
8.513 Lecture 9

High mobility electron systems:
Different types of 2DEGs

Imaging electron flow
Scattering on a boundary 



Two-dimensional electron 
systems

● Created on the interfaces in 
semiconductors by controled 
doping or field effect

● Quantum confinement in the 
perp direction: each discrete 
level gives a 2D band

● Tunable density of 2D carriers
● Effective mass, g-factor, SO 

interaction different from 2D 
bulk

● Valley splitting (e.g. in Si)



Scattering mechanisms

● Coulomb scattering (charge impurities): 
distant (screened) and local residual 
impurities (weakly screened)

● Surface roughness 
● Intervalley scattering
● Lattice scattering: acoustic phonons, 

polar optical phonons, phonon-mediated 
intervalley scattering

Elastic: temperature independent;
Inelastic: decerases at low T

Mobility: j=env, v=E;   Drude model: =(e/m)tr 

in best samples mobility can reach 14000000 cm^2/V s; 
mean free path of up to 120 m 



from: T. Heinzel “Mesoscopic Electronics...” 
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Imaging electron flow through a 
QPC in a high mobility 2DEG



Disorder potential and electron trajectory in a 2DEG: 
mostly small-angle scattering

A two-dimensional electron gas 
formed at the interface between 
gallium arsenide and aluminum 
gallium arsenide in a semiconductor 
heterostructure. The AlGaAs layer 
(green) contains a layer (purple) of 
silicon donor atoms (dark blue). 
Electrons from the donor layer fall into 
the GaAs layer (pink) to form a 2DEG 
(blue) at the interface. The ionized Si 
donors (red) create a potential 
landscape for the electron gas; the 
resulting small-angle scattering 
smoothly bends electron trajectories, 
as shown.  (from: Topinka, Westervelt, 
Heller, Physics Today December 
2003)



Response to a remote local probe

a, Schematic diagram of the experimental set-up 
used for imaging electron flow. The tip introduces 
a movable depletion region which scatters 
electron waves flowing from the quantum point 
contact (QPC). An image of electron flow is 
obtained by measuring the effect the tip has on QPC 
conductance as a function of tip position. Two ohmic 
contacts approx1 mm away from the QPC (not 
shown) allow the conductance of the QPC to be 
measured using an a.c. lock-in amplifier at 11 kHz. 
The root-mean-square voltage across the QPC, 0.2 
mV, was chosen in order not to heat electrons 
significantly above the lattice temperature of 1.7 K. 
b, Conductance of the QPC used for Fig. 2b versus 
QPC width controlled by the gate voltage. Steps at 
integer multiples of 2e2/h are clearly visible. The 
inset is a topographic AFM image of the QPC.

Topinka et al, Nature 410, 183 (2001)



  

Electron flow through a quantum point contact. (a) Scheme for imaging current flow through a QPC using 
scanning probe microscopy. Two gate electrodes (yellow) create a narrow constriction in the underlying 
two-dimensional electron gas. A charged tip (green) depletes the electron gas below it, creating a divot (red 
spot) that scatters incoming electron waves, as shown in the simulations (blue). (b) The conductance of the 
QPC, measured at 1.7 K, increases in quantized steps as the gate voltage (and QPC width) is increased. 
The insets below each step show simulations of the spatial pattern of electron flow for the transverse 
modes that contribute to the conductance. (c-e) Experimental images of electron flow at 1.7 K (left and 
right) and theoretical simulations (center) for the first three transverse modes of a QPC. The observed 
interference fringes spaced by half the Fermi wavelength demonstrate the coherence of electron flow. 
Because the additional flow, appearing as the QPC becomes wider, is due to the newly opened-up mode, 
the image for each transverse mode could be obtained by subtracting the raw images from the next lower 
step. 



 Experimental images of electron flow. Image of 
electron flow from one side of a QPC at T = 1.7 K, 

biased on the G = 2e^2/h conductance step.

Dark regions correspond to areas 
where the tip had little effect on QPC 
conductance, and hence are areas 
of low electron flow. The colour 
varies and the height in the scan 
increases with increasing electron 
flow. Narrow branching channels of 
electron flow are visible, and fringes 
spaced by lambdaF/2, half the Fermi 
wavelength, are seen to persist 
across the entire scan. b, Images of 
electron flow from both sides of a 
different QPC, again biased on the 
G = 2e2/h conductance step. The 
gated region in the centre was not 
scanned. Strong channelling and 
branching are again clearly visible. 
The white arrow points out one 
example of the formation of a cusp 
downstream from a dip in the 
potential.



Calculated electron flow: 
branching strands,

V-shaped cusps, focusing 
by ripples. 

Surface plot of the random potential for 
computed electron flow, including contributions 
from impurities, donors, and gates; green areas 
are low and white areas are high potential.The 
'shadow' is cast by classical flux through the 
same potential. We note that the branched flux 
does not follow valleys in the potential. b, 
Classical and c, quantum-mechanical flux of 
electrons flowing through the potential in a. In 
the classical case, we followed the dynamics of 
an appropriate ensemble of classical 
trajectories and show the classical flux density. 
The quantum-mechanical results show the flux 
density of the transmitted wavefunction, coming 
through the point contact on the left. We note 
that both results show the same branching 
behaviour.





QM model reproduces fringes 
spaced by F/2

Figure 4: Calculated tip scan. a, 
Quantum-mechanical flux 
through a random potential. b, 
The flux from the boxed area in 
a. c, A raster scan of 
conductance as a function of 
SPM tip position in the same 
system as a and b. The 
conductance image in the 
model corresponds to the flux 
image, confirming our assertion 
that the experiment images 
electron flow. Additionally, the 
simulation c shows quantum 
fringes, as seen in the 
experiment. Though this 
simulation is at zero 
temperature, the fringes do 
survive thermal averaging. 



Features

 

● Angular dependence of the flow agrees with 
the structure of uantized modes in a QPC

● Observe branched flow with V-shape cusps
● Consistent with earlier results on transport 

indicating dominant small-angle scattering
● Quantum coherence: fringes spaced by half-

a-wavelength



?



Boundary scattering 

● Specular scattering (parallel momentum 
conserved): resistance unaffected, retains the bulk 
Drude value;

● Diffuse scattering (velocity fully randomized at each 
scattering on the boundary): resistance increased;

● In a narrow channel the channel width is effectively 
a mean free path for boundary scattering;

● A more general (heuristic) model: each electron 
reflected spectacularly with probability p and 
diffusely with probability 1-p



 Boltzmann equation 

In a channel with hard walls at 
x=+W/2,-W/2 and diffuse scattering, 
write stationary Boltzmann eqn

The boundary condition at x=+W/2,-W/2:

Find solution corresponding to constant 
density gradient along the channel:



Classical size effect in resistivity

General expression for resistivity in terms of the bulk value 0:

A log-divergence!
Electrons propagating nearly 
parallel to the channel travel 
over larg distances without 
collisions and effectively 
shortcircuit current



The effect of magnetic field

● Trajectories bend in weak 
fields, enhancing scattering 
(“ballistic” carriers 
eliminated)

● In strong fields, 
backscattering suppressed, 
forward/backward 
trajectories at x=+W/2,-W/2 



Magnetoresistance positive at 
low B, negative at high B


