8.513: Coherent and collective phenomena in quantum transport Problem Set # 2 Due: 09/18/08

Scattering theory of transport, II

1. Quantum point contact.

One can model quantum point contact (QPC) in a two-dimensional electron gas [see van Wees,
et al, Phys. Rev. Lett. 60, 848 (1988)] by a quadratic saddle-like potential:

Ulz,y) = —%axz + %by2 + Uy (1)
The x dependence describes potential along conduction direction, the y dependence describes con-
finement in transverse direction. The parameters a and b depend on the geometry of the split gate
used to create QPC; the energy U is proportional to gate voltage V, and can be varied.

(i) Identify scattering channels by separating variables in the 2d Schrédinger equation and discuss
the two-terminal conductance G' dependence on Uy treating electrons as an ideal degenerate Fermi
gas. Use the result for transmission coefficient, T'(¢) = [t|? = ¥/ /(e?™/™ 1 1), derived for 1d
inverted parabolic potential U(z) = —3mw?a?.

(ii) Find the thermopower coefficient of the QPC. Consider the situation when a small temperature
difference 01" = T, — T exists between the reservoirs, whereas no voltage is applied, V = up—ugr = 0.
Find the electric current induced by temperature difference, I = AT, and determine the thermo-
electric coefficients (see Lecture 2, page 7).

2. Breit-Wigner resonances.
Consider a general scattering matrix S. Being unitary, S can be brought to a diagonal form:

S= 3 ™a)al, (2)

a=1...N

where |a) and (| are in- and out-states, and N is the number of scattering channels.

As a function of energy, the scattering matrix S(e) is analytic in the upper half-plane of complex
€. This condition expresses causality requirement. (Think of the relation 1., = S, from the
cause-effect point of view and compare to Kramers-Kronig properties of susceptibility.)

Since S(e) is analytic in the upper complex half-plane, Im e > 0, the phase factors in Eq.(2) may
have zeros in this half-plane, but no poles or other singularities (such as branch cuts, etc.). Show
that each zero € = z; must be accompanied by a pole at € = 2} in the lower half-plane Ime < 0.

(i) Suppose now that one of the zeros z; = €+ T is much closer to the real axis than other zeros.
For € values close enough to €y the S-matrix can be approximated by Breit-Wigner (BW) model

(reg) € — €9 — I
S = 210y, 2 + S(reg) 3
o )

where ST¢9 and €27 describe the “regular” parts of the S-matrix which have no singularity at
€=z
J

(ii) Transport through a quantum dot can be schematically described by a 1D Schroedinger

equation with potential that confines particle between two barriers. As a simple model, we consider

U(x) = M(x — a/2) + Xd(x + a/2). In this potential, the resonances €53 are described by the



standing wave condition k,a =~ mwn. Consider the limit of strong barriers (large A) and find the
Breit-Wigner form of the S-matrix for near a resonance e,.

Find the transmission and reflection coefficients, T'(¢) = [t|* and R(¢) = |r|?, and analyze their
energy dependence near a resonance.

3. Quasi-bound states and scattering for inverted parabola. (This is a hard one)
In this problem we analyze scattering on an inverted parabola, used in Problem 1 to model
quantum point contact. Consider a 1d Schrodinger equation

1

_ = //_l 2
€ = 5 2:6¢ (4)

We learned in Problem 2 that complex poles and zeros are related to quasi-bound states which have
only the “out” but no “in” component. Here we demonstrate how one can reconstruct the S matrix
by analyzing these states.

(i) Show that the state vy (z) = ¢'**/2 represents a quasi-bound state for complex energy €, = —i /2
which has only outgoing but no incoming component at infinity.

Write the Hamiltonian in the form H = —a'a — i/2, where

a=2"Y(z+id/dz), o =27Y*(x —id/dx)

are analogs of the ladder (lowering and raising) operators for this problem. From the commutators of
these operators and H, treating a, a' by analogy with harmonic oscillator problem, show that there
are quasi-energy states with energies

1
en:—z’<n+§), n >0, (5)
where even and odd values of n correspond to even and odd states ¥, (z).

(ii) Show that the 2 x 2 scattering matrix for this problem can be diagonalized in the channel
space in the even and odd basis:

. . 1 /1 1 1
S = 20+ |V (4] + 20| — —|,  where +=—( >7 —:—( )7 6
) {+] | =) (- \)\/51 \>\/§_1 (6)
and 64 are energy-dependent scattering phases for the even and odd channels. From this represen-
tation, find the ratio of the transmission and reflection amplitudes,

fle) =t(e)/r(e) (7)

in terms of the phase factors e?%=.

(iii) Use the information obtained in part (i), combined with the result of Problem 1, to show
that the quantities €%+ (¢%-) as a function of complex energy, have zeros at ¢ = —¢, and poles at
€ = €,, where n > 0 is an even (odd) integer. Use this result to evaluate the function f(e) at the
points € = £i(n + 1/2) of the complex € plane.

Having this information, reconstruct the function f(¢) and to find the transmission and reflection
coefficients for inverted parabola U(z) = —imw?z?.

Hint: Two analytic functions of complex variable which coincide on a set of points z, with a
limiting point somehere in the complex plane or at infinity, coincide in the entire plane.



