
8.513: Coherent and collective phenomena in quantum transport Problem Set # 11 Due: 12/04/08

Localized and delocalized states in one dimension

1. Tight-binding model with random potential
Consider a discrete Schrodinger equation,

εψn = Vnψn + ψn−1 + ψn+1, 0 < n < N,

with potential Vn taking random values, uniformly distributed in the interval [−W,W ].
As discussed in class, one can construct a 2× 2 transfer matrix relating variables on the left and

on the right: (
ψN

ψN−1

)
= M

(
ψ1

ψ0

)
, M =

∏
n=1...N−1

Gn, Gn =

(
ε− Un −1

1 0

)

The winding number of the trajectory in the 2d plane parameterized by the wavefunction ampli-
tudes (ψN , ψN−1), taken as a function of energy, is related to the number of eigenstates, whereas its
logarithmic growth (the Lyapunov exponent), gives the inverse localization length:

γ(ε) + iπN(ε) = lim
N→∞

1

N
log(ψN + iψN−1) (1)

a) First, consider a clean system, Un = 0. Find the transfer matrix M and check that the formula
(1) makes sense. Compare with the solution of the tight-binding model (see Problem 1, PS#1).
Do your γ(ε) and N(ε) satisfy the Thouless relation, γ(ε) = P

∫
N(ε′) dε′

ε′−ε
? (In other words, is the

function γ(ε) + iπN(ε) analytic?)
b) For a disordered system, compute the transfer matrix numerically, and use it to find the

Lyapunov exponent γ(ε) and the density of states. Use parameter values W = 0.5, 1, 2, and N of a
few tens. Are the results improved when N is increasing?

2. Harper equation, duality, localization transition
In a tight-binding problem with a quasiperiodic potential,

εψn = 2t′ cos (2πωn+ θ)ψn + tψn−1 + tψn+1 (2)

the eigenstates can be either localized or delocalized depending on the ratio of t and t′. There is an
Anderson transition when t = t′.

To understand the origin of this behavior, let us consider Fourier-transformed wavefunction,
ψn =

∫ π
−π

dp
2π
ψpe

ipn, and rewrite the Schrodinger equation for ψp. Taking into account that shift
n′ = n± 1 translates into multiplication by a phase factor ψp → e±ipψp, and conversely, the Fourier
transform of 2 cos (2πωn+ θ)ψn is eiθψp+2πω + e−iθψp−2πω, we write

εψp = t′ψp+2πω + t′ψp−2πω + 2t cos(p)ψp

where without loss of generality we set θ = 0. After rescaling, p = 2πωp̃, we find

εψp = 2t cos(2πωp̃)ψp̃ + t′ψp̃−1 + t′ψp̃+1



From this, we can argue that there is localization when |t′| > |t| and delocalization when |t′| < |t|.
a) Show that this is true by solving the problem numerically. Which approach, the transfer

matrix method described in Problem 1, or direct diagonalization of the Hamiltonian for a finite
system, works better?

b) The famous Hoffstadter Butterfly is what you get for the density of states at the critical point,
|t′| = |t| (see lecture notes). It is a fractal set with intricate structure. How detailed a butterfly can
you draw with a limit of 1/2 hour for CPU run time?


