
Lecture 4: Resonant Scattering

Sep 16, 2008

Fall 2008 8.513 “Quantum Transport”

• Analyticity properties of S-matrix

• Poles and zeros in a complex plane

• Isolated resonances; Breit-Wigner theory

• Quasi-stationary states

• Example: S(E) for inverted parabola

• Observation of resonances in transport

• Fabry-Perot vs. Coulomb blockade



Symmetries and analytic properties of S-matrix

Causality: S(E) analytic in the complex half-plane ImE > 0.

Example: S-matrix for a delta function; Eψ = −1
2ψ

′′ + uδ(x)ψ

S =

(

r t′

t r′

)

=

( z
1−z

1
1−z

1
1−z

z
1−z

)

, z =
u

2ik
=

u

2
√
−2E

Unitary for real E > 0; analytic in the complex E plane; branch cut at
E > 0 (convention).

General decomposition: scattering channels and phases:

S(E) =
∑

n

e2iδn|n〉〈n|

L Levitov, 8.513 Quantum transport 1



Symmetries in the plane of complex k:

For central force problem, there are two asymptotic solutions χ
(±)
kl (r) ∝

ei(kr−πl/2). Consider a solution which is regular near r = 0:

ψ(r) = al(k)χ
(−)
kl (r) − bl(k)χ

(+)
kl (r) (1)

Zero boundary condition at r = 0 gives

bl(k)

al(k)
= lim

r→0

χ
(−)
kl (r)

χ
(+)
kl (r)

hence Sl(k) =
bl(k)

al(k)

Consider symmetry k → −k: S.E. unchanged (kinetic energy is ∼ k2);

wavefunctions change as χ
(±)
kl (r) = (−1)lχ

(∓)
−kl(r). Thus

bl(k)

al(k)
=
al(−k)
bl(−k)

, Sl(k) = S−1
l (−k)

Next, from time reversal symmetry, complex conjugation transforms a
solution of S.E. χkl(r) to another solution of the same S.E., χ∗

kl(r) .
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Combining with uniqueness of the solution (1), obtain

al(k)

bl(k)
=
b∗l (k)

a∗l (k)
, Sl(k) =

(

S−1
l (k)

)∗

(for real k). Extending k to the complex plane, we find

Sl(k) =
(

S−1
l (k∗)

)∗

This gives relations between Sl(k) in the four quadrants:

Sl(k) = S0, Sl(k
∗) =

1

S∗
0

, Sl(−k∗) = S∗
0 , Sl(−k) =

1

S0

from k plane to E plane; prove analyticity at ImE > 0 ... (see handout
material online).
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Resonances
Example: 1D motion with a hard wall at x = 0 and a delta function

U(x) = uδ(x− a). One channel; S-matrix a 1 × 1 matrix, a c-number

Method 1. Solve S.E. Eψ = −1
2ψ

′′ + uδ(x− a)ψ for x > 0:

ψ(0 < x < a) = A sin kx, ψ(x > a) = e−ik(x−a) + Seik(x−a)

Matching ψ values: [ψ′]
a+
a− = uψ(a)

1 + S = A sin ka, ik(S − 1) −Ak cos ka = u(1 + S)

solved by S = (sin ka+(k/u)eika)/(sin ka+(k/u)e−ika) (explicitly unitary)

Method 2. Summing partial reflected waves (note the hard-wall minus sign):

rtotal = r − t2e2ika + t2re4ika − t2r2e6ika + ... = r − t2e2ika

1 + re2ika

= −e2ika1 + z − ze−2ika

1 − z + ze2ika
= −e2ikaS = e2ikae2iδ
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Phase shifts

S = −e2iδ, tan δ =
tan ka

1 + (u/k) tan ka
Sanity check: for u = 0 have δ = ka, agrees with the wavefunction
ψ(x > 0) = sin kx.

For u > 0, kinks in δ of size π located at ka ≈ πn, n > 0.
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Poles and zeros in the complex k plane
Quasibound states: near each resonance S ≈ k−kn−iκn

k−kn+iκn
(true for strong

barrier, u/kn ≫ 1). Schematically:

Zeros at Im k > 0; poles at Im k < 0; symmetrically arranged
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Complex energy plane

The S-matrix is defined on two Riemannian sheets: E = k2/2.

S(E) analytic on the E(1) sheet.
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One-pole approximation
Analytical continuation from the 1st quadrant of E(1) to the 4th quadrant

of E(2).

Breit-Wigner behavior near resonance:

S(E) ≈ −E −En − iγn/2

E −En + iγn/2
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Quasistationary states

Seek solution of S.E. Eψ = − ~
2

2mψ
′′ +U(x) with only an outgoing wave,

no incoming wave:

ψasym = ψin + ψout = ψin + S(E)ψin, S(E) → ∞, ψin → 0

Unitarity violated, complex-valued energy eigenstates. Near a pole

S(E) ≈ −E−E0−iγ/2
E−E0+iγ/2 find solution E = E0 − iγ/2

Time evolution ψ(t) ∝ e−iEt = e−iE0te−
1
2γt, thus γ is the decay rate.

Generalization of Gamow’s tunneling theory.

Example: S.E. on the semi-axis x > 0 with U(x) = uδ(x − a) (see
above). Setting S(E) = ∞, have

1−z+ze2ika = 0, 2ika = ln

(

1 − 1

z

)

= 2πin−1

z
− 1

2z2
+O(z−3), z =

u

2ik

weak tunneling, large u limit. Find k = πn/a + ∆k, ∆k = ∆k′ − i∆k′′,

∆k′′ = ~
4(πn/a)2

4am2u2 . The decay rate is γ = 2ImE = 2~
2

mkn∆k′′n
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Scattering on an inverted parabola revisited

For the scattering problem Eψ = −1
2ψ

′′− 1
2x

2ψ find quasi-energy states:

(i) Try ψ0(x) = eix2/2 (pure outgoing wave), get E0 = −i/2; (ii) Generalize

to ψn(x) = Hn(ix)eix2/2 (may need to change the mass sign, m′ = −m!).
Find the spectrum of quasi-energies: En = −i(n+ 1

2).

For a symmetric potential, the scattering matrix is diagonal in the basis
of the even and odd wavefunctions:

S = e2iδ+|+〉〈+| + e2iδ−|−〉〈−| =
1

2

(

e2iδ+ + e2iδ− e2iδ+ − e2iδ−

e2iδ+ − e2iδ− e2iδ+ + e2iδ−

)

Consider f(E) = t(E)/r(E) = (e2iδ+ − e2iδ−)/(e2iδ+ + e2iδ−). Because
e2iδ+ has poles at En and zeros at −En with n even, and e2iδ− has poles at
En and zeros at −En with n odd. Therefore:

f(En) = +1 (n = 2k), f(−En) = −1 (n = 2k),

f(−En) = +1 (n = 2k + 1), f(En) = −1 (n = 2k + 1),
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An analytic function of E that takes these values at ǫ = En is ieπǫ. Such a
function is unique, thus f(ǫ) = t(ǫ)/r(ǫ) = ieπǫ.

Combining this with unitarity |t(E)|2 + |r(E)|2 = 1, obtain

|r(E)|2 =
1

1 + e2πE
, |t(E)|2 =

1

1 + e−2πE

in agreement with what we have found in Lecture 2.

Alternative route: use modified creation and annihilation operators
a = 2−1/2(x+i d

dx), a† = 2−1/2(x−i d
dx), [a, a†] = i to write the Hamiltonian

as H = −a†a− i
2 etc.
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Projecting Hamiltonian on the single-resonance

subspace

Example: hard wall + a delta function (again!)

Suppose we are interested only in the energies near one resonance En
(e.g. Fermi level is aligned with resonance). For a narrow resonance
Γ ≪ ∆E,EF (∆E = En+1 −En) we can write

Hres = −i~vF
d

dx
+En|n〉〈n| + λ|x = 0〉〈n| + λ∗|n〉〈x = 0|

where 〈x′|x = 0〉 = δ(x − x′). Here −∞ < x < ∞, i.e. the x-axis is
unfolded.

For the wavefunction
∑

xψ(x)|x〉 + φ|n〉 write S.E. as

Eψ(x) = −i~vFψ
′(x) + λδ(x)φ, Eφ = Enφ+ λ∗

∫

dxδ(x)ψ(x)

Generally ψ(x) has a jump at zero, thus the 2nd equation must be understood
as (E − En)φ = 1

2λ
∗ (ψ(0+) + ψ(0−)).
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Solving:

−i~vF (ψ(0+) − ψ(0−)) +
|λ|2

2(E −En)
(ψ(0+) + ψ(0−))

ψ(0+) (γ/2 − i(E − En)) + ψ(0−) (γ/2 + i(E −En)) = 0, γ =
|λ|2
~vF

ψ(0+) = ψ(0−)
E −En − iγ/2

E −En + iγ/2

Phase shift changes by π across the resonance:

e2iδ = −E − En − iγ/2

E − En + iγ/2
, cot δ = 2(E −En)/γ
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Lifetime of a resonance state coupled to

continuum

Initial state: φ = 1, ψin = 0.

(E −En)φ =
1

2
λ∗ (ψ(0+) + 0) , −i~vF (ψ(0+) − 0) + λφ = 0

Eliminate ψ(0+) and write (E−En)φ = −i12γφ (note complex quasi-energy
E = En − i

2γ).

In the time representation this gives

iφ̇ =

(

En − i

2
γ

)

φ, φ(t) = e−Ente−
1
2γt

Generalization of Wigner-Weisskopf treatment of atom radiation.

L Levitov, 8.513 Quantum transport 14



Resonance coupled to two leads

Example: 1D S.E. with a potential U(x) = u1δ(x+a/2)+u2δ(x−a/2).
Method 1. Summing partial waves in analogy with the Fabry-Perot

interferometer problem:

ttotal = t1t2 + t1r1r2t2e
2ika + t1t2(r2t2e

2ika)2 + ... =
t1t2

1 − r1r2e2ika

rtotale
ika = r1 + t21r2e

2ika + t21r
2
2r1e

4ika + ... = r1 +
t21r2e

2ika

1 − r1r2e2ika

Check unitarity!
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Method 2. Project on the resonance subspace (x1,2 = xLeft,Right):

Hres = −i~vF
d

dx1
−i~vF

d

dx2
+En|n〉〈n|+(λ1|x1 = 0〉 + λ2|x2 = 0〉) 〈n|+h.c.

Let λ1 = λ2. Define the even and odd states ψ± = 2−1/2(ψ+ ± ψ−). The
resonant level couples to ψ+ only:

Hres = −i~vF
d

dx+
− i~vF

d

dx−
+ En|n〉〈n| +

√
2λ|x+ = 0〉〈n| + h.c.

Note λ′ =
√

2λ. For scattering in the even and odd channels find
ψ+,out = e2iδψ+,in, ψ−,out = ψ−,in which gives

r + t = e2iδ, r − t = 1 → r =
1

2

(

e2iδ + 1
)

, t =
1

2

(

e2iδ − 1
)

Lorentzian peak in transmission (Note perfect transmission on resonance):

T (E) = |t|2 =
1

2
(1−cos 2δ) =

1

4

[

2 − E −En − iγ

E −En + iγ
+ h.c.

]

=
γ2

(E − En)2 + γ2
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Resonances in electron cavity

Resonance peaks in conductance:

G(E) =
e2

h

ΓLΓR

(E −E0)2 + 1
4(ΓL + ΓR)2
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Localized resonance levels in the tunnel barrier
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In a quantum point contact
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In a Fabry-Perot resonator
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