1. Wigner’s scattering time.

In this problem we consider scattering on a resonance in the time domain. For simplicity, we shall focus on the one-channel system discussed in Lecture 4: a delta-function potential \(U(x) = \alpha \delta(x - a) \) on a half-line \(x > 0 \) with a hard-wall boundary condition at \(x = 0 \). Suppose that this system has a quasi-bound state with the complex energy \(E = E_0 - \frac{i}{2} \gamma \).

(i) Consider an incident wavepacket with energy \(\overline{E} \) close to \(E_0 \) and narrow dispersion \(\Delta \epsilon \ll \gamma \) (this corresponds to large spatial width \(\Delta x \gg \hbar v_F/\gamma \)). Show that after scattering the wavepacket comes out with a time lag \(\Delta \tau = 2\hbar (d\delta(E)/dE)_{E=E_0} \) (1)

where \(\delta(E) \) is scattering phase defined by \(e^{2i\delta} = -\frac{E-E_0-\frac{i}{2} \gamma}{E-E_0+\frac{i}{2} \gamma} \).

Analyze the time lag as a function of energy for this resonance model. What is the maximal value of \(\Delta \tau \)?

(ii) Now consider a wide wavepacket, \(\Delta E \gg \gamma \), which corresponds to narrow spatial width \(\Delta x = \hbar v/\Delta \epsilon \ll \hbar v_F/\Gamma \). Show that the reflected wavepacket consists of a non-delayed and delayed parts. Find the probability for the scattering particle to be delayed by a time \(\tau \). Interpret the result.

2. Multichannel transport

For an electron system having two external leads with \(N \) channels in each lead, left and right, show that the scattering matrix can be written as

\[
S = \begin{pmatrix} r_{11} & t_{21} \\ t_{12} & r_{22} \end{pmatrix}
\] (2)

where \(r_{11}, r_{22}, t_{21}, t_{12} \) are \(N \times N \) matrices describing reflection and transmission among \(N \) channels of each lead.

(i) Evaluate electric current between the leads as a difference of the left-to-right and right-to-left currents. Show that the total current is equal to

\[
I = \frac{e}{h} \int \frac{d\epsilon}{2\pi} \left[f_1(\epsilon) \text{Tr} (t_{21} t_{21}^\dagger) - f_2(\epsilon) \text{Tr} (t_{12} t_{12}^\dagger) \right]
\] (3)

where \(f_{1,2}(\epsilon) \) are particle energy distributions in reservoirs. (Note that \(\text{Tr} A A^\dagger = \sum_{i,j=1,...,N} |A_{ij}|^2 \).)

(ii) Apply the result (3) to current between two reservoirs which supply equilibrium distributions, with external voltage controlling the chemical potential difference, \(\mu_L = \mu_R + eV \). Use unitarity of \(S \) to show that \(\text{Tr} (t_{21} t_{21}^\dagger) = \text{Tr} (t_{12} t_{12}^\dagger) \). Take the limit \(V \to 0 \) to obtain Ohm’s law \(I = GV \) with conductance given by the multi-channel Landauer formula

\[
G = \frac{e^2}{h} \text{Tr} (t_{21} t_{21}^\dagger)
\] (4)

What are the maximal and minimal possible values of \(G \)?
3. Drude-Lorentz conductivity of a Fermi gas

Consider electrons at density n in a 2D metal at zero temperature in the presence of randomly placed point-like scatterers, $U(r) = \sum_i u \delta(r - r_i)$. The concentration of scatterers is n_{imp}.

a) Treating scattering in the Born approximation, estimate the transition rate $w(p', p)$ in the collision integral of the Boltzmann equation. Find the mean free path and evaluate Drude conductivity.

b) In the presence of a finite magnetic field, find the components of the resistivity tensor $\rho_{xx}(B)$ and $\rho_{xy}(B)$.

See: C. W. J. Beenakker and H. van Houten review cond-mat/0412664 “Quantum transport in semiconductor nanostructures” pages 8-11.