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One-Dimensional Models of Disordered Systems

Theory on one-dimensional disordered systems, which we shall discuss today, historically preceeded the developments we
talked about earlier in the course (Anderson localization, weak localization, mesoscopic phenomena, etc.). Compared to the
latter problems, one-dimensional problems afford a larger variety of mathematical tools. Furthermore, quite often an exact
solution can be constructed.

We first discuss the density of states (DOS), defined as ρ(ε) = 1

π Im (ε −H + i0)−1, which is the simplest mathematical
quantity associated with a disordered system. There are several techniques available, which can yieled exact results for DOS
in many 1d problems. Furthermore, as we shall see, density of states can be related to localization length. Knowing one as
a function of energy will give the other.

We shall start with 1d Schrödinger Equation with random potential,

−ψ′′ + U(x)ψ = εψ (1)

(it will be convenient to use units in which ~
2/2m ≡ 1).

If the potential U is zero, the Schrödinger operator (1) has continuous spectrum at positive energies. Thus ρ(ε) is zero at
negative ε, whereas ρ(ε > 0) ∝ ε−1/2.

One interesting example of the potential U , for which the density of states can be found exactly, is a sum of randomly
placed delta-functions, U(x) =

∑

i δ(x − xi), with positions xi uncorrelated and having uniform spatial density c. In this
case, the density of states deviates from that in a clean system at the energies ε . c2, as illustrated in Fig.1.

Figure 1: Density of states ρ(ε) for random potential U(x) =
∑

i δ(x− xi), with spatial concentration of the delta functions
equal to c. The density of states of a clean system is labeled ρ0(ε).

Phase Method

The idea of this method comes from a general relation between the number of zeros of a wavefunction and the energy levels, as
given, for example, by the Sturm-Liouville theorem. Given a wavefunction ψ(0 < x < L), obtained by solving the Schrodinger
equation at some energy ε with a boundary condition ψ′(0) = aψ(0) (with a real), we can use the number of sign changes
of ψ(x) in the interval 0 < x < L to estimate the number of energy levels with energies below ε. The number of states in
the spectrum with ε′ < ε ≈ the number of zeros of the wavefunction ψ(ε) (up to ±1, depending on the values of a in the
boundary cnditions)).

Re-write Schrodinger equation as a first order differential equation:

φ =

(

ψ
ψ′

)

dφ

dx
=

(

0 1
U(x) − ε 0

)

φ

Write: w = ψ + iψ′, cotα = ψ′

ψ (α = π
2
− arg(ψ + iψ′)).

α′ = Φε(U,α) Φε(U,α) = cos2 α+ (ε− U(x)) sin2 α

From this one can show that α is growing, ∂α∂ε > 0.
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N(ε1 < ε < ε2) = lim
L→∞

1

πL
(α(L, ε2) − α(L, ε1))

White Noise model:

]
Ū(x) = 0, 〈U(x)U(x′)〉 = 2Dδ(x− x′)

z =
ψ′

ψ
(= cotα) z′ = −(z2 + ε) + U(x) Langevin-type Equation

Convert to
Fokker-Planck equation for P (z, ε):

∂P (z)

∂x
=

∂

∂z

(

(z2 + ε)P (z) +D
∂P

∂z

)

Solving for the stationary-state solutions, the quantity in parentheses is dependent on :

J(ε) = (z2 + ε)P (z) +D
∂P

∂z

This is solved by:
DP (z)

J(ε)
= exp

(

−
z3

3D
−
εz

D

)
∫ z

−∞

exp

(

t3

3D
+
εt

D

)

dt

Determine J(ε) from normalization:

N(ε)? = J(ε) J−1(ε) = D−
1

2

∫ ∞

−∞

dx

∫ x

−∞

dy exp (φ(y) − φ(x)) φ(x) =
x3

3
+

εx

D
2

3

x =
t

D
1

3

This gives an exact form of the disorder-averaged density of states, including the tail at negative energies. The tail arises
because in each realization of white noise there are wide regiosn in which potential takes predominantly negative values.

Localization Length and the Lyapunov exponent:

ψ(x) = r(x) cosα(x) ψ′ = r(x) sinα(x)

Lyapunov Exponent:

γ(ε) = lim
x→∞

log(r(x))

x

Transfer Matrix:

φ =

(

ψ
ψ′

)

dφ

dx
=

(

0 1
U(x) − ε 0

)

φ φ(x) = M(x)φ(0)
dM

dx
=

(

0 1
U(x) − ε 0

)

M

Formal Solution:

M(x) = L exp

(

∫ L

0

(

0 1
U(x′) − ε 0

)

)

dx′

Eigenvalues of M: m, 1

m , m > 0. detM = 1

m,
1

m
= exp (±2xi)

(see last lecture). Thus the localization length is given by inverse Lyapunov exponent, ξ = 1/γ.

γ(ε) = lim
x→∞

log(m)

x

For a tight-binding model:

εψn = Unψn + ψn−1 + ψn φ =

(

ψn
ψn−1

)

ψn+1 =

(

ε− Un −1
1 0

)

φn
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Thouless theorem:

There is a very general result due to Thouless, which gives an explicit relation between the density of states and Lyapunov
exponent:

γ(ε) =

∫

log |ε− ε′|ρ(ε′)dε′

To prove this result, let us combine our formulas for the number of states, written as a winding number, and the Lyapunov
exponent, written as a logarithmic growth rate, into one equation:

γ(ε) + iπN(ε) = lim
n→∞

1

n
log (ψn + iψn+1)

The quantity on the right hand side, ψn + iψn+1, is an analytic function of ε, Im(ε) > 0 (also true at Im(ε) < 0). The
anayticity, which is a property of the wavefunction ψn found from Shrodinger equation for specific realization of disorder,
holds also after averaging over disorder.

We are going to use Cauchy theorem, which gives an integral representation of an analytic funcion in terms of an integral
taken over the boundary of the analyticity domain,

f(ε) =

∫

f(ε′)

ε′ − ε+ i0+

dε′

2πi

In our case, with f(ε) = 〈γ(ε) + iπN(ε)〉dis, the integral, which is taken over −∞ < ε′ <∞, can be written as

f(ε) =
1

2
f(ε) + P

∫

f(ε′)

ε′ − ε

dε′

2πi
f(ε) =

1

iπ
P

∫

f(ε′)

ε′ − ε
dε′

where we used the identity 1

ε′−ε−i0 = 1

ε′−ε + iπδ(ε′ − ε). Isolating the real and imaginary parts, this gives

γ(ε) =
1

π
P

∫

πN(ε)

ε′ − ε
dε′ = P

∫

log |ε′ − ε|ρ(ε′)dε′

where we integrated by parts by writing ρ(ε) = dN(ε)/dε.

Homework Problem:

In a tight-binding problem with a quasiperiodic potential,

εψn = 2t′ cos (2πωn+ θ)ψn + tψn−1 + tψn+1 (2)

the eigenstates can be either localized or delocalized depending on the ratio of t and t′. There is an Anderson transition
when t = t′.

To understand the origin of this behavior, let us consider Fourier-transformed wavefunction, ψn =
∫ π

−π
dp
2πψpe

ipn, and
rewrite the Schrodinger equation for ψp. Taking into account that shift n′ = n± 1 translates into multiplication by a phase
factor ψp → e±ipψp, and conversely, the Fourier transform of 2 cos (2πωn+ θ)ψn is eiθψp+2πω + e−iθψp−2πω, we write

εψp = t′ψp+2πω + t′ψp−2πω + 2t cos(p)ψp

where without loss of generality we set θ = 0.
After rescaling, p = 2πωp̃, we find

εψp = 2t cos(2πωp̃)ψp̃ + t′ψp̃−1 + t′ψp̃+1

From this, we can argue that there is localization when |t′| > |t| and delocalization when |t′| < |t|. There is a transition
at |t| = |t′|.

Analyze this numerically. The famous Hoffstadter Butterfly is what you get at |t′| = |t| (see Fig.2).
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Figure 2: Density of states ρ(ε) for quasiperiodic tight-binding problem (2), with 0 < ω < 1.
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