Lecture 4: Resonant Scattering

Sep 16, 2008

Fall 2008 8.513 “Quantum Transport”
e Analyticity properties of S-matrix

e Poles and zeros in a complex plane

e Isolated resonances; Breit-Wigner theory
e Quasi-stationary states

e Example: S(F) for inverted parabola

e Observation of resonances in transport

e Fabry-Perot vs. Coulomb blockade



SYMMETRIES AND ANALYTIC PROPERTIES OF S-MATRIX

Causality: S(FE) analytic in the complex half-plane Im E' > 0.

Example: S-matrix for a delta function; E = —%W/ + ud ()Y

AN R
t r — T ) 2ik  2y/—2F

Unitary for real E' > 0; analytic in the complex E plane; branch cut at
E > 0 (convention).

General decomposition: scattering channels and phases:

S(E) =) e [n)(n]
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Symmetries in the plane of complex k:

For central force problem, there are two asymptotic solutions X,(jf)(r) X
et(kr=ml/2) " Consider a solution which is regular near r = 0:

o) = a(k)xiy (r) — bulk)xsr (r) (1)

Zero boundary condition at » = 0 gives

k) X (0o bk
al(k) }eo X](;lr)(r) h Silk) = a;(k)

Consider symmetry & — —k: S.E. unchanged (kinetic energy is ~ k?);
wavefunctions change as X( )( )= (— 1)lx(q2l( ). Thus

— Si(k) = S; (k)

Next, from time reversal symmetry, complex conjugation transforms a
solution of S.E. xgi(r) to another solution of the same S.E., xj,(r) .
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Combining with uniqueness of the solution (1), obtain

S~
SNy
~—
S
X
—~
SN
~—

a

*

= Si(k) = (S, (k)

This gives relations between S;(k) in the four quadrants:

Si(k) = So, Si(k*) = =, Si(—k*) =55 Si(—k) ==

* 7
SO

from k plane to E plane; prove analyticity at ImE > 0 ...

material online).
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(see handout
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RESONANCES

Example: 1D motion with a hard wall at x = 0 and a delta function
U(x) = ud(x — a). One channel; S-matrix a 1 x 1 matrix, a c-number

Method 1. Solve S.E. Ey = —%w” + ud(x — a)y for x > 0:
W0 <z <a)=Asinkz, (x> a)=e ka4 geikle=a)
Matching 1 values: [¢/]%" = wi(a)
1+ S5 =Asinka, k(S —1)— Akcoska =u(l+5)

solved by S = (sin ka+ (k/u)e?*®) /(sin ka+ (k/u)e~ ") (explicitly unitary)
Method 2. Summing partial reflected waves (note the hard-wall minus sign):

_ ‘ ‘ t2€2ik¢a
Frotal = T — t262zkza + t2,re4zka . t2r2662ka 4o =r—

1 + re%ka

214z — ze2tka - : :
_ _622kza _ _62zkzaS _ 62@ka6225

- 1 — z + ze?ika
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Sanity check:
(x> 0) = sin k.

For u > 0, kinks in 0 of size 7 located at ka =~ ™, n > 0.

tan ka tan o
2.0 \‘:" ; ‘\
1.5+
1.0 +
0.5 -1 kfa
0.0 = —— L
-1.0 4
—E.5
2.0 | i I -
0 | 2 4 5
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PHASE SHIFTS

: tan ka
S =—e* tand =
© o 1+ (u/k)tan ka
for uw = 0 have 0 = ka, agrees with the wavefunction
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POLES AND ZEROS IN THE COMPLEX k PLANE
k—knp—ikn
k—kp+ikn

Quasibound states: near each resonance S ~ (true for strong

barrier, u/k, > 1). Schematically:

I ka

O
0 0 0
O @)
% I i l E 1
— 37T —27 — T oy 3T Re ka
- S
¥ * 2
* *

Zeros at Im k£ > 0; poles at Im £ < 0; symmetrically arranged

L Levitov, 8.513 Quantum transport 6



COMPLEX ENERGY PLANE

The S-matrix is defined on two Riemannian sheets: E = k?/2.

Im E [ £
£ sheet 2 _gheet

0 *

@] %

* 0 A * B
0 B RekF& * A ReFE

O %

0 f «
Branch Branch
point point
Cut Cut

S(F) analytic on the E(1) sheet.
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ONE-POLE APPROXIMATION

Analytical continuation from the 1st quadrant of E(!) to the 4th quadrant
of £,

Im £
First quadrant
EW-gheet
O
0]
0O
Re E
* *
*
Branch
i Fourth quadrant
E'?)_gheet
Breit-Wigner behavior near resonance:
S(E) ~ — :
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(QUASISTATIONARY STATES

Seek solution of S.E. Ey = —%@D”Jr U (x) with only an outgoing wave,
no incoming wave:

wasym — wzn + wout — wzn + S(E)w’ma S(E) — 00, wzn — 0

Unitarity violated, complex-valued energy eigenstates. Near a pole

S(F) ~ —g:gglgg find solution £ = Ey — iy/2

. . - - 1 .
Time evolution (1) ox e” 8t = ¢="E0te=37¢ thus v is the decay rate.

Generalization of Gamow's tunneling theory.

Example: S.E. on the semi-axis x > 0 with U(x) = ud(x — a) (see
above). Setting S(FE) = oo, have

. 1 1 1
1—z4ze?the — 0, 2ika=1In (1 — ;) — 27rm—;—2—z2+0( ) z = 2@%
weak tunneling large u limit. Find & = mn/a + Ak, Ak = AK — iAK”,

AK' = h4(a7:::/a) The decay rate is v = 2Im F = 2h ko, Ak
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SCATTERING ON AN INVERTED PARABOLA REVISITED

For the scattering problem Evy = —%W/ - %:czw find quasi-energy states:
(i) Try ¥o(x) = ¢ /2 (pure outgoing wave), get Eo = —i/2: (i) Generalize
to Yn(x) = Hy(ix)ei® /2 (may need to change the mass sign, m/ = —m!).
Find the spectrum of quasi-energies: F,, = —i(n + %)

For a symmetric potential, the scattering matrix is diagonal in the basis
of the even and odd wavefunctions:

. _ 1 [ o200+ 4 20— 2004 _ 2i6_
5 5
S = e )+ e” =) {=]= 9 ( p2i04 _ o200 200y | 26

Consider f(E) =t(E)/r(E) = (e*+ — e*9-) /(e**+ + €*'*~). Because
e2"+ has poles at E,, and zeros at —E,, with n even, and e?*°~ has poles at
FE,, and zeros at —F,, with n odd. Therefore:

f(En) = +1 (n:2k)7 f(_En) =—1 (n=2k),

f(=E,) =41 (n=2k+1), f(FE,)=-1Mn=2k+1),
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An analytic function of E that takes these values at ¢ = F,, is ie™¢. Such a
function is unique, thus f(€) = t(e)/r(e) = ie™ .

Combining this with unitarity |t(E)|?> + |r(E)|?> = 1, obtain

HE))P =

1
2 _
() S =

o 1_|_€27TE’

in agreement with what we have found in Lecture 2.

Alternative route: use modified creation and annihilation operators
a= 2_1/2(:C+’13d%), a’ =27Y%(z—iL), [a,a'] = i to write the Hamiltonian
as H = —a'a — 5 etc.
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PROJECTING HAMILTONIAN ON THE SINGLE-RESONANCE
SUBSPACE

Example: hard wall + a delta function (again!)

Suppose we are interested only in the energies near one resonance E,,
(e.g. Fermi level is aligned with resonance). For a narrow resonance

' < AE,Er (AE = FE, 1 — E,) we can write

d
H,es = —ith% + E,n)(n|+ Mx = 0)(n| + X*|n){z = 0

where (z'|xr = 0) = d(x — 2’). Here —oco < x < o0, i.e. the z-axis is
unfolded.

For the wavefunction ) | (x)|x) + ¢|n) write S.E. as

EY(z) = —ihvpd'(z) + ANo(2)p, E¢ = E,p+ \* /dac(S(:C)zp(:v)

Generally ¥ () has a jump at zero, thus the 2nd equation must be understood

as (E — E,)é = IX* (1(0+) +1(0-)).

L Levitov, 8.513 Quantum transport 12



Solving:

it ($(0+) = 9(0-) + 5o ($(04) +6(0-)
W(0+4) (7/2 — i(E — En)) + (0-) (v/2+i(E — E,)) =0, 7= %
$(0+) = (0 g

Phase shift changes by 7 across the resonance:

21-5:_E—En—i7/2
E_En+17/27

e cotd =2(FE — E,)/y

L Levitov, 8.513 Quantum transport 13



LIFETIME OF A RESONANCE STATE COUPLED TO
CONTINUUM

Initial state: ¢ =1, ¥;,, = 0.
1
(B = En)¢ = A" ($(0+) +0),  —ihvp ($(0+) = 0) +2d =0
Eliminate ¢(0+) and write (E — E,,)¢ = —izy¢ (note complex quasi-energy

E =E, — v).

In the time representation this gives
i = (E - —7) 6, ) =e e

Generalization of Wigner-Weisskopf treatment of atom radiation.
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RESONANCE COUPLED TO TWO LEADS

Example: 1D S.E. with a potential U(x) = u1d(x+a/2) +uzd(x —a/2).

Method 1. Summing partial waves in analogy with the Fabry-Perot
interferometer problem:

t1t2

L 21ka 21ka\2 L
Liotal = C1to + t17r119l0€ -+ tth(TQtQG ) 4+ ... = . T1T2€2ika

21ka
21ka t17“ €

4i1ka 4+

ka
Ttotal€' & = T1 + t17“2€ + t1r2r16 =71+

1 — ryrqe?ika
Check unitarity!
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Method 2. Project on the resonance subspace (1,2 = TLeft Right):

d d
H,es = —thvp——ithvp—-+FEp|n) (n|+(A1]z1 = 0) + As]zs = 0)) (n|+h.c.
d.CUl d.CUQ

Let \; = \o. Define the even and odd states 1 = 27 Y/2(¢p +1_). The
resonant level couples to 4 only:

d d
Hyes = —ilwp—— — ilwp—— ~+ Ey|n)(n| + V2 |z = 0)(n| + h.c.
dx dx _

Note \' = \/5)\. For scattering in the even and odd channels find
w—l—,out — 225¢—|—,in1 w—,out — w—,in which gives
7”—|—t:62i5, r—t=1 — 1r=

<62i5 i 1) ’ t — <62i5 . 1)

1 1
2 2

Lorentzian peak in transmission (Note perfect transmission on resonance):

FE—-FE, —1y 72

1
T(E) = |t]* = 5(1—(308 20) =~ |2 — + h.c.| =

1
11" E-E.tiy (E—E, )2+
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RESONANCES IN ELECTRON CAVITY

Resonance peaks in conductance:

G(E) o 62 FLFR
~ h(E—Fy)?+iTL+Tg)?

Source  0.42um

ROd*)

»
¥

]
-080 -0-85 -000
va(v)

Resistance versus gate voltage of a cavity (defined
by pates on top of a GaAs-AlGaAs heterostructure; see in-
set), showing plateau like features (for R S h/2e?) and tun-
neling resonances (for R 2 h/2e?). The left- and right-hand
curves refer to the adjacent resistance scales. Taken from C.
G. Smith et al., Surf. Sei. 228, 387 (1990).
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LOCALIZED RESONANCE LEVELS IN THE TUNNEL BARRIER

1.5

71 0.5 v v
Gate W Gate
l “ = - n 0T
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n+ 24 L 3 1-0" T} n
n+
\‘inversion 8
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(a) S 0.5} 1
o
5
N ‘/\/@
0.0 T p— i
6.8 7.5 8.2
Ey Gate voltage (volts)
Ec

Oscillations in the conductance as a function of gate

(b) voltage at 0.5 K are attributed to resonant tunneling through
localized states in the potential barrier. A second trace is

Schematic diagram of a Si MOSFET with a split shown for a magnetic field of 6 T {with a horizontal offset of

gate (a), which creates a potential barrier in the inversion —0.04V). The inset is a close-up of the largest peak at 6 T,
layer (b). Taken from T. E. Kopley et al. Phys. Rev. Lett. together with a Lorentzian fit. Taken from T. E. Kopley et
61, 1654 (1988). al. Phys. Rev. Lett. 61, 1654 (1988).
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IN A QUANTUM POINT CONTACT

10r .
=
o 81
2
O 61
4+
2_

=2.25 -2.20
Vi (V) -

2.0 1.5 1.0 0.5
Gate Voltage (V)

Conductance as a function of gate voltage for a quan-
tum point contact at 0.55 K. The inset 1s a close-up of the
low-conductance regime, showing peaks attributed to trans-
mission resonances associated with impurity states in the con-
striction. Taken from P. L. McEuen et al., Surf. Sci. 229, 312
(1990).
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IN A FABRY-PEROT RESONATOR

1.02jm

POWER
SPECTRUM
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(a) Schematic diagram of a constriction with two
adjustable external reflectors defined by gates on top of a
GaAs-AlGaAs heterostructure, (b) Plot of the constriction
resistance as a function of gate voltage with the external re-
flector gates (Y1, Y2) grounded. Inset: Fabry-Perot-type
transmission resonances due to a variation of the gate voltage
on the reflectors (Y1, Y2) (bottom panel), and Fourier power
spectrum (top panel). Taken from C. G. Smith et al., Surf.
Sci. 228, 387 (1990).
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