
Lectures 5,6,7: Boltzmann kinetic equation

Sep 18, 23, 25, 2008

Fall 2008 8.513 “Quantum Transport”

• Distribution function, Liouville equation

• Boltzmann collision integral, general properties

• Irreversibility, coarse graining, chaotic dynamics

• Relaxation of angular harmonics

• Example: Drude conductivity

• Diffusion equation

• Magnetotransport

• Quantizing fields: Shubnikov-de Haas oscillations

• Transport in a smooth, long-range-correlated disorder



• Calculations of magnetoresistance

• Weiss oscillations

• Lorentz model; generalized Boltzmann equation
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Scattering by randomly placed impurities

Disorder potential V (r) =
∑

j V (r − rj). B.k.e. takes the form

df

dt
≡ Lf =

∫

w(p, p′)(f(p′) − f(p))
d2p′

(2π~)2

where L = ∂t + v∇r + F∇p is the Liouville operator.

In the Born approximation w(p, p′) = 2π|Vp−p′|
2δ(ǫp − ǫp′). Writing

∫

d2p′

(2π~)2
=
∮ dθp′

2π

∫

νdǫp′ with the density of states ν = dN/dǫ = m/(2π~
2)

find
df

dt
= ν

∫

dθp′|Vp−p′|
2(f(p′) − f(p))

where |p′| = |p|.
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Relaxation of angular harmonics
For spatially uniform system (L = ∂t) analyze the angular dependence

of the collision integral in B.k.e.

df

dt
≡ Lf = ν

∮

dθp′

2π
w(θp − θp′)(f(p′) − f(p))

Use the Fourier series

f(p) =
∑

m

eimθf̃m, νw(θp − θp′) =
∑

m

γme
im(θp−θp′)

where f̃0 =
∮

f(p′)
dθp′

2π is proportional to the total particle number, f̃±1 =
∮

e∓iθp′f(p′)
dθp′

2π are proportional to the particle current density components
jx ± ijy, etc. For the collision integral we have

St(f̃m) = (γm − γ0)f̃m, f̃m(t) ∝ e−(γ0−γm)t

Relaxation for m 6= 0 because γm6=0 < γ0; no relaxation for f̃0 (particle
number conservation)
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Example: Drude conductivity

For a spatially uniform system the Boltzmann kinetic equation
(∂t + v∇r + eE∇p) f(r,p) = St(f) becomes

eE∇pf(p) = St(f)

Solve for the perturbation of the distribution function due to the E field:

f(p) = f0(p) + f1(p) + ..., f1 ∝ cos θ, sin θ

where f0 is isotropic. To the lowest order in E find

f1 = −τtreE∇pf0(p)

j =

∫

evf1(p)
d2p

(2π~)2
=
e2τtr
m

E

∫

f0(p)
d2p

(2π~)2
=
e2τtrn

m
E

We integrated by parts assuming energy independent τtr, valid for degenerate
Fermi gas T ≪ EF . At finite temperatures, and for energy-dependent τtr,

find σ = e2n
m 〈τtr(E)〉E.
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Diffusion equation
Solve B.k.e. for weakly nonuniform density distribution (and no external

field!).
(∂t + v∇r) f(r,p) = St(f)

First, integrate over angles θp to obtain the continuity equation:

∂n

∂t
+ ∇j = 0, j = 〈vf〉θ, n = 〈f〉θ

Here j and n is particle number current and density. Next, use angular
harmonic decomposition f(p) = f0(p) + f1(p) + ..., f1 ∝ cos θ, sin θ and
relate f1 with a gradient of f0. Perturbation theory in small spatial gradients:

v∇rf0 = −
1

τtr
f1,

1

τtr
= 〈w(θ)(1 − cos θ)〉θ

Use f1 = −τtrv∇rf0 to find the current jα = 〈vαf1〉 = −τtr〈vαvβ〉∇βf0.
From 〈vαvβ〉 = 1

2δαβv
2
F have

j = −
1

2
τtrv

2
F∇f0 = −D∇f0 = −D∇n
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Features

Diffusion constant

D =
1

2
τtrv

2
F =

1

2
vF ℓ, ℓ = vF τtr

where ℓ is the mean free path. From Einstein relation σ = e2νD find

σ = e2νD = gsgv
e2

h
kF ℓ =

e2τtrn

m

where gs,v the spin and valley degeneracy factors.

Used the density of states ν = gsgv
2πpdp

(2π~)2dE
=

gsgvkF
2π~vF

1) Temperature dependence due to τtr(E), weak near degeneracy;

2) Boltzmann eqn. is a quasiclassical treatment valid for kF ℓ ≫ 1. In

this case σ ≫ e2

h , metallic behavior;

3) At kF l ∼ 1, or λF ∼ ℓ, onset of localization
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Another approach

Diffusion constant from velocity correlation:

D =

∫ ∞

0

dt〈vx(t)vx(0)〉, ensemble averaging : θ, disorder

Derivation: 〈(x(t) − x(0))2〉 =
∫ t

0

∫ t

0
dt′dt′′〈vx(t′)vx(t′′)〉 = 2Dt.

Explanation (T2 ≡ τtr):

Exponentially decreasing correlations 〈vx(t)vx(0)〉 = e−t/τtr〈v2
x(0)〉 =

1
2v

2
Fe

−t/τtr yield D = 1
2v

2
F τtr.
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Magnetotransport

Finite B field, Lorentz force, current not along E. Thus conductivity σ
not a scalar but a 2x2 tensor.

Einstein relation σαβ = e2νDαβ for the diffusion tensor

Dαβ =

∫ ∞

0

dt〈vα(t)vβ(0)〉, α, β = 1, 2

Between scattering events circular orbits ωc = eB/m, Rc = mvF/eB.
Complex number notation ṽ(t) = vx(t) + ivy(t) = vFe

iθ+iωct. Find D from

Dxx + iDyx =

∫ t

0

dt〈ṽ(t) cos θvF 〉θe
−t/τtr =

D

1 + (ωcτ)2
(1 − iωτ)

Dyy = Dxx, Dxy = −Dyx.
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Conductivity and resistivity tensors

σ̂ =
σ

1 + (ωcτ)2

(

1 −ωcτ
ωcτ 1

)

, ρ̂ = σ̂−1 = ρ

(

1 ωcτ
−ωcτ 1

)

The off-diagonal element:

ρxy ≡ RH =
B

en
=

1

gsgv

h

e2
~ωc

EF

Features:

(i) Classical effects of B field important when ωcτ & 1, these field can
be weak in high mobility samples;

(ii) Recover classical Hall resistivity;

(iii) Zero magnetoresistance in this model: ρxx(B)−ρxx(0) = 0. Generic
for short-range scattering.

(iv) The features (i), (ii), (iii) are fairly robust in the classical model, but
not in the presence of quantum effects.
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Quantum effects
We’ve used σ = e2νD with the zero-field density of states; assumed that

τtr is independent of B.

From Born approximation for delta function impurities U(r) =
∑

j uδ(r−
rj) we have (see above):

τ−1 =
2π

~
ν(EF )u2ci

with ci the impurity concentration. For ν(EF ) modulated by Landau levels

ν(ǫ) =
∑

n>0

nLLδ(ǫ− n~ωc), nLL = B/Φ0 = eB/h

find Shubnikov-de Haas (SdH) oscillations periodic in 1/B.

Period found from particle density on one Landau level nLL = eB/h,
giving ∆(1/B) = e

h
gsgv
nel

. Can be used to determine electron density.

Plateaus in RH at RH = 1
gsgv

h
e2

1
N , with N = 1, 2, ...: the integer

Quantum Hall effect.
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Figure 1: Schematic dependence of the longitudinal resistivity ρxx

(normalized to the zero-field resistivity) and of the Hall resistivity ρxy = RH

(normalized to h/2e2) on the reciprocal filling factor ν−1 = 2eB/hnel (for
gs = 2 and gv = 1). Deviations from the quasiclassical result occur in strong
B field, in the form of Shubnikov-de Haas oscillations in ρxx and quantized
plateaus in ρxy.
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Applications of the SdH effect

SdH oscillations in D=3 are sensitive to the extremal cross-sections of
Fermi surface, which depend on the orientation of magnetic field w.r.p.t.
crystal axes

Thus SdH can, and indeed are, used to map out the Fermi surface 3D
shapes.
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Fermi surface splitting from SdH oscillations

Figure 2: Gate voltage dependence of SdH oscillations. Beating patterns
in the SdH oscillations appear due to a spin-orbit interaction. By
comparing the oscillations with the numerical simulation based on Rashba
spin-orbit interaction, spin-orbit interaction parameter is obtained. From:
“Gate control of spin-orbit interaction in an inverted InGaAs/InAlAs
heterostructure” J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki Phys.
Rev. Lett., 78, 1335 (1997).
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Classical transport in a long-range disorder

Relevant e.g. for high mobility semiconductor systems in which charge
donors are placed in a layer at a large distance d from the two-dimensional
electron gas (2DEG), kFd ≈ 10. Also of pedagogical interest, as an
illustration of nonzero magnetoresistance arising from classical transport.

Random potential with long-range correlations, W (r−r′) = 〈V (r)V (r′)〉
decays at |r − r′| ∼ d ≫ λF . It is convenient to introduce the formfactor
W̃ (q) =

∫

eiqrW (r)d2r = 〈|Vq|
2〉. For a random potential of amplitude

δV (r) ∼ αEF we estimate W̃ (q) ≈ W̃ (0) ∼ (αEF )2d2 for kd . 1, and
W̃ (q) ≈ 0 for kd > 1.

For charge impurities, as a simple model, one can take W̃ (q) =
R

eiqrW (r)d3r =

(π~
2/m)2nie

−2|q|d (the prefactor (π~
2/m)2 is due to correlations in impurity positions

and/or charge states).

High mobility for d ≫ λF . Transport coefficients dominated by small-
angle scattering.
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Transport time from Fermi’s GR

The scattering rate wpp′ = 2π|Vp−p′|
2δ(ǫp′ − ǫp) yields

τ−1
tr =

∫

(1 − cos θ′)wpp′
d2p′

(2π~)2

Note: the characteristic p− p′ ∼ 1/d, thus θ ∼ λF/d≪ 1.

Using
∫

...δ(ǫp′ − ǫp)
d2p′

(2π~)2
=
∫ π

−π
νdθ′

2π , expanding 1 − cos θ ≈ 1
2θ

2 and

replacing
∫ π

−π
dθ →

∫∞

−∞
dθ, find

τ−1
tr =

ν

2

∫ ∞

−∞

|Vp−p′|
2θ2dθ =

ν~
2

(mvF )3

∫ ∞

0

W̃ (q)q2dq

with ν = m/(2π~
2).

Estimate:
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Diffusion along the Fermi surface

Slight bending of the classical trajectory (which is a straight line for
V = 0):

dp

dt
= −∇V,

dθ

dt
= (mvF )−1n×∇V

where n = v/|v|.

Diffusion in θ:

(∂t + v∇r + eE∇p) f(r,p) = Dθ
∂2f

∂θ2
(instead of St(f))

whereDθ =
∫∞

0
dt〈θ̇(t)θ̇(0)〉 = (mvF )−2

∫∞

0
〈∂yV (x = vF t)∂yV (x = 0)〉 =

1
2m2v3

F

∑

qy
q2yW̃ (qy)

Derivation from B.k.e.: For the mth harmonic f̃ =
∮

f(θ)e−imθ dθ
2π have

St(f̃m) = (γ0 − γm)f̃m. Approximate: γ0 − γm =
∮

(1 − cosmθ)w(θ)dθ
2π ≈

∮

1
2m

2θ2w(θ)dθ
2π = Dθm

2. Can expand in θ b/c the integral is dominated by

θ ∼ λf/d≪ 1. This gives St(f̃m) = Dθm
2f̃m, or St(f(θ)) = Dθ∂

2
θf(θ).
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Transport time from diffusion eqn

For spatially uniform system write ∂tf = Dθ
∂2f
∂θ2 ; for the harmonics

δf(θ) ∝ cos θ, sin θ have δf(t) ∝ e−Dθt. Thus

τ−1
tr = Dθ =

1

2πm2v3
F

∫ ∞

0

q2W̃ (q)dq

which coincides with τtr found from Fermi’s GR.
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Magnetotransport problem: memory effects

The relaxation-time approximation: collisions with impurities described
by Poisson statistics (no memory about previous collisions): 〈vα(t)vβ(0)〉 =
e−t/τ〈vα(0)vβ(0)〉. In the presence of magnetic field, for complex v(t) =
vx(t) + ivy(t) have 1

2〈v(t)v
∗(0)〉 = 1

2e
−t/τeiωct〈v(0)v∗(0)〉.

Generalize to a memory function f(t) = e−t/τ (1 +
∑∞

n=1 cn(t/τ)n/n!).
Then the response to a dc electric field E ‖ x̂ will be

jx + ijy =
ne2

m

∫ ∞

0

f(t)eiωctEdt =
σ0E

1 − iωcτ

(

1 +

∞
∑

n=1

cn
(1 − iωcτ)n

)

where σ0 = ne2τ/m the Drude conductivity. For cn = 0 recover zero
magnetoresistance ∆ρxx = ρxx(B)−ρxx(0) = 0 and classical Hall resistivity
ρxy = B/ne. However, for a non-Poissonian memory function f(t) the
magnetoresistance does not vanish. Thus ∆ρxx(B) is a natural probe of the
memory effects in transport.
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Magnetotransport in a smooth potential

Cyclotron motion in a spatially varying electric field and constant B field:

v̇ = ωcẑ × v +
e

m
E(r), ωc = eB/m, E(r) = −∇V (r)

Drift of the cyclotron orbit guiding centerX = x+vy/ωc, Y = y−vx/ωc.
From

v̇x = ωcvy +
e

m
Ex(r), v̇y = −ωcvx +

e

m
Ey(r), r = (x, y)

have

Ẋ = vx + v̇y/ωc = Ey(r)/B, Ẏ = vy − v̇x/ωc = −Ex(r)/B

Find dynamical equation for the guiding center coordinates X and Y :

Ṙ =
1

B
E(r) × ẑ, R = (X,Y ), r = R+

1

ωc
ẑ × v

equivalent to the Lorentz force equation, useful in the limit E/B ≪ vF
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Electrons moving in crossed E and B fields

Taken from http://www.physics.ucla.edu/plasma-exp/beam/
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Adiabatic approximation

For B/E ≫ v−1
F and slowly varying E(r) have fast cyclotron motion

superimposed with slow drift.

Adiabatic approximation: average dynamical quantities (e.g. potential
V (r) or the field E(r)) over cyclotron motion with X and Y kept frozen:

〈f(r(t))〉cycl.motion =

∮

f(X + rc sinφ, Y + rc cosφ)
dφ

2π
, rc = vF/ωc

(approximate velocity by vF ). Going to Fourier harmonics f(r) =
∑

q f̃qe
iq.r,

find

〈
∑

q

f̃qe
iq.r(t)〉cycl.motion =

∑

q

f̃qe
iq.R(t)eθqJ0(qrc), q =

√

q2x + q2y

where J0(x) = 1
2π

∫ π

−π
eix sin φdφ the Bessel function.
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Velocity autocorrelation function

v = Ṙ + (ṙ− Ṙ) = Ṙ +
1

ωc
ẑ × v̇ = slow part + fast part

In the adiabatic approximation, ignoring correlations between the slow part
and the fast part, write the autocorrelation function of velocity as

〈v(t)v∗(0)〉ens ≈

(

〈Ṙ(t)Ṙ∗(0)〉 +
1

ω2
c

〈v̇(t)v̇∗(0)〉

)

= e−t/τ
(

〈(Ṙ)2〉ens + eiωctv2
F

)

The factor e−t/τ accounts for scattering on the short-range disorder.
Substitute the adiabatic-average value

Ṙ = −i
1

B
〈E(t)〉cycl.motion =

∑

q

(qx + iqy)Ṽqe
iq.R(t)eθqJ0(qrc)

(for complex components ...× ẑ ≡ ...× (−i)). Treating different harmonics
as independent, 〈VqVq′〉 ∝ δ(q + q′), have

〈(Ṙ)2〉ens =
1

B2

∑

q

q2|Ṽq|
2J2

0 (qrc)
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Diffusion from the drift velocity

Find the diffusion tensor components from

Dxx + iDyx =

∫ ∞

0

1

2
〈v(t)v∗(0)〉ensdt =

1

2
τ〈(Ṙ)2〉ens +

v2
F τ(1 + iωcτ)

2(1 + ω2
cτ

2)

For an estimate take 〈|Ṽq|
2〉 = W̃ (q) = (αEFd)

2e−2qd, which gives
∑

q q
2|Ṽq|

2J2
0 (qrc) ∼ (αEF )2

drc
. This is true in the limit of cyclotron radius

larger than the correlation length of disorder, rc = vF/ωc ≫ d. (The

asymptotic form of J0(x≫ 1) =
√

2
πx cos(x− π/4) was used.)

For a weak short-range disorder (or strong B field) have ωcτ ≫ 1, giving

Dxx ≈
(αEF )2τ

2drcB2
+

v2
F

2ω2
cτ

≈
(αEF )2τωc

2dvFB2
, Dyx ≈

v2
F

2ωc

Thus both Dxx and Dyx scale as 1/B (same true for σxx and σyx). This
gives resistivity ρxx = σxx/(σ

2
xx +σ2

yx) linear in B at strong fields, ωcτ ≫ 1.
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Note: increase in σxx implies increase in ρxx b/c ρxy ≫ ρxx at strong fields,
and thus ρxx ≈ σxx/σ

2
xy. Thus a positive magnetoresistance.

All that can be done more rigorously using B.k.e., see Beenakker, PRL
62, 2020 (1989)

The simple limit considered here is when λF ≪ d ≪ rc ≪ ℓ. In other
regimes the analysis can be carried out using Boltzmann equation (see
papers by Mirlin, Wölfle, Polyakov et al.)
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Linear magnetoresistance in a high mobility 2DEG

ρxx(B) ∝ |B|

The behavior at high temperatures is fully accounted for by classical
dynamics; at low temperatures the Quantum Hall effect is observed.
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Resistance oscillations due to a periodic grating I

Instead of (or, in addition to) a long-range-correlated disorder impose a
weak periodic grating V (r) = V0 cos(2πy/a); observed resistance oscillations
periodic in 1/B field, known as Weiss oscillations, with period determined
by the condition

rc = vF/ωc = 2a/n, n = 1, 2, 3...

(D. Weiss, K. v. Klitzing, K. Ploog, and G. Weimann, Europhys. Lett. 8,
179 (1989), where an optical grating was used).

Theory: cyclotron orbit drift enhanced or suppressed when the orbit
radius is in or our of resonance.
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Theory of Weiss oscillations

Taken from: Beenakker, PRL 62, 2020 (1989)
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Magnetotransport of a Lorentz gas

Based on: A. V. Bobylev, F. A. Maa, A. Hansen, and E. H. Hauge,Phys.
Rev. Lett. 75: 197 (1995).

Classical dynamics of a charged particle in the presence of hard disks of
density n and radius a. In the absence of magnetic field, the mean free path
is ℓ = Σ/n = 2a/n. Transport time τ = ℓ/vF .

Applications: strong scatterers in a 2DEG (e.g. antidots)
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The canonical Boltzmann kinetic equation:

Here n is the density of scatterers (hard disks), a is the disk radius, σ(ψ)
is the differential scattering cross-section, Σ = 2a is total cross-section.

In this form, B.k.e. is identical to what we studied before. Thus expect
one can zero magnetoresistance and ρxy = n/Be.
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Scattering on a hard disc
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The limit of small radius, high density

So-called Grad limit: τ = nvΣ constant, while n→ ∞, a→ 0 (for hard
discs Σ = 2a).

Each scatterer is easy to miss, but if it is encountered once there’s a
high chance of comeback. Features of the dynamics in this limit:

(i) An electron either does not collide with any scatterer or it collides
(in the course of time) with infinitely many different ones. Exceptions are
“measure zero;”

(ii) An electron can only recollide with a given scatterer only if no other
scatterer has been hit in the mean time;

(iii) The total scattering angle with the same scatterer after s collisions is
sψ, where ψ is the scattering angle of the initial collision with this scatterer.
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Why sψ?

(iii) The total scattering angle with the same scatterer after s collisions is
sψ, where ψ is the scattering angle of the initial collision with this scatterer.
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The limit of small radius, high density

GBE takes into account multiple encounters with each scatterer:
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Magnetic field enhances diffusion time: negative magnetoresistance.
Observed for 2DEGs with arrays of antidots.
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