
8.513: Coherent and collective phenomena in quantum transport Problem Set # 8 Due: 10/30/08

1. Weak localization
Consider the weak localization contribution to conductivity, expressed through the Cooperon(
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where the last expression is valid in the absence of magnetic field, A(r) = 0.
a) Find the dependence of δσWL on τφ in space dimension d = 2, 3, 1.

b) Suppose that electron temperature is very small, so that the dephasing length Lφ =
√

Dτφ

exceeds the system size L. In this case transport is fully coherent, and thus we can approximate
τφ ≈ ∞. Find the dependence of weak localization conductivity δσWL on system size L for D = 2, 3, 1.

2. Suppression of weak localization by magnetic field
a) Show that in the presence of a uniform magnetic field, the weak localization contribution to

conductivity can be brought to the form
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where Ω∗ = 4eDB/h̄c (in three dimensions).
b) In the regime of strong magnetic field Ω∗τφ � 1 (or, weak dephasing), find the dependence

δσWL(B) vs. B. Show that magnetoresistance is negative: magnetic field suppresses weak localization
and thereby enhances conductivity.

3. Aharonov-Bohm effect.
a) Consider a thin metallic cylinder in a magnetic field parallel to the cylinder axis, which induces

flux Φ = πR2B through the cylinder cross-section. Show that the weak localization conductivity for
such a system is given by
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where Φ0 = hc/e is a single-electron flux quantum. Thus the period of oscillations in the dependence
δσWL(B) vs. B equals the superconducting flux quantum Φ0/2 = h̄c/2e.

b) Show that
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where Lφ =
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Dτφ is the dephasing length and K0 is the Macdonald function. Analyze δσWL for

R� Lφ with the help of the asymptotic form K0(x� 1) ≈
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Hints: Use the Poisson summation formula
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See:

http://en.wikipedia.org/wiki/Bessel_function

and

http://mathworld.wolfram.com/MacdonaldFunction.html


