Lectures 5,0,7: Boltzmann kinetic equation

Sep 18, 23, 25, 2008

Fall 2008 8.513 “Quantum Transport”

e Distribution function, Liouville equation

e Boltzmann collision integral, general properties

e Irreversibility, coarse graining, chaotic dynamics
e Relaxation of angular harmonics

e Example: Drude conductivity

e Diffusion equation

e Magnetotransport

e Quantizing fields: Shubnikov-de Haas oscillations

e Transport in a smooth, long-range-correlated disorder



e Calculations of magnetoresistance

e \Weiss oscillations

e Lorentz model; generalized Boltzmann equation



SCATTERING BY RANDOMLY PLACED IMPURITIES

Disorder potential V() = >, V(r —r;). B.k.e. takes the form

d2p/
(27h)?

2_{ =Lf= /w(p,p’)(f(p’) - f(p))

where L = 0; + vV, + FV,, is the Liouville operator.

Ig /the B(zlren approximation w(p,p’) = 27|V,_/|?0(e, — €,). Writing
| —(Qdﬁ%g = ¢ 2;’/ [ vde, with the density of states v = dN/de = m/(2rh?)

find
d
d_{ B V/dep’|vp—p"2(f(p/) — f(p))

where |p'| = [p|.
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RELAXATION OF ANGULAR HARMONICS

For spatially uniform system (L = 0;) analyze the angular dependence
of the collision integral in B.k.e.

Use the Fourier series

fp) = Z e fon, vw(lp — by) = Z%neim(ep_ep’)

m

o . : : x
where fo ff —: Is proportional to the total particle number, f11 =

d9
fﬁ quzH ’ p/ are proportional to the particle current density components

Je zgy, etc For the collision integral we have

St(frm) = (Y — 90) fms  fim(t) o< e~ (07 m)E

Relaxation for m # 0 because 7,,20 < 70; no relaxation for fO (particle
number conservation)
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EXAMPLE: DRUDE CONDUCTIVITY

For a spatially uniform system the Boltzmann kinetic equation
(0 + vV, +eEV,) f(r,p) = St(f) becomes

eEV,f(p) = 5t(f)

Solve for the perturbation of the distribution function due to the E field:

fp) = folp) + fi(lp) + ..., f1 x cos@, sinf

where fj is isotropic. To the lowest order in £ find

fl — _TtreEvpfO(p)

2

. d2p L 62Ttr d2p L € TirT
J_/e"fl(p)(zmy "~ m E/fO(p)(zm)z =

We integrated by parts assuming energy independent 7., valid for degenerate
Fermi gas T' < E'r. At finite temperatures, and for energy-dependent 7,

find 0 = <2(r;,.(E)) g,
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DIFFUSION EQUATION
Solve B.k.e. for weakly nonuniform density distribution (and no external

field!).
(0 +vV,) f(r,p) = St(f)

First, integrate over angles 6,, to obtain the continuity equation:

on

E—i_vjzoa j:<Vf>9, n:<f>9

Here j and n is particle number current and density. Next, use angular
harmonic decomposition f(p) = fo(p) + fi(p) + ..., f1 & cosf, sinf and
relate f1 with a gradient of fy. Perturbation theory in small spatial gradients:

1 1
vV,.fo=——f, — = (w(0)(1—cosb))g
Ttr Ttr
Use fi = —7,.vV., fo to find the current j, = (vaf1) = —Tw-(vavs) Vs fo.
From (v,vg) = 384303 have
1
= ) eV fo = =DV fo = —DVn
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FEATURES

Diffusion constant

1 1
D:§ trv%:§vF€7 = vpTe,

where £ is the mean free path. From Einstein relation o = e?vD find

2 2

o=e’vD = gsgve—kFE _ & Tl
h m

where g, ,, the spin and valley degeneracy factors.

27pdp __ 9sgvkp
(2wh)2dE ~  27mhvp

Used the density of states v = gsg,

1) Temperature dependence due to 7¢.(F), weak near degeneracy;

2) Boltzmann eqgn. is a quasiclassical treatment valid for kgl > 1. In
: 2 : :
this case o > % metallic behavior;

3) At kpl ~ 1, or Ap ~ {, onset of localization
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ANOTHER APPROACH

Diffusion constant from velocity correlation:

D = / dt(v.(t)v,(0)), ensemble averaging : 6, disorder
0

Derivation:  ((z(t) — x(0))?) = [o [ dt'dt"(v,(t)v.(t")) = 2Dt.
Explanation (15 = 74):

tH“ T A

t__
t v DR
AN
\\Tz ot 3 - M/ |
t ! —t4
Exponentially decreasing correlations (v, (t)v,(0)) = e ¥/ (v2(0)) =

1

2 —t/T : 1,2
SUR€ /Tt yield D = SUETtr.
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MAGNETOTRANSPORT

Finite B field, Lorentz force, current not along E. Thus conductivity o
not a scalar but a 2x2 tensor.

Einstein relation 0,3 = e?vD,g for the diffusion tensor

Dos = /OOO dt(ve(t)vs(0)), «,B=1,2

Between scattering events circular orbits w. = eB/m, R. = muvgp/eB.
Complex number notation ©(t) = v, (t) + iv,(t) = vpe® Tt Find D from

D
1 4 (weT)?

t
Dy 41Dy, = / dt(5(t) cos Qup)ge /T = (1 — dwrT)
0

Dyy = Day, Dyy = —Dy.
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CONDUCTIVITY AND RESISTIVITY TENSORS

5 o 1 —w.T s sl _ 1 WeT
14 (wer)?2 \ wer 1 P R |

The off-diagonal element:

_p B 1 h hw
Py = H—en—gsgve2EF

Features:

(i) Classical effects of B field important when w.7 2 1, these field can
be weak in high mobility samples;

(ii) Recover classical Hall resistivity;

(iii) Zero magnetoresistance in this model: p,.(B)— p.:(0) = 0. Generic
for short-range scattering.

(iv) The features (i), (ii), (iii) are fairly robust in the classical model, but
not in the presence of quantum effects.
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(QUANTUM EFFECTS

We've used o = e?vD with the zero-field density of states; assumed that
T4 1S iIndependent of B.

From Born approximation for delta function impurities U (1) = Zj ud (r—
r;) we have (see above):

2
1= %V(Ep)u%i

with ¢; the impurity concentration. For v(Er) modulated by Landau levels

v(e) = Z nrLo(e —nhwe), npL = B/®y=eB/h
n>0

find Shubnikov-de Haas (SdH) oscillations periodic in 1/B.

Period found from particle density on one Landau level ny, = eB/h,
giving A(1/B) = 7292 Can be used to determine electron density.

el

Plateaus in Ry at Rpy
Quantum Hall effect.

with N = 1,2,.... the integer
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Figure 1: Schematic dependence of the longitudinal resistivity p..
(normalized to the zero-field resistivity) and of the Hall resistivity p,, = Rg
(normalized to h/2e?) on the reciprocal filling factor v~ = 2eB/hn,; (for
gs = 2 and g, = 1). Deviations from the quasiclassical result occur in strong
B field, in the form of Shubnikov-de Haas oscillations in p,, and quantized
plateaus in py,.
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APPLICATIONS OF THE SDH EFFECT

SdH oscillations in D=3 are sensitive to the extremal cross-sections of
Fermi surface, which depend on the orientation of magnetic field w.r.p.t.
crystal axes

Thus SdH can, and indeed are, used to map out the Fermi surface 3D
shapes.
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FERMI SURFACE SPLITTING FROM SDH OSCILLATIONS
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Figure 2: Gate voltage dependence of SdH oscillations. Beating patterns
in the SdH oscillations appear due to a spin-orbit interaction. By
comparing the oscillations with the numerical simulation based on Rashba
spin-orbit interaction, spin-orbit interaction parameter is obtained. From:
“Gate control of spin-orbit interaction in an inverted InGaAs/InAlAs
heterostructure” J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki Phys.
Rev. Lett., 78, 1335 (1997).
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CLASSICAL TRANSPORT IN A LONG-RANGE DISORDER

Relevant e.g. for high mobility semiconductor systems in which charge
donors are placed in a layer at a large distance d from the two-dimensional
electron gas (2DEG), krpd =~ 10. Also of pedagogical interest, as an
illustration of nonzero magnetoresistance arising from classical transport.

Random potential with long-range correlations, W (r—r') = (V (r)V (r"))
decays at [r — 1’| ~ d > Ap. It is convenient to introduce the formfactor

Wi(q) = [ W (r)d*r = (|Vy|?). For a random potential of amplitude
0V (r) ~ aEp we estimate W(q) = W(0) ~ (aEp)?d* for kd < 1, and
W(q) ~ 0 for kd > 1.

For charge impurities, as a simple model, one can take W (q) = [ €' W (r)d*r =

(h?/m)*n;e 21914 (the prefactor (wh?/m)? is due to correlations in impurity positions
and/or charge states).

High mobility for d > Ap. Transport coefficients dominated by small-
angle scattering.
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TRANSPORT TIME FROM FErRMI'S GR

The scattering rate w,,,y = 27|V,_/|*(€e,y — €,) yields

B d2p/
Tt = /(1 — cos Hl)wpp/(zwh)Q

Note: the characteristic p — p’ ~ 1/d, thus 0 ~ A\p/d < 1.

Using f7T...5(ep/ — epgo(gi—%2 = /" V%—i_/, expanding 1 — cosf ~ 6% and
replacing [~ _df — [___df, find
7—1—5/00 v, 6% = 1 /OOW( )g*d
w =5 Vo = tmop , Wl@)adg

with v = m/(27h?).

Estimate:
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DIFFUSION ALONG THE FERMI SURFACE

Slight bending of the classical trajectory (which is a straight line for
V =0):
dp db

o= -VV, o= (mvp) " 'n x VV
where n = v/|v|.
Diffusion in 6:
o’f .
(0 + vV, +eEV,) f(r,p) = DQW (instead of St(f))

where Dy = [ dt(0(t)0(0)) = (mvp)~2 (0, V (x = vpt)d,V (z = 0)) =
m qu qgw(Qy)

Derivation from B.k.e.: For the mth harmonic f = [ f(H)e‘imH% have

St(fm) = (0 — ym)fm. Approximate: Yo — ym = $(1 — cos m@)w(@)% ~

$im20%w(0)L = Dym?. Can expand in 0 b/c the integral is dominated by
0 ~ \r/d < 1. This gives St(fon) = Dgm2fm, or St(f(0)) = Ded2f(0).
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TRANSPORT TIME FROM DIFFUSION EQN

For spatially uniform system write 0;f = Dgaeg, for the harmonics
5 f(0) x cos@,sinf have §f(t) o< e~ P6t. Thus

1 -
=D W (q)d
Tir' o 2mm>2v, /0 W a)dq

which coincides with 74, found from Fermi's GR.
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MAGNETOTRANSPORT PROBLEM: MEMORY EFFECTS

The relaxation-time approximation: collisions with impurities described
by Poisson statistics (no memory about previous collisions): (v, (t)v(0)) =

e—t/T@a(O)Uﬁ(O». In the presence of magnetic field, for complex v(t) =

vz (t) + vy (t) have 2(v(t)v*(0)) = LeH/Tei et (v(0)v*(0)).

Generalize to a memory function f(t) = e t/7 (1 4+ 3.°0 ¢, (t/7)"/n!).
Then the response to a dc electric field E || & will be

. 4 .. n62 /Oof(t) W tEdt O-OE 1+§: Cn
x T V)y — —— e e — ; .
/ A 0 1 —iwer = (1 — iwer)"

where 09 = ne?r/m the Drude conductivity. For ¢, = 0 recover zero

magnetoresistance Ap,, = prz(B) — pz2(0) = 0 and classical Hall resistivity
pzy = B/ne. However, for a non-Poissonian memory function f(¢) the
magnetoresistance does not vanish. Thus Ap,.(B) is a natural probe of the
memory effects in transport.

L Levitov, 8.513 Quantum transport 18



MAGNETOTRANSPORT IN A SMOOTH POTENTIAL
Cyclotron motion in a spatially varying electric field and constant B field:

V =Wz XV -+ EE(?“), we=eB/m, E(r)=-VV(r)
m

Drift of the cyclotron orbit guiding center X = x4, /w., Y = y—v,/w..
From

Vg = Wely + %Ex(m Uy = —WeVz + %Ey(r)» r=(z,y)
have

X = vy + 0y /we = Ey(r)/B, Y =v, —0,/w. = —E.(r)/B
Find dynamical equation for the guiding center coordinates X and Y:

: 1 1
RZEE(T’)XZAJ, R:(X,Y), T:R—l—w—céxv

equivalent to the Lorentz force equation, useful in the limit /B < vp
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ELECTRONS MOVING IN CROSSED £ AND B FIELDS

Electron motion in crossed electric and magnetic fields. The trajectory is a cycloid, i.e., a superposition of a
circular motion and a constant drift to the right. The cyclotron orbit implies a magnetic field direction into the plane
and the ExB drift implies that the electric field points downward. From the known beam energy the field strengths
can be obtained from cyclotron radius and guiding center drift.

Taken from http://www.physics.ucla.edu/plasma-exp/beam/
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ADIABATIC APPROXIMATION

For B/E > v, and slowly varying E(r) have fast cyclotron motion
superimposed with slow drift.

Adiabatic approximation: average dynamical quantities (e.g. potential
V(r) or the field E(r)) over cyclotron motion with X and Y kept frozen:

<f(74(t))>cycl.motion — %f(X + Tc sin ¢, Y + T'c COS ¢)%, Te = UF/WC

(approximate velocity by vr). Going to Fourier harmonics f(r) = Zq f’qeiq'r,
find

<Z fqeiq.r(t)>cycl.motion — Z fqeiq.R(t)equO(qrc)’ q = i /qazj + qg
q q

where Jy(x) = %fjﬂ e s P the Bessel function.

L Levitov, 8.513 Quantum transport 21



VELOCITY AUTOCORRELATION FUNCTION

: : : 1
v=R+ (r— R) =R+ —2 x v =slow part + fast part
We

In the adiabatic approximation, ignoring correlations between the slow part
and the fast part, write the autocorrelation function of velocity as

1

(0(£)0"(0) hens ~ (<R<t>R*<o>> + w—gw(t)o*(o») = e ({(B)ens + €102 )

The factor e %7 accounts for scattering on the short-range disorder.
Substitute the adiabatic-average value

1

R = _iE<E(t)>Cycl.motion — zq:(Qx + igy)vqeiq.R(t)equO(qrc)

(for complex components ... X 2 = ... x (—i)). Treating different harmonics
as independent, (V,V,/) o< d(q + ¢’), have
: 1 -
(R)*)ens = B2 Z q2|Vq‘2J02(qrc)
q
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DIFFUSION FROM THE DRIFT VELOCITY

Find the diffusion tensor components from

~1 1 . V47 (1 + iweT)
Dy Dy = —(v(t)v™(0 ensdt = = R ° ens = )
+iDys = [ SO Oemtt = r(( B )ens + B0

For an estimate take (|V,|?) = W(q) = (aEpd)?e=29%, which gives
~ 2

> ClVal? 5 (qre) ~ %. This is true in the limit of cyclotron radius

larger than the correlation length of disorder, r. = vp/w. > d. (The

asymptotic form of Jo(x > 1) = /= cos(z — m/4) was used.)

For a weak short-range disorder (or strong B field) have w.7 > 1, giving

(aBp)*t  vp (aEp)*Tw, _vE

Dx:c ~ ~ ’ D xr
2dr.B? = 2w3T 2dvr B? Y

20,

Thus both D,, and D,, scale as 1/B (same true for 0., and o,,). This
gives resistivity pyo = 042/ (02, +0;,) linear in B at strong fields, w.7 > 1.
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Note: increase in o4, implies increase in py, b/c pry > pg. at strong fields,
and thus p,, =~ am/agy. Thus a positive magnetoresistance.

All that can be done more rigorously using B.k.e., see Beenakker, PRL
62, 2020 (1989)

The simple limit considered here is when \p < d < r. < £. In other
regimes the analysis can be carried out using Boltzmann equation (see
papers by Mirlin, Wolfle, Polyakov et al.)
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LINEAR MAGNETORESISTANCE IN A HIGH MOBILITY 2DEG

Z.D. Kvon et al | Physica E 22 (2004) 332335
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Fig. 1. Dissipative p.(B) (a) and Hall resistivity py,(B) (b) at BT
different temperatures (sample 218).

Fig. 2. Dissipative resistivity py.(B) for the sample 188.

paz(B) o< | Bl

The behavior at high temperatures is fully accounted for by classical
dynamics; at low temperatures the Quantum Hall effect is observed.
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RESISTANCE OSCILLATIONS DUE TO A PERIODIC GRATING I

Instead of (or, in addition to) a long-range-correlated disorder impose a
weak periodic grating V() = Vj cos(2my/a); observed resistance oscillations
periodic in 1/B field, known as Weiss oscillations, with period determined
by the condition

’I"C:’UF/(UCIZG,/’N,’ 712172,3

(D. Weiss, K. v. Klitzing, K. Ploog, and G. Weimann, Europhys. Lett. 8,
179 (1989), where an optical grating was used).

Theory: cyclotron orbit drift enhanced or suppressed when the orbit
radius is in or our of resonance.
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THEORY OF WEISS OSCILLATIONS
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FIG. 1. (a) Potential grating with a cyclotron orbit superim-
posed. When the electron is close to the two extremal points
¥ = R the guiding center at ¥ acquires an ExB drift in the
direction of the arrows. (The drift along nonextremal parts of
the orbit averages out, approximately.) A resonance occurs if
the drift at one extremal point reinforces the drift at the other,
as shown. (b) Numerically calculated trajectories for a
sinusoidal potential (¢ =0.015). The horizontal lines are equi-
potentials at integer y/a. On resonance (2R/a=6.25) the
guiding-center drift is maximal; off resonance (2R/a=5.75)
the drift is negligible.
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FIG. 2. Magnetic field dependence of the resistivity p,, for
current flowing perpendicular to the potential grating (see in-
set), The theoretical curve is from Eq. (6); the experimental
curve from Ref. 1. Mote the phase shift of the oscillations, as
indicated by the arrows at integer 2R/a. For BZ0.4 T the ex-
perimental data show the onset of the Shubnikov-de Haas os-
cillations.

Taken from: Beenakker, PRL 62, 2020 (1989)
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MAGNETOTRANSPORT OF A LORENTZ GAS

Based on: A. V. Bobylev, F. A. Maa, A. Hansen, and E. H. Hauge,Phys.
Rev. Lett. 75: 197 (1995).

Typical paths of the moving “electron™ (charged particle) in a 2D Lorentz model a
perpendicular magnetic field.

Classical dynamics of a charged particle in the presence of hard disks of
density n and radius a. In the absence of magnetic field, the mean free path
is { =3 /n = 2a/n. Transport time 7 = {/vp.

Applications: strong scatterers in a 2DEG (e.g. antidots)
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THE CANONICAL BOLTZMANN KINETIC EQUATION:

spatially homogeneous case, with a one-particle distribution f{4¢, )
depending on time ¢ and on the direction ¢ = / (v, X) of the velocity only.
(The speed v = |v| is a constant of the motion here.) The BE reads

0 ¢ n
( _) flg.1)= v_[ ay gL f(¢—. 1) —f(¢,1)] = Bf(¢, 1)

FTRAPY .
gy)=a(y)Z.
w = eZ3/m the cyclotron frequency v=nvZ X = dy a().=2a

Here n is the density of scatterers (hard disks), a is the disk radius, o (1))
is the differential scattering cross-section, > = 2a is total cross-section.

In this form, B.k.e. is identical to what we studied before. Thus expect
one can zero magnetoresistance and p,, = n/Be.
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SCATTERING ON A HARD DISC

Scattering off a hard disk of radius « in a magnetic field. The impact parameter is &
and the scattering angle is , with b=asina and a=(m—y)/2.

the differential cross section
a .
= —sin _'1’_‘

o) =| 2| |2 (asn =5 %) =2 !

in dimensionless version, g(\/) = §sin [¢/2|, 2 =2a

—
—_—

ay
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THE LIMIT OF SMALL RADIUS, HIGH DENSITY

So-called Grad limit: 7 = nvX constant, while n — oo, a — 0 (for hard
discs ¥ = 2a).

Note that in the Grad limit, where a/R — 0, two important simplifica-
tions arise: (1) As pointed out above, the differential cross section becomes
independent of the magnetic field. (it) On the length scale set by the size
of the scatterer, the cyclotron orbits degenerate into straight lines. This
implies that the accumulated scattering angle after s successive encounters
with the scatterer equals syy, where i i1s the scattering angle of the first
collision.

Each scatterer is easy to miss, but if it is encountered once there's a
high chance of comeback. Features of the dynamics in this limit:

(i) An electron either does not collide with any scatterer or it collides

(in the course of time) with infinitely many different ones. Exceptions are
“measure zero;"

(ii) An electron can only recollide with a given scatterer only if no other
scatterer has been hit in the mean time;:

(iii) The total scattering angle with the same scatterer after s collisions is
s1), where 1) is the scattering angle of the initial collision with this scatterer.
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Why s¢?

(iii) The total scattering angle with the same scatterer after s collisions is
s1), where 1) is the scattering angle of the initial collision with this scatterer.

Successive collisions with a hard-disk scatterer of radius a, Subsequent cyclotron
orbits (all with radius R) are numbered 1, 2, and 3. The initial collision makes the electron
switch form cyclotron orbit | to cyclotron orbit 2, the second from orbit 2 to orbit 3, etc. The
distance between the center of a cyclotron orbit and the center of the hard-disk scaulerer
in 4. The angle separating two subsequent collision points on the periphery of the disk is 2.
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THE LIMIT OF SMALL RADIUS, HIGH DENSITY

GBE takes into account multiple encounters with each scatterer:

9 (T |
(5i+05) 196 0= 3 Piv[" b gL/ —(s+1) g1 —sT)

—f“(tﬁ—w, t—sT)] (4)

Here [#/T] 1s the number of cyclotron periods completed at time 1. The
generalized Boltzmann equation (4) is exact in the Grad limit.

The probability that a cyclotron orbit is free of scattering centers

Py=exp(—Ayon)=exp(—2nR - 2na) =exp( —2nR/A) A=1/(2na),
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SOLUTION OF THE INITIAL VALUE PROBLEM

In order to solve the initial value problem posed by the GBE, we first
introduce Fourier transforms in angles and Laplace transforms in time,

o

F,(p)= L dte™"f, (1) =I dte " J”r dg e™*f(, 1) (5)

{) —

The Fourier transform of the right-hand side of the GBE reads, after a
change in the order of integrations,

(7]

v Y Py dy gtwy e e —1) £ —sT) (6)
x=10 T

With P,=¢ ", the Fourier-Laplace transform of the RHS of the GBE
reads, after a change in the order of summation over s with integrations
over time and scattering angle,

ehm,{c G
— v+ p) T+ innf Fm(p) {7)

v[" dy g

. l—e
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The general solution of the initial value problem posed by the GBE is
therefore, in Fourier—Laplace form,

(1—e='"*07)7.(0)
p—imow+v ™ _dy g1 —e"™")[(1—e (Prr1THim)

FS(p)= (9)

This result is valid for any interaction of short range. In order to perform
the integration over ¢/, the differential cross section corresponding to this
interaction must be specified.

The Einstein—Kubo formula gives, with the understanding that ¢(0) =0,
D =D, = di<o (1) v,(0)y =4v* [ di{cos $(1)>
0

0

(12)
D=—D, =" dionv(0)> =10 [ dr¢sin g(1))

0 0

It is convenient to introduce the complex diffusion constant @ = D, +iD,,
with Dy =D  and D, =D, . Then the Kubo formula acquires the compact
form

P =10 [ e 40,0 = 10PF(0) (13)
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From (11) and (9) the diffusion tensor follows as*

z[el'?‘-l- | l_e—l'T ] (14)
Yl T TR dv g (1 — ey (1 —e T ) — e

9 =

P -

This result is valid for any interaction of short range.

We now specialize to hard disks by using (2), or its dimensionless
Fourier transform, g,,= —(4m”>—1)~'. Proceeding via infinite series, one
can perform the y-integration in (14) for this case. The result is

[ x* PRZIEI —x!)}

—iw 1 —iwt(x)

rg‘{x]:v[l—l_x-(l_xﬁl 1+x—l)]

2x? x T 1—x

— w2 — e Ao )

; xX=¢ =e—m'}'m=e

(15)

The diffusion time scale 7 ,,(x) depends only weakly on the magnetic field.”
As B0, ie, x>0, (15) yields 7,' =(4/3) v, in agreement with the result
from the standard Boltzmann equation. In the other extreme, 4 — o0, 1e.,
x— 1, one finds ;' =v. (One can understand this physically by noting
that, in this limit, the magnetic field acts as an effective randomizer of
velocity directions.)

Magnetic field enhances diffusion time: negative magnetoresistance.
Observed for 2DEGs with arrays of antidots.
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