8.513: Coherent and collective phenomena in quantum transport Problem Set # 11 Due: 12/04/08

Localized and delocalized states in one dimension

1. Tight-binding model with random potential
Consider a discrete Schrodinger equation,

€¢n: n¢n+¢n—l+wn+17 O<n<Na

with potential V,, taking random values, uniformly distributed in the interval [—W, W].
As discussed in class, one can construct a 2 x 2 transfer matrix relating variables on the left and

on the right:
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The winding number of the trajectory in the 2d plane parameterized by the wavefunction ampli-
tudes (¢n,¥n_1), taken as a function of energy, is related to the number of eigenstates, whereas its
logarithmic growth (the Lyapunov exponent), gives the inverse localization length:

9(O) +imN(€) = Jim - log(u + i) 0

a) First, consider a clean system, U,, = 0. Find the transfer matrix M and check that the formula
(1) makes sense. Compare with the solution of the tight-binding model (see Problem 1, PS#1).
Do your 7(¢) and N(e) satisfy the Thouless relation, v(e) = PfN(e’)j—i? (In other words, is the
function y(€) + iw N (€) analytic?)

b) For a disordered system, compute the transfer matrix numerically, and use it to find the
Lyapunov exponent ~y(e) and the density of states. Use parameter values W = 0.5,1,2, and N of a
few tens. Are the results improved when N is increasing?

2. Harper equation, duality, localization transition
In a tight-binding problem with a quasiperiodic potential,
€, = 2t' cos (2mrwn + 0) P, + 1,1 + thn i (2)

the eigenstates can be either localized or delocalized depending on the ratio of ¢ and ¢'. There is an
Anderson transition when ¢t = t'.

To understand the origin of this behavior, let us consider Fourier-transformed wavefunction,
U, = [T g—iz/}peip”, and rewrite the Schrodinger equation for v,. Taking into account that shift
n’ = n £ 1 translates into multiplication by a phase factor 1, — ¥4}, and conversely, the Fourier
transform of 2 cos (2mwn + 0) ¥y, is €4, 1 9ny + €701, on,, We write

ewp = t/¢p+27rw + t/wprﬂ'w + Qt COS(p)¢p

where without loss of generality we set § = 0. After rescaling, p = 2wwp, we find

€, = 2t cos(2mwp); + t'%—l + t/%ﬂ



From this, we can argue that there is localization when |¢’| > |t| and delocalization when |t'| < [¢].
a) Show that this is true by solving the problem numerically. Which approach, the transfer
matrix method described in Problem 1, or direct diagonalization of the Hamiltonian for a finite
system, works better?
b) The famous Hoffstadter Butterfly is what you get for the density of states at the critical point,
|t'] = |t| (see lecture notes). It is a fractal set with intricate structure. How detailed a butterfly can
you draw with a limit of 1/2 hour for CPU run time?



