianov, Falko 2006 



Exact solution in a uniform 
electric field

Evolution in a fictitious time with a hermitian 2x2 Hamiltonian

Transmission equals to the LZ probability of staying in the diabatic 
state:

Use momentum representation (direct access to asymptotic 
plane wave scattering states)

Equivalent to Landau-Zener transition at an avoided level crossing; 
Interpretation: interband tunneling for p2(t)=vt

Exact transmission matches the WKB result



Graphene p-n junctions: 
collimated transmission

 Ballistic transmission at normal incidence 
(cf. tunneling in conventional p-n junctions);

 Ohmic conduction (cf. direct/reverse bias 
asymmetry in conventional p-n junctions)

 No minority carriers



Signatures of collimated 
transmission in pnp structures

Exeter group:
narrow gate (air bridge)

simulated electrostatic 
potential, density profile

compare expected and
measured resistance, 
find an excess part

Stanford group: 
sharp confining potential
(the top gate ~10 times closer)

analyze antisymmetric part of 
resistance 

R a small effect, model-sensitive



Homework Problem 3: Klein 
scattering

By solving the Schroedinger equation E=[v.p+U(x)],

(i) Find the transmission and reflection angles as a 
function of the incidence angle;

(ii) Find the transmission probability.

Consider scattering of a massless Dirac particle on a 
step-like potential

U(x<0) = -U0;    U(x>0) = +U0

For simplicity, consider the case 
of particle energy E equal zero
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Klein backscattering and 
Fabry-Perot resonances in 

p-n junctions



Klein backscattering and 
Fabry-Perot resonances

Phase of backreflection:
(i) phase jump by  at normal
incidence shows up in FP interference;
(ii) the net FP phase depends on the sign of 
inner incidence angles;
(iii) can be controled by B field



Transmission at B=0 and B>0

Lines of fringe 
contrast reversal

B=0

B>0
Interpretation of scattering 
problem: fictitious time t=x; 
repeated Landau-Zener transitions; 
Stuckelberg oscillations

Top-gate potential; 
Dirac hamiltonian



Quasiclassical analysis

Confining potential and 
Dirac hamiltonian

WKB wavefunction

Transmission and 
reflection 
amplitudes

Phase jump



FP oscillations in conductance
Landauer formula:

Half-a-period phase shift 
induced by magnetic field

FP phase contrast 
not washed out 
after integration 
over py



Berry phase interpretation 
of the -shift

H = v .p(t)

Trajectory in momentum space yields
an effective time-dependent “Zeeman” field

Weak B: 
zero not enclosed, = 0

Strong B: 
zero enclosed, 

pypy

pxpx



FP oscillations (experiment)

Columbia group (2008): 
FP resonances in zero B;  crossover to
Shubnikov-deHaas oscillations at finite B
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Lorentz boost and 
magnetoresistance of p-n 

junctions



Single p-n junction in B field
Andrei Shytov, Nan Gu & LLRecall relativistic motion in crossed E, B fields

                              Two regimes:

(i) electric case E>B (“parabolic” trajectories) 
(ii) magnetic case B>E (cyclotron motion + drift)

Electric regime (scattering T-matrix, G>0)

Magnetic regime (Quantum Hall Effect, G=0)

Analogous regimes in graphene p-n junction:

c/vF=300



Lorentz transformation

Eliminate B using Lorentz boost:

Transmission coefficient is Lorentz invariant: 

Net conductance (Landauer formula):

Suppression of G in the electric regime precedes formation of 
Landau levels and edge states at p-n interface

Aronov, Pikus 1967

experiment in Stanford:

At larger B: no bulk transport, only edge transport

Electric regime B<B  ,  critical field
*



 Collimated transmission for 
subcritical B

Electric regime B<B

Perfect transmission at a finite angle 

Current switch controled by B

*

T=1

Collimation angle reduced by Lorentz contraction



Mapping to the Landau-Zener 
transition problem

Quasiclassical WKB analysis Evolution with a non-hermitian 
Hamiltonian

Eigenvalues:

Exact solution: use momentum representation (gives direct 
access to asymptotic plane wave scattering states)

Equivalent to the Landau-Zener transition 
Interpretation: interband tunneling for p2(t)=vt
L-Z result agrees with WKB



Classical trajectories

Two cases, open and closed orbits:

Electron (“comet”) orbits the Dirac point (“Sun”)

a comment by Haldane, 2007



Graphene bilayer: electronic structure and QHE

HH



p-n junction in graphene bilayer

Bilayer Dirac Hamiltonian with vertical field and interlayer coupling 

Dirac eqn with fictitios pseudospin-dependent gauge field:

After Lorentz boost (B eliminated):



Transmission characteristics

Zero transmission near
u=0 --- tunable! 

4x4 transfer matrix in 
momentum space
(effectively 2x2)

Tunneling at small p
suppressed by B field

Gapped spectrum at
finite vertical field

Perfect transmission 
for certain u and p



Transport in E and B fields,
Manifestations of 

relativistic Dirac physics:

  Klein tunneling via Dirac sea of states with 
opposite polarity; 

 chiral dynamics (perfect transmission at 
normal incidence); 

 Half a period phase shift a hallmark of Klein 
scattering

 electric and magnetic regimes B<300E and 
B>300E (300=c/vF)

 Consistent with FP oscillations and  
magnetoresistance of existing p-n junctions



Lecture II

recall Quantum Hall effect 



Background on QHE



Bob Willett's 
lecture notes

Parabolic spectrum E(p)=p^2/2m



Quantum Hall effect 



Quantum Hall effect

p-x duality

Guiding center of cycl. orb.



Quantum Hall effect



QHE measurement I

Measured quantities are Rxx, Rxy,
find xx, xy by inverting a 2x2 matrix



QHE measurement II



QHE: edge transport

Chiral dynamics
along edge
(unidirectional)
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The half-integer QHE:

Berry's phase,
edge states in graphene,
QHE as an axial anomaly



/



The “half-integer” QHE in graphene

Single-layer graphene:
QHE plateaus observed at double layer: single layer:

Novoselov et al, 2005, Zhang et al, 2005

Explanations of half-integer QHE:

(i) anomaly of Dirac fermions;
(ii) Berry phase;
(iii) counter-propagating edge states

4=2x2 spin and valley degeneracy





The half-integer quantization 
from Berry's phase

Quasiclassical Landau levels (nonrelativistic): 
Bohr-Sommerfeld quantization for electron energy
in terms of integer flux n enclosed by a cyclotron orbit

For massless relativistic particles (pseudo)spin  || p, 
subtends solid angle 2 per one revolution:
quantization condition modified as n+1/2) 

Prediction of half a period shift of Shubnikov-deHaas oscillation

Evolves into half-integer QHE in quantizing fields



Edge states for graphene QHE 

Abanin, Lee, LL, PRL 96, 176803 (2006)

 Properties of the edge states:

(i) KK' splitting due to mixing at the boundary;

(ii) Counter-circulating electron & hole states;

(iii) Symmetric splitting of n=0 Landau level

(iv) Universality, same for other edge types;

(v) The odd numbers of edge modes result in 
half-integer QHE

armchair edge
zigzag 
edge
(similar,
+surface 
states)

Also: Peres, Guinea, Castro-Neto, 2005, Brey and Fertig, 2006

Edge states from 2d Dirac model



The half-integer QHE: 
Field-Theoretic Parity Anomaly

R. Jackiw, Phys.Rev D29, 2377 (1984)

c=1 for Abelian gauge field

Recognize Lorentz-
invariant QHE relation
j=xyE, where xy=1/2



Anomaly: relation to 
fractional quantum numbers

Each zero-energy state filled (unfilled)
contributes +1/2(-1/2) of an electron
macroscopically: (1/2)*LL density
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valley-split and spin-split 
QHE states;

QHE in graphene bilayers;



Pseudospin K-K' valley states

(i) Spin and valley n=0 Landau level degeneracy:

                                             2x2=4;

 (ii) SU(4) symmetry, partially lifted by Zeeman interaction:

       SU(4) lowered to SU(2), associated with KK' mixing;

(iii) Assume that the ν=1 QHE plateau is described by KK' splitting 
of spin-polarized n=0 Landau level

K K'

Many aspects similar to 
quantum Hall bi-layers
(here KK')
Girvin, MacDonald 1995,
and others



Observation of valley-split 
QHE states

Four-fold degenerate n=0 LL
splits into sub-levels
at ultra high magnetic field:

spin (n=0,+1,-1), KK' (n=0)

confirmed by exp in tilted field☺
B=9,25,30,37,42,45 Tesla, T=1.4K 

(Zhang et al, 2006)



Recent transport measurments

Checkelsky, Ong
(Princeton): 
unusual behavior 
of resistance near 
Dirac point

(i) dramatic icrease 
of resistance under 
applied B field;

(ii) same upon 
lowering T

(iii) unremarkable at 
other densities



Evidence for critical 
behavior of resistance

Data fitted to a model surmised from Berezinskii-
Kosterlitz-Thouless theory: R ~ ^2, diverging at a 
critical B field



Graphene bilayer: electronic structure and QHE

HH



Bilayer: field-tunable 
semiconducting energy gap

monolayer bilayer



HW?
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QHE in p-n and p-n-p 
lateral junctions:

Edge state mixing;
Fractionally-quantized QHE



QHE in p-n junctions I
Local density control (gating): p-n and p-n-p junctions 
     (Stanford, Harvard, Columbia)

QHE in p-n junctions, integer and fractional conductance quantization: 
(i) g=2,6,10..., unipolar regime, (ii) g=1,3/2..., bipolar regime

B=0

B>0

Williams, DiCarlo, Marcus, Science 28 June 2007



QHE in p-n junctions II

Abanin & LL, Science 28 June 2007

p-n n-n, p-p

Mode mixing, but UCF suppressed

No mixing

Current partition, noise

Noiseless transport

Quantized conductance

Quantized shot noise (fractional F=S/I)

F=0

F=0

F>0

F>0



Edge states mixing and fractional 
QHE in p-n-p juntions

Ozyilmaz et al 2007

B=0

B>0

Little or no mesoscopic fluctuations



Stability of different 
fractional plateaus

2D transport vs 1D edge transport: results are identical at xx=0

Model exactly solved by conformal mapping:
by generalizing the method of Rendell, Girvin, PRB 23, 6610 (1981)

Plateaus with ' less stable w.r.p.t. finite xx than other plateaus
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Spin transport at graphene 
edge



Spin-polarized edge states for 
Zeeman-split Landau levels

Near ν=0, E=0: 
(i) Two chiral counter-propagating
edge states; 
(ii) Opposite spin polarizations;
(iii) No charge current, but 
finite spin current.

Quantized spin Hall effect
(charge Hall vanishes)

Edge transport as spin filter

Applications for spintronics

Similar to QSHE predicted by Kane and Mele (2005) in graphene 
with spin-orbital interaction (B=0, weak SO gap). Here a large gap!
     



What symmetry protects gapless 
edge states?

Special Z2 symmetry requirements (Fu, Kane, Mele, 2006):
in our case, the Z2 invariant is Sz that commutes with H

Gapless states, e.g. spin-split Gapped states, e.g. valley-split

Resembles massless Dirac excitations in band-inverted 
heterojunctions, such as PbTe, protected by supersymmetry 
(Volkov and Pankratov, 1985)



Manifestations in transport 
near the neutrality point

Gapless spin-polarized states:

a) Longitudinal transport of 1d character;
b) Conductance of order unity, e^2/h,
at weak backscattering (SO-induced spin flips);
c) No Hall effect at ν=0

Gapped states:

a) Transport dominated by bulk resistivity;
b) Gap-activated temperature dependent resistivity;
c) Hopping transport, insulator-like T-dependence
d) Zero Hall plateau



Spintronics in grapene: chiral 
spin edge transport

A 4-terminal device, 
full spin mixing in contacts

Charge current

Spin current

(Landauer-Buttiker)

In an ideal clean system (no inter-edge spin-flip scattering):
charge current along V, spin current transverse to V: 

Quantized spin Hall conductance



Spin-filtered transport

Asymmetric backscattering filters one spin polarization,
creates longitudinal spin current:

Applications: (i) spin injection; (ii) spin current detection.

Hall voltage measures spin not charge current!

Spin current without ferromagnetic contacts



Control spin-flip scattering?
Rashba term very small, 0.5 mK;

Intrinsic spin-orbit very small and also ineffective
when spins are perpendicular to 2d plane;

In-plane magnetic field tips the spins and allows to tune 
the spin-flip scattering, induce backscattering

Magnetic impurities? Oxygen?

Applications for spintronics:

1) Quantized spin Hall effect (charge Hall effect vanishes);

2) Edge transport as spin filter or spin source;

3) Detection of spin current



Estimate of the spin gap

Exchange in spin-degenerate LL's at ν=0, E=0:
Coulomb interaction favors spin polarization;
Fully antisymmetric spatial many-electron wavefunction;
Spin gap dominated by the exchange
somewhat reduced by correlation energy:

Gives spin gap ~100K much larger than Zeeman energy (10K)

correlation



Chiral spin edge states 
summary

 Counter-propagating states with opposite spin 
polarization at ν=0, E=0;

 Large spin gap dominated by Coulomb 
correlations and exchange

 Experimental evidence for edge transport: 
dissipative QHE near ν=0 (see below)

 Gapless edge states at ν=0 present a constraint 
for theoretical models

 Novel spin transport regimes at the edge (no 
experimental evidence yet)

PRL 96, 176803 (2006) and PRL 98, 196806 (2007)



Dissipative Quantum Hall 
effect

Abanin, Novoselov, Zeitler, P.A. Lee, Geim & LL, 
                    PRL 98, 196806 (2007)



Dissipative QHE near ν=0

Longitudinal and Hall resistance,
T=4K, B=30T
                Features:

a) Peak in ρxx with metallic 
T-dependence;

b) Resistance at peak ~h/e^2

c) Smooth sign-changing ρxy
no plateau;

d) Quasi-plateau in calculated 
Hall conductivity, double peak
in longitudinal conductivity 

Novoselov, Geim et al, 2006



Edge transport model

Ideal edge states, contacts with full spin mixing:
voltage drop along the edge across each contact 
universal resistance value

Backscattering (spin-flips), nonuniversal resistance
Estimate mean free path ~0.5 μm

Dissipative edge, unlike conventional QHE!



Transport coefficients versus 
filling factor

Bulk conductivity
short-circuits edge:
a) peak in ρxx at ν=0;
b) smooth ρxy, 
sign change, no plateau
c) quasi-plateau in
Gxy=ρxy/(ρxy^2+ρxx^2);
d) double peak in 
Gxx=ρxx/(ρxy^2+ρxx^2)

Broadened, spin-split 
Landau levels

The roles of bulk and edge transport interchange (cf. usual QHE):
longitudinal resistivity due to edge transport, Hall resistivity due to bulk.

Model explains all general features of the data near ν=0



Charge impurities in 
graphene: 

Atomic Collapse,
Dirac-Kepler scattering,
quasi-Rydberg states, 

vacuum polarization,
screening

Shytov, Katsnelson & LL (2007)



Transport theory

Facts: 
linear dependence of conductivity vs. electron density;
minimal conductivity 4e^2/h

Charge impurities: dominant scattering mechanism  (MacDonald, Ando)

Born approximation:

Screening of impurity potential: no difference on the RPA level

           Effects outside Born and RPA approximation?



Anomaly in the Dirac theory 
of heavy atoms, Z>137

Textbook solution for hydrogenic spectrum fails at Z>137:

Finite nuclear radius important at Z>137 (Pomeranchuk, Smorodinsky)

New spectrum at 137<Z<170;
Levels diving one by one into 
the Dirac-Fermi sea at Z>170 
(Zeldovich, Popov, Migdal)

Z=137 Z>137

Quasiclassical interpretation:
collapsing trajectories in relativistic Kepler problem at M<Ze^2/c



The Dirac-Kepler problem in 2D
Potential strength

In polar coordinates, angular momentum decomposition:

For each m, a hypergeometric equation. 
Different behavior:                      s real,                     s complex.

Scattering phases found from the relation

Incoming and outgoing waves



Scattering phases

Subcritical potential 
strength

Supercritical potential 
strength. 
Use boundary condition 
on lattice scale r=r0

Subcritical 's 
energy-independent

Supercritical 's 
depend on energy,
-kinks or no -kinks



Quasistationary states I

Quasi-Rydberg family

Atomic collapse



Quasistationary states II

Classically forbidden region

Bohr-Sommerfeld condition:

Resonance width: lattice scale



Transport crossection

Drude conductivity

Resonance peaks when 
Fermi level aligns with
one of quasiRydberg states



Resonances in the local 
density of states (LDOS)

Tunneling spectroscopy

Energy scales as the width  and as 1/(localization radius)



Oscillations in LDOS

Standing waves 
(not Friedel oscillations)

for overcritical Coulomb
potential

period = 1/energy

period  > lattice constant,
can be probed with STM



Screening by massless Dirac 
particles: vacuum polarization 

Critical Coulomb potentials in d=2:
In graphene:

Easier to realize than Z>137 for heavy atoms!
Need divalent or trivalent impurities

Polarization charge localized on a lattice scale at 

A power law for overcritical potential: 

Mirlin et al (RPA), Sachdev et al (CFT)



Friedel sum rule argument

Use scattering phase to evaluate polarization?

Caution: energy and radius dependence for Coulomb scattering

Geometric part, not related to scattering,
           (deformed plane wave)

The essential part



RG for polarization cloud

Log-divergence of polarization, negative sign,
                  but no overscreening!

RG flow of the net charge (source+polarization):

Polarization cloud radius:

Nonlinear screening of the charge in excess of 1/2



Summary

Different behavior for subcritical and supercritical impurities

QuasiRydberg states in the supercritical regime

Quasilocalized states (resonances), and long-period standing wave 
oscillations  in LDOS around supercritical impurities

No polarization away from impurity for charge below critical
(in agreement with RPA)

Power law 1/r^2 for polarization around an supercritical charge

Log-divergence of the screening charge: nonlinear screening of 
the excess charge Q-1/2, spatial structure described by RG 

Atomic collapse, Z>170, can be modeled by 
divalent or trivalent impurities in graphene



The End



For zigzag edge surface states 
possible even without B field!

crystallites not just flakes

zigzag edge

armchair edge

Surface mode 
propagating along zigzag 
edge (weak dispersion
due to nnn coupling)

B=0

B>0

B>>0

K K'

Momentum space:
(Peres, Guinea, Castro Neto)

zigzag
armchair

Scanning tunneling spectroscopy
of 3D graphite top layer (Niimi et al 2006)



Reviews on graphene:

Topical volume (collection of short reviews): 
Solid State Comm. v.143 (2007)

A. Geim & K. Novoselov “The rise of graphene”
Nature Materials v.6, 183 (2007)


