
8.513: Coherent and collective phenomena in quantum transport Problem Set # 2 Due: 09/18/08

Scattering theory of transport, II

1. Quantum point contact.
One can model quantum point contact (QPC) in a two-dimensional electron gas [see van Wees,

et al, Phys. Rev. Lett. 60, 848 (1988)] by a quadratic saddle-like potential:

U(x, y) = −1

2
ax2 +

1

2
by2 + U0 (1)

The x dependence describes potential along conduction direction, the y dependence describes con-
finement in transverse direction. The parameters a and b depend on the geometry of the split gate
used to create QPC; the energy U0 is proportional to gate voltage Vg and can be varied.

(i) Identify scattering channels by separating variables in the 2d Schrödinger equation and discuss
the two-terminal conductance G dependence on U0 treating electrons as an ideal degenerate Fermi
gas. Use the result for transmission coefficient, T (ǫ) = |t|2 = e2πǫ/h̄ω/(e2πǫ/h̄ω + 1), derived for 1d
inverted parabolic potential U(x) = −1

2
mω2x2.

(ii) Find the thermopower coefficient of the QPC. Consider the situation when a small temperature
difference δT = TL−TR exists between the reservoirs, whereas no voltage is applied, V = µL−µR = 0.
Find the electric current induced by temperature difference, I = AδT , and determine the thermo-
electric coefficients (see Lecture 2, page 7).

2. Breit-Wigner resonances.
Consider a general scattering matrix S. Being unitary, S can be brought to a diagonal form:

S =
∑

α=1...N

e2iθα |α〉〈α|, (2)

where |α〉 and 〈α| are in- and out-states, and N is the number of scattering channels.
As a function of energy, the scattering matrix S(ǫ) is analytic in the upper half-plane of complex

ǫ. This condition expresses causality requirement. (Think of the relation ψout = Sψin from the
cause-effect point of view and compare to Kramers-Kronig properties of susceptibility.)

Since S(ǫ) is analytic in the upper complex half-plane, Im ǫ > 0, the phase factors in Eq.(2) may
have zeros in this half-plane, but no poles or other singularities (such as branch cuts, etc.). Show
that each zero ǫ = zj must be accompanied by a pole at ǫ = z∗j in the lower half-plane Im ǫ < 0.

(i) Suppose now that one of the zeros zj = ǫ0 + i
2
Γ is much closer to the real axis than other zeros.

For ǫ values close enough to ǫ0 the S-matrix can be approximated by Breit-Wigner (BW) model

S = e2iθ
(reg)
n

ǫ− ǫ0 − i
2
Γ

ǫ− ǫ0 + i
2
Γ
|n〉〈n| + S(reg) (3)

where S(reg) and e2iθ
(reg)
n describe the “regular” parts of the S-matrix which have no singularity at

ǫ = z∗j .
(ii) Transport through a quantum dot can be schematically described by a 1D Schroedinger

equation with potential that confines particle between two barriers. As a simple model, we consider
U(x) = λδ(x − a/2) + λδ(x + a/2). In this potential, the resonances ǫ1,2,3... are described by the



standing wave condition kna ≈ πn. Consider the limit of strong barriers (large λ) and find the
Breit-Wigner form of the S-matrix for near a resonance ǫn.

Find the transmission and reflection coefficients, T (ǫ) = |t|2 and R(ǫ) = |r|2, and analyze their
energy dependence near a resonance.

3. Quasi-bound states and scattering for inverted parabola. (This is a hard one)
In this problem we analyze scattering on an inverted parabola, used in Problem 1 to model

quantum point contact. Consider a 1d Schrödinger equation

ǫψ = −1

2
ψ′′ − 1

2
x2ψ (4)

We learned in Problem 2 that complex poles and zeros are related to quasi-bound states which have
only the “out” but no “in” component. Here we demonstrate how one can reconstruct the S matrix
by analyzing these states.

(i) Show that the state ψ0(x) = eix2/2 represents a quasi-bound state for complex energy ǫ0 = −i/2
which has only outgoing but no incoming component at infinity.

Write the Hamiltonian in the form H = −a†a− i/2, where

a = 2−1/2(x+ id/dx), a† = 2−1/2(x− id/dx)

are analogs of the ladder (lowering and raising) operators for this problem. From the commutators of
these operators and H , treating a, a† by analogy with harmonic oscillator problem, show that there
are quasi-energy states with energies

ǫn = −i
(

n +
1

2

)

, n ≥ 0, (5)

where even and odd values of n correspond to even and odd states ψn(x).
(ii) Show that the 2 × 2 scattering matrix for this problem can be diagonalized in the channel

space in the even and odd basis:

S = e2iθ+ |+〉〈+| + e2iθ−|−〉〈−|, where |+〉 =
1√
2

(

1
1

)

, |−〉 =
1√
2

(

1
−1

)

, (6)

and θ± are energy-dependent scattering phases for the even and odd channels. From this represen-
tation, find the ratio of the transmission and reflection amplitudes,

f(ǫ) = t(ǫ)/r(ǫ) (7)

in terms of the phase factors e2iθ± .
(iii) Use the information obtained in part (i), combined with the result of Problem 1, to show

that the quantities e2iθ+ (e2iθ−) as a function of complex energy, have zeros at ǫ = −ǫn and poles at
ǫ = ǫn, where n ≥ 0 is an even (odd) integer. Use this result to evaluate the function f(ǫ) at the
points ǫ = ±i(n + 1/2) of the complex ǫ plane.

Having this information, reconstruct the function f(ǫ) and to find the transmission and reflection
coefficients for inverted parabola U(x) = −1

2
mω2x2.

Hint: Two analytic functions of complex variable which coincide on a set of points zn with a
limiting point somehere in the complex plane or at infinity, coincide in the entire plane.


