3.513 Lecture 3

Microscopic approach;
Nonlocal transport;
Voltage probes;
Resonances



I Derivation of Landauer formulas
(multi-lead, multi-channel)



Second quantization summary

2.1 Advanced gquantum mechanics 71

2.1.2 Second gquantization

Fock space for fermions. Electrons are identical gquantum-mechanical
particles. To characterize a system of N (non-interacting) electrons,
we have to consider Schrodinger equation for N particles, Assuming
that the Hamiltonian is time independent, we look for the stationary
solutions. They are products of the type

Y(rL...rv) = 5 (7). . ey (7)),

where i, label all possible (single-particle) states of the Hamiltonian (the
states with the different values of spin quantum number are counted as
different, even though they are described with the same wave function
in the absence of the magnetic field). Any linear combination of such
products is also a solution.

The solutions are thus highly degenerate. This degeneracy is lifted
if we take into account that electrons are fermions and obey the Pauli
principle: In each quantum state ip can be only one or zero electrons.
Their wavetunction must be antisymmetric — it has to change sign every
time we exchange two electrons.

To make it clear, let us consider an example of three free electrons.
The (single-particle) quantum states are labeled by the wavevector k
pmnd the spin projection & (which takes the values T and | ). We describe
the many-particle state in which one electron is in the state i, = (B T),
one in the state i, = (k |), and one in the state i, = (K |). The
antisymmetric solution is

P(ry, e, ) = 75 [, (7 )y (e )i (ma) — e, (i )b ()i, (2)
Fthi (e ) (ra ), (re) — g (2w, (7o )i, (1)
+ Wi, (ra)dg, (r1) W, (12) — by, (73)ts, ()b ()],

with the corresponding energy F = E; +E;, +E;, = 2E; +F; . Indeed,
the permutation of two electrons, for instance, r +— ro, changes the sign
of the wavefunction.

To implement systematically the Pauli principle, 1t is convenient to
construct the Fock space. We begin with the space of all the solutions of
the Schrodinger equation for NV electrons, then combine all such spaces
(including N = 0), and only keep the antisvmmetric solutions (those
compatible with the Pauli principle). An element of the Fock state
[r1,mg,...) is labeled by the occupation numbers of the states 1, 2, ..,
— zero if the state is empty and one if it 1s occupled. A special element
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of the Fock state is vacuum — |0,0,...) — when there are no particles
in the system.

Creation and annihilation operators for fermions. The states of the
Fock space can be obtained from the vacuum by application of a number
of ereation operators. The creation operator ii:r adds an electron into the

state |i}, described by the wavefunction ¢;(r).
&I|n1.....11,-_1.[]_.11‘-_1....} = TS AL
&I|n1...._.11‘-_1._1.11‘-...1....} = 0, (2.8)

where the sign depends on the sequence in which the states ng were
filled. The conjugated annihilation operator i; takes an electron out of
the same state,

8; |yy-. iy Mg, LiMgpgsenl) = Engeomeog, 0mgg, ),
i |myy.oe,me1,0,m59,...) = O (2.9)

These operators obey the anticommutation rules,

[ﬁjﬂj] = G!.Iﬂ-_,- + Cljﬁ-j = 5{3‘ :
a},a}] , =lauag], =o0. (2.10)

The operator &} it; describes the number of electrons in the state
P i

74
i}.
Averaged over an arbitrary state 4 of the Fock space, it gives either one
— if A contains a particle in

i} — or zero otherwise. In other words,

(aas) = nq. (2.11)

The quantum-mechanical averages of all other products — {a:[ iz} for
i # 7, aja}. and a;a; — equal zero,
Any operator can be expressed in terms of the creation and anmihila-

tion operators. For example, the Hamiltonian has the form,

H =" E;ala;, (2.12)

which just states that the total energy of the system is the sum of ener-
gies of all particles present in the system.

Field operators for fermions. Often rather than creation operators,
which add a particle to a certain quantum state, it is convenient to use
field operators, which create particles at a certain space point. The field
operators are defined by

b =Y winas D=3 wrmal. (2.13)
]

i
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Second quantization summary

2.1 Advanced guantum mechanics T3

The anticommutation rules for the creation and annihilation operators
imply that the field operators obey the following relations,

[t (. 60], =atr—1), [#,41()], = [k, 9] =0.
=+ =+

(2.14)
Again, all the operators can be expressed via the field operators. We
give the expressions for the Hamiltonian,

2
H= fc.tmj-‘-*(r) {_%\?% U(?‘J] w(r), (2.15)

charge density and current density operators,
) = el (mit(): i) = o [Vt ) — (V)]

) (2.16)
which look very similar to those derived in the usual Schrodinger equa-
tion description, but with the wave function replaced now by the field
operator. This is why the description of quantum-mechanical particles
with the wavefunction is referred to as the first quantization, and the
description with the creation/anmihilation or the field operators is called
the second quantization.

An obvious advantage of the second guantization approach is that it
authomatically takes into account statistical correlations betwen elec-
trons due to the Pauli principle. Another advantage is that it easily
incorporates interactions between electrons. Imagine that electrons in-
teract via two-particle potential V{r— #'). This interaction term can be
written as an operator,

V= % f dredr' )t () (7)V (0= 27 )b (r ) () (217)

(the order of operators is important!!), which has to be added to the
Hamiltonian of the non-interacting particles (2.15).

Bosons, Though the focus of this book is the transport of electrons,
sometimes we deal with phonons and photons, which are bosons. We
briefly therefore review the principles of second quantization for a system
of hosons.

The manyv-body wavefunction of bosons 1s symmetric — it does not
change when two electrons are exchanged. The Fock space is constructed
in the same way as for fermions, but now the occupation numbers n; in
the state |ny, ng,...) can assume all possible values n; =0,1....

T4 Survival Kits

The creation and annihilation operators for bosons, defined as

&I L5 TR PR vng+1|ng,....mi + 1,00,
di ... ne ) = Mg, oome — 1,000, (2.18)

obey commutation, rather than anticommutation, rules,

s at] s at  ata &L
[at,aj]_ = iy — 0 = 8
[&3: ii}] = [ds, a5]_ =0. (2.19)

The operator &Iii,- is the operator of the number of particles in the
state 4, and its quantum-mechanical average is the corresponding oceu-
pation number ;.

The field operators are defined in the same way as for fermions, and
obey the commutation relations,

[6n, 91 =str—w), [Hm.dten] = [dm.d0] =0

(2.20)
All the operators are expressed via the field operators in the same way
(2.15), (2.17) as for the case of fermions.

Heisenberg representation. So far, we have developed the second quan-
tization approach in the Schrodinger representation — the wave func-
tion depends on time, and the operators are time independent. This is
convenient as far as we are dealing with non-interacting particles in sta-
tionary potentials. If we have interaction between the particles or time-
dependent fields, it is advantageous to shift the time dependence from
the wawve function to the operators. In this new Heisenberg representa-
tion the operators Ay are obtained from the corresponding operators in
the Scrodinger representation, Ag, by the following transformation,

Ap(t) = Bt/ f ge—iHR,
Differentiating this relation, we obtain the equations of motion for the
operator Ay,
dAx

;e [AH,H]_.

In particular, we write down the equations of motion for the field
operators ¥t (m 1), ¥(r t) in the Heisenberg representation. This is easy
to do for non-interacting electrons,

2t (r 1) i
i . | e — —
at 2m
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Second-quantized scattering states

1 e

Uy 2\ Tr . YL, 21, ) = N T T2
+TL N, - ] s f ek | AN - H V] R
L L & I ‘i". I._:l 1 li“i'-!l_rl |E| . ‘IL -

Iyr,

TR

' 1 iy ; cp{m)
VLn(TR, YR, 2R) = ) | ==t E)®m (YR, 2R )e
"','_ gfhi'ﬂ-, :.E _:I

Tt
The proportionality coefficients are combined into a (Np +Npg) = (Np 4+ Ng)
scattering matriz §. It has the following block structure,

s_ 8L BrY_ (T ¥
| Spr Smrr J O Nt 7 )

Left lead Right lead




Operators for scattering states

A complete set: ;

Wy (T, UYL, 2] = — . ‘D.‘i (yr,z1)e d
"'|',-' Qﬂﬁl!'11|£‘|

- - " 1 e

o Z — =1 (E) P (ur, gr.)e e =L,

Coy 2rhun (E)

nj

ki ey,

T

scattering states

: 1 : _ . {m)
WLl TR, YR, ZR) = Z :rmn I_E_:I‘I"‘ﬂ-, (VR ZR)E™ iy R
'1,'_ Q‘Iﬁ'!'w-, {E.I

T

For each of these states, we can introduce creation and annihilation
Operators, Let us introduce the creation Operators fn::rr___,_ll_E_.l and i-'-:rqm

which create electrons in the scattering states with the energy F, origi-
nating from the left reservoir in the transport channel n, and from the
An alternative Complete Set. right reservoir in t}.lr_* transport |:-]1;ul111l|_~1 m, 1'|_*~:purf-t%\-'|_*l3-'. The conju-

- gated operators éar,(E) and @ gy, annihilate particles in the same states.
The operators at, d refer to a basis and therefore are sufficient for the
quantum-mechanical description of the system.

<
However, for convenience we mtroduce another set of operators. The
“ unscatter | n y  operator Ir,*}_“[E_:I creates an electron with the energy F in the transport
g channel n in the left waveguide moving to the left. A similar creation
States operator for right-movers in the right wavegude 1s ITJL.N{E:'. and the
annihilation operators are br,(E) and bp,(FE). These operators are
> linarly related to the set @ via the scattering matrix,
h-::f lE;' = Z z 8nl 3it lE}fl’-.—ﬂr I_.E'.:I:
g=L R I
: : t e g aE .
Unl = Z Z Snd giraay, B=L.R. |l=mn m. I'i',_,“glE,l = Z z .‘.4_-3.”_.:‘:{E.,Iftl.gffl_E.l. ae=L R [l=n m.
A=L. R I A=L. R I
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General properties

Anticommutation relations

i I-'Elcr_a,' (E") 4 agp(E' Irr J(E) = dagdued(E — E'y:

uu.'E'crsr (E') +a 5. (B’ wLHIP ) =0; NB: operators a and b
V(E)al, (B +alby (ENal(E) = 0. do not obey such
relations!

Occupation numbers in reservoirs:

::H 1 'Elcrgg (E") }_tl'._:_-]il'lff NE — EVfalE), a=L,R.

Field operators that annihilate or create particle in the left lead

(4 4] — \ —iEth Cnlyr.zL) T LT WY S 34 .
Uirt) —fni'f.f Z Ner ) [fr,[ e + by e ] : (Slmllar for the
T e o right lead
q_r'f[?-_!*;. == /‘ililEf WEEh Z If?‘;_‘ [iri_‘_lf'_m:*l L4 I!i'L‘_LE e Jll‘r‘] . g )
Current in the Fiss it ;_' it [1111 & (%11,1) 41
left lead N L



Electric current in the left lead

Sum over p o
. . I(zp . t) = i'_: dyrdzg, [\1-’1 o — (—"I’ ) HII]
microscopic states 2im drr g,

in the leads

Imagine that all the quantities are periodic in time with the period T — oc.

Handle the
continuum of

from the condition that the exponents exp(iE‘t) periodic,

E = 2mqh/T with an integer g. Consequently, replace Jr dE by 2rh/T 3.
< states
! a 1 nll Y ! = ' L Tl Rl =irk W i L
{:\f l-.k—f:“.-r}. =, | time-average) and &(F — EJ_.I = Ogqt-
i S

{:I:‘}f ( ) ZZ [HL (E)aLy :;E_:.—h}_,_,:;E_:.hL,.,:;E_:.].
Interpretation: current = # right-moving particles - # left-moving particles

{:I:}'f = 1’_:- (”h) L L Lu B g (E)

g e e (express b's
x [f"'cr_r_.-e.-sr_ﬁa-.r"e’n:f — 8% 1 E)spn g (E)] through a's)

NB: this expression is still true for an arbitrary number of leads



Averaging over states in
reservoirs

For two leads, using unitarity t*+t+r*+r=1, find

9 e == o s
5 G lf dE Tr [t't] [fL(E) — fr(E)],
1]

True for arbitrary energy distribution is reservoirs (T>0 etc), and
for energy-dependent transmission T(g)

Taking V to zero get the Landauer formula

Tr [H.I‘] = Z {.!‘1'!‘:].1”_' . i {:EEZE?::EF;'
T =



Multiterminal devices: rings,
interferometers, etc

Webb et al. 1985

Heiblum et al. 1996




Multi-probe conductors 10

Buttiker, PRL 57, 1761 (1986); IBM J. Res. Developm. 32, 317 (1988)

& Va

2 2
&
Gaa — dIa/dVa — F (Na — Raa) — F Z Taﬁ
9 BF

e

Goaﬁ — d[a/dVB = —; a3

Quantum Kirchhoff law; current conservation; gauge invariance
la=23 GapVpi 2 Gap=0; 2 Gpa=0
87

o 5



Multi-probe conductors: scattering matrix "

[ 511 S12 S13 514 )
S21 S22 8§23 S04
$31 S32 533 S34
\ 541 S4p 543 544 )

Tﬁoz — Z Tﬁoz,mn — Z |Sﬁoz,mn|2 — Tr[sjrgasﬁoz]

mn mn
Raa = Z Raa,mn = Z ‘Sozoz,mn‘Q — TT[SL@Saa]
mn mn

magnetic field symmetry 834 mn(B) = sa8nm(—=B) L
Taﬁ(B) — Tﬁa(_B) . Roa(B) = Raa(—DB)



Current contacts
Voltage probes
Vy

Four-probe resistances

In=1,I5=-I
In=0,— Vy,1I5=0,— Vy
— Vs _ GraGspg — G13Gsa

Rapys =

I D
h TyaTsg — 155154

Rapys =

I e2 D

12




Voltage probes

Voltage probes essential for electric circuits. What about quantum circuits?

An ideal probe: infinite resistance, thus non-invasive, does not perturb the
distribution of currents in the tested circuit

Possible for nanostructructures, e.g.
Scanning Tunneling Microscopy (STM)

However, interpreting
results my be tricky
b/c the laws of
classical circuitry fail

Landauer-Buttiker
three-terminal
description of a
voltage probe:

Three-terminal circuit with terminal 3 as a voltage probe. Right:
A classical circuit could be presented in this way and conductances of the
elements (1 4, (745 can be determined from the voltage Vi measured.

I, = Gai(Vs — Va) 4 Cao(Ve — V), Gaa = —Ga1 — Ga In a classical circuit:
this current has to be zero i FV‘[-}L ~-Va Cag — r112‘['-2 - W
_ GaVi+GaVo  ViTr &l 8ar + VoTr 8ly6a R T i V-V

i

'r-F":_!.l i 1';;32 T‘L‘ _'\-cll.'\-c_-gl + -.I._]' HLQHL'-E

the voltage read by the woltmeter

Measurement is noninvasive if Ga2.Gap < Gya.



Scatterer with voltage probes

V.=V 2-T)/2+T V /2

Apply to a single-lead
scatterer (1D conductor) |
G=G,I/(1-1) ?!

Probe A, left lead:

the probability of tunneling into the voltage probe w <

Contribution of reflected current:

V=V, (2-T)/2+T V,/2

(1-w)(1-T)we=s (1-T)w) "Wrong” Landauer formula illustrates the non-local nature of

conductance 1n nanostructures.

Voltage on Probe A: Series resistor
) ) 5 — L5 ) .
Vi = Vi(l —T/2) + VoT /2. iy = ,;;mﬁ —2a,.  representation
W,
2. T S S
. . AR — g =
Compare to classical relation PVa-Vp 91—
L -V
Qe — = : —
U T ¢ WU o & ez = Cny —7 S
(14 = Gro=— =: Gpo = Go= - . . : . —
Vi—V4 Va — Vi The "elements” with conductances G14 = Gpga = Gg/2

called contact resistance



| T or T/(1-T)?

* Unexpected but no paradox, both formulas
I describe realistic but different situations

* Two-probe conductance T vs. four-probe
conductance T/(1-T)

* Cannot apply voltage to a scatterer so that
G=T/(1-T) b/c voltage in a quantum scatterer
Is applied to reservoirs, BUT can measure
using voltage probes;

* |llustrates nonlocality of quantum transport



Experiment

Four-terminal resistance of a ballistic quantum wire,
de Picciotto et al. Nature 411, 51 (2001) two-probe

lllllllllllllllll

o
[as]
I

Conductance (x gg) ©
O
o
|
|

2 Tungsten
gates

36 -28 -20
Gate voltage (V)

Resistance ratio
o O :
[jS N

1

T

|

0 02 04 06 08 1.0 |
Transmission

]

Resistance (k)

Drain 2DEG i@

GaAs

AlGaAs & [o11]t—I— i 2R EEEEE R
© / -1 0
Gate voltage (V)

four-probe



Multi-probe conductors: scattering matrix "

[ 511 S12 S13 514 )
S21 S22 8§23 S04
$31 S32 533 S34
\ 541 S4p 543 544 )

Tﬁoz — Z Tﬁoz,mn — Z |Sﬁoz,mn|2 — Tr[sjrgasﬁoz]

mn mn
Raa = Z Raa,mn = Z ‘Sozoz,mn‘Q — TT[SL@Saa]
mn mn

magnetic field symmetry 884 mn(B) = $08nm(—DBB

Tozﬁ(B) — Tﬁa(_B) . Raa(B) = Raa(—DB)
Gog(B) = Gga(—B); Gaa(B) = Gaa(—B)



Reciprocity

™ _ WV =Vs _ hdyadspg —15pl6a
056975 o I T 82 D

From T,3(B) = Tgo(—B) and D(B) = D(—B)
Rocﬁ,fyé (B) = R*yé,ozﬁ(_B)

13



Reciprocity: Benoit et al.
Benoit, Washburn, Umbach, Laibowitz, Webb, PRL 57, 1765 (1986)

L
|

- r____ *
|

1€l
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Reciprocity: van Houten et al.

—_——
¥

electron focusing 1 ; ..I.T'm | |
] =" s |
. 1.0 1.‘ 511'1 a f’_Er:F ) F_,'| ! |H
E 065 W/ I:l p | ."1 i L".,ul '
ol W i J
3 0 Lg% 20 A
e rrff- ; : - it::_
03 02-01 0 01 02 03

15

we = |eB/mc]
Tcu&3::1U?
re =cmuvp/|eB|

skipping orbit

van Houten et al. , Phys. Rev. B39, 8556 (1989)

B (T)



Microscopic derivation



Conductance from transmission

e? R =dV/dI = h 1
conductance resistance quantum
quantum 2 h

— — =~ 24 kOhm
h e?

dissipation and irreversibility

W=IV=GV? boundary conditions

17



Conductance: finite temperature ™

€
dIinc,L — E dE fr,(E)

current of left movers
&
I == [ dET(E) f1(B)
current of right movers

In =~ [ ABT(E) fr(E)

net current

I == [dET(E) (f1(B) - fr(E))

linear response

e /b

CONDUCTANCE (2

| 1
_2.0 -1.8

GATE VOLTAGE (volrs)

folur) = f(uo) — (df /dE)eVL +.. V=V, —-Vp ||

conductance Transmission probability evaluated in the equilibrium potential

G=1/V = %/dE T(E) (—df (E) /dE)



Multi-probe conductance: leads 19

y A
&/ »
Ps
E
b 4

Fr—

asymptotic perfect translation invariant potential

Vig,y) =V |
separable wave function

- Tikn(E
Gon (T, E) =™ n(E) Xan(y)
energy of transverse motion E, channel threshold

energy for transverse and longitudinal motion

E = En + 72k2/2m - scattering channel



Occupation number and current amplitudes
Buttiker, PRB 46, 12485 (1992)

20

Incident current at kT =0
Iy, = (e/h)eV
Incident current at kT >0
dl;p = (e/h) f(E) dE
Occupation number
f(E) = (n(F)) < > = statistical average

ey

P I

Creation and annihilation operators
(a'(B)a(E")) = f(E)S(E — E')
«Incident current » « Current amplitude ya(E)
I, () = (e/h) / dE / dE' a1 (E) a(E) {E-EDN/T

lin(t) = (e/h) [ dE A(E, t)



Current operator -

Current in contact & single channel result

—~ (& R R

Io(t) = 1 [ dE [, (E.1) = faout(E.1)]

current amplitude:g, (E) (incoming) 3, (E) (outgoing)

fo(t) = [ AB'dE(a}(E)aa(B)~BL(E)ba(B))e/F =N/

I,

A4 A w

iy Y Sp Phud i
\ —_— - / \ / 4
TL TR Ea

sample

L P4 N Mg Es
b by )
Current in contact ¢ multi-channel channel K

To() = Y [ AB'dB(al, (B)aan(B) ~Bl (B ban ()]~ EN/T



Current operator

22

aa(E) ,bo(E) : N, component vectors

Ta(t) = £ [ dB' dE [}, (EYa(B) B, (B (B)]e/F =)/

L \
— ay,
AN
TL
M,
7

by

sample

R

5R
- ﬁ
/

Tg

N HMr
e N

by

ba =) sapas
3

7oy = & - ~ i(E'—E)t/h
la(t) = f dE'dE" ag(E’)Am(a, E', E)a(E)eE—Et/

B,y

Agy (o, B/, E) = Labagday — 8] 5(E)sar(E)

gquantum statistical average
(ah(E)ay(E)) = 83, 0(E — E') f3(E)

average
current,
conductance




Conductance: finite temperature 23

Ta(t) = % f dE’dEﬁz: Al (B A, (0, B, B)ar (B)(E =P
2
quantum statistical average

(ah(E)ay(E)) = 85, 0(E — E') f3(E)

IOz — %/dE |:(Nog _ROéOé)fOé T Z TO{/BfB

BFa
Roo = T"“(Sz;asozoz) Lop = Tr(sz;ﬁsoéﬁ)
fa(pa) = f(uo) — (df /dE)eVa + ..
e
Ion=—> G, 5V G, =0 Y Gop=0
h%: apVp zo; & 5 6]

e

y e’
Gaa = ;/dE(—df/dE)(Na — Raa) ; Gozﬁ — _;/dE(_df/dE)Taﬁ



I Advanced Quantum Mechanics:
Resonance Scattering
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