8.513: Coherent and collective phenomena in quantum transport Problem Set # 8 Due: 10/30/08

1. Weak localization
Consider the weak localization contribution to conductivity, expressed through the Cooperon
(D(—iV —2eA(r))? —iw + %) Cy(r,r") =6(r — ') as follows:

4De? , 4De? diq 1
lim Colr =7) === (27)? D + £

dowr = —

where the last expression is valid in the absence of magnetic field, A(r) = 0.

a) Find the dependence of oy, on 74 in space dimension d = 2,3, 1.

b) Suppose that electron temperature is very small, so that the dephasing length L, = /D7y
exceeds the system size L. In this case transport is fully coherent, and thus we can approximate
T ~ 00. Find the dependence of weak localization conductivity doy 1, on system size L for D = 2,3, 1.

2. Suppression of weak localization by magnetic field
a) Show that in the presence of a uniform magnetic field, the weak localization contribution to
conductivity can be brought to the form
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where Q, = 4eDB/hc (in three dimensions).

b) In the regime of strong magnetic field Q,7, > 1 (or, weak dephasing), find the dependence
dowr(B) vs. B. Show that magnetoresistance is negative: magnetic field suppresses weak localization
and thereby enhances conductivity.

3. Aharonov-Bohm effect.
a) Consider a thin metallic cylinder in a magnetic field parallel to the cylinder axis, which induces
flux ® = 7R?B through the cylinder cross-section. Show that the weak localization conductivity for

such a system is given by
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where &y = hc/e is a single-electron flux quantum. Thus the period of oscillations in the dependence
dowr(B) vs. B equals the superconducting flux quantum ®4/2 = hc/2e.
b) Show that
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where Ly = /D7, is the dephasing length and K| is the Macdonald function. Analyze doyw, for

R > L, with the help of the asymptotic form Ky(x > 1) ~ \/%e*x.



Hints: Use the Poisson summation formula
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and the integral identity for the Macdonald function
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See:

http://en.wikipedia.org/wiki/Bessel_function
and
http://mathworld.wolfram.com/MacdonaldFunction.html



