3.513 Lecture 14

Coherent backscattering
Weak localization
Aharonov-Bohm effect



I Light diffusion; Speckle patterns;

Speckles in coherent
backscattering phase-averaged
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Contribution of multiple
scattering processes




Weak localization



(d) (c)

Figure 4.7 (a) Diffuson contribution to the probability. (b) Reversing one of the two trajectories, the
points r and r’ are exchanged, leading to an impossibility unlike r and r’ coincide. In such a case

(c), the phases cancel in this new contribution. (d) If r # r’, there is a mismatch between the two
trajectories, leading to a phase shift.
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Figure 4.8 (a, b, b’, b") Several equivalent representations of a process of five collisions which
contribute to X,.. Representation (b) is common in the literature, and is called a Cooperon or maximally
crossed diagram. Reversing one of the two trajectories (b — b’ — b’"), we see that the Cooperon
has a ladder structure very similar to that of the Diffuson. (c,d) Representations of X.. These two
figures should be compared with Figures 4.4(c,d) and demonstrate why the Cooperon is a short range



One out of many experimental
studies of weak localization
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FIG. 2. The magnetoresistance peak height AR/R and
peak width /{,/; for the data of Fig. 1, vs W~

Two-dimensional quasi 1D normal
metal strips of width W
Licini, Dolan, Bishop (1985)
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FIG. 3. Detailed fits of magnetoresistance data at various
temperatures for W=0.074 um. Except for the elimination
of noise, the fitted curves are indistinguishable from the
data. Inset: Values for the quantity L ( Th~? a5 a function
of T? for part of our temperature range.
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Aharonov-Bohm effect in
conductors
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FIG. 1. (a) Schematic of electron-beam interference experiment
(Ehrenberg and Siday, 1949); (b) the stationary wave pattern in Epac: a l —-qﬁf¢-n
the beam crossing region of space near the plane 4B. — oy e

FIG. 2. (a) Schematic of one-dimensional ring confining a mag-
netic flux; (b) electron energy in the ring reduced magnetic flux
¢ /dg; (c) magnetic moment vs reduced flux ¢ /gy,




A within the sample should be nonzero, its tangential
component being equal to ¢/27wR (the Aharonov-Bohm

experiment geometry). We assume that the mean free
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F1G. 5. Schematic of experiment with a solenoid carrying mag-

netic flux ¢ inside a cylinder with wall thickness a.

Rev. Mod. Phys., Vol. 59, No. 3, Part |, July 1987

In the presence of the vector potential A ol magnetic
field, the equation for the cooperon takes on the form
(Alishuler, Khmelnitskii, Larkin, and Lee, 1980)

R,

#i ID C,lr,r')=8(r—r') .
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c Ty

(2.9)

Equation (2.9) resembles the Schrodinger equation for a
particle of charge 2¢ and mass #/2D with the imaginary
energy iw.

For a thin-walled hollow cylinder with magnetic field
in the walls H =0 and vector potential A=~0, constant in
absolute magnitude and directed tangentially, the solution
of Eq. (2.9) with periodic boundary conditions along the
coordinate y (i.e., along the cylinder circumference), has
the form

FIG. 6. Fan diagram for the conjugated wave interference.



AB-effect with a double-flux
quantum period $.=2hcl/e
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FIG. 7. Longitudinal magnetoresistance AR(H) at T=1.1 K
for two cylindrical magnesium films on quartz filaments 1 cm
lcng. R,q,_z] =9.2 kﬂ, .R4|11| =12.3 kf). The ratios R.!-UUKRELZ for
the two films are 1.39 and 1.25, respectively. Filament diameter
of sample I measured with scanning electron microscope is
1.59+0.03 pm. The arrows specify the fields corresponding to
integer numbers of magnetic flux quanta ¢,/2=hc /2e through
the filament cross-section area (Sharvin and Sharvin, 1981).

100e=1mT

*

C,(r,r') or “cooperon.” The conductivity correction is
related to the cooperon by the expression

SOk, Ty (2.8)

o mY
where v is the density of states at the Fermi level and o is
connected with the diffusion coefficient through

Einstein’s relation
.
og=e"Dv .

In the presence of the vector potential A of magnetic
field, the equation for the cooperon takes on the form
(Altshuler, Khmelnitskii, Larkin, and Lee, 1980)

2
fi | D —-i?—gfﬁ —I—Em—l—“]- C,lrr')=8(r—r') .

T\'F_

(2.9)
Equation (2.9) resembles the Schrodinger equation for a

particle of charge 2¢ and mass #/2D with the imaginary
energy iw.
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where Q, =(0,,0, ), Qj‘: =I/R, and R is the cylinder radius. Substituting Eq. (2.10) in Eq. (2.8) yields
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If the thickness of the cylinder walls is small compared
with the length L (), then the integration over 0O,
should be replaced by a summation with only the term
corresponding to @, =0 retained. If, in addition, the
cylinder height is also small compared with L _(w], then
the integral over @, should be likewise replaced by a sum,
with only the term with Q. =0 retained in it (thin ring).
This yields for the conductance of a unit length along the
circumference of a thin ring G,=oab (b is the ring
height, a is the ring thickness)

e’

For w=0, Eq. (2.12) can be presented in
(Altshuler, Aronov, and Spivak, 1981)
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the form

(2.13)
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FIG. 12. Transverse magnetoresistance R(H) for T=0.13 K
O 10 20 30 40 50 60 70 for lithium strips 21+1 nm thick and 55+7 nm wide. Upper-
H {OE} most curve, wire control sample; next three curves, three neck-

lace arrays; bottom two curves, two meshes. Some of the curves

B ’ . - have been displaced vertically for clarity. The size S in pm of
FIG. 3. Longitudinal megnetaresistance AR(H) af T=1,1 K the unit cell side is indicated next to each curve. The upper

for a cylindrical lithium film evaporated onto a l-cm-long right-hand sketches define the necklace, mesh, and control

quartz filament. R4;=2 k{), Ry /R4,=2.8. Solid line: aver- geometries, respectively. Measurements of R (H,T) on the con-
aged from four experimental curves. Dashed line: calculated trol sample yielded values for the diffusion L, of

for L,=2.2 um, 7,/7,=0, filament diameter d=1.31 pm, (1.85+0.1)X}XT~! pm, L,=2.340.2 pm, L,=3.1+0.2 pm
film thickness 127 nm. Filament diameter measured with scan- (Dolan et al., 1985).

ning electron microscope yields d =1.30+0.03 pum (Altshuler

et al., 1982; Sharvin, 1984).



Mesoscopic AB-effect with a
single-quantum period ®.=hc/e

FIG. 3. (a) Schematic of one-dimensional ring with scatterers S
and current-carrying contacts by Bittiker er al. (1984); (b) rela-
tive transmitted wave intensity vs reduced magnetic flux & /d.
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FIG, 17. (a) Gold ring magnetoresistance at 0.01 K (Webb

et al., 1985), (b) Fourier power spectrum in arbitrary units. In-
set: picture of the ring.




Magnetoresistance in a larger field
range: coexistence of AB effect and
mesoscopic fluctuations

S. Washburn

* Mesoscopic sample-specific e MW SR—
fluctuations sampled by P fy W MWW
conductance dependence on = . ; o
some parameter (e.g. gate 2941 :
voltage, E or B fields) | . | | |

* Typical conductance variation : 2 4 6 .
e’2/h

* The period of AB effect is :
single-flux quantum (lack of f
avreraging)
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Fig. 6. (a) The magnetoresistance of the loop from fig. 5 over a wider range of magnetic field. The

insets depict the periodic oscillations that pervade the entire field range. (b) The Fourier transform

of the data in (a). The arrows mark the magnetic field frequencies for flux h/e and hf2e through
the areas enclosed by the inside and outside perimeters of the loop.



Averaging over many rings

Umbach et al. PRL 56, 386 (1986)

{a}

FIG. 1. (a) Transmission electron micrograph of the
three-loop sample. (b) Magnetoresistance data at T =10.32
K. Clockwise from the lower right-hand corner:

—0.02 < H <0.02 T (the dash-dotted line is the fit by the
A AS theory): the single-loop sample for —0.02 < H < 0.02
T; the single-loop sample for 015 < H <025 T.
Fourier transforms of the data in (b)

based on the measured inside and outside areas of the loop.

the thirty- |
loop sample for 0.2 < H < 0.3 T; the thirty-loop sample for |

(c) The |
. The arrows in the fig- |
ure indicate the bounds for the flux periods h/e and h/2e }
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Univerasal conductance
fluctuations

Boris Altshuler, Patrick Lee, Doug Stone
simulatneously (1985)

—%

B. L. Al'tshuler

(e) (f)

JETP Lett., Vol. 41, No. 12, 25 June 1985 FIG. 1. (a) Unaveraged conductance. (b)-(f) Diagrams
contributing to the correlation function; (e) and (f) are ex-

amples of a class of diagrams which cancel each other.



Antilocalization in the presence
of spin-orbital scattering

problem). SO interaction modifies the ¢ dependence of
the bare-problem spectrum into a ¢ & & dependence, for
the two relevant spin directions. Here & characterizes

I the SO scattering in the sample. Consequently, any
Slgn reversal Of Weak thermodynamic or transport property of the system,
. . . . . Q(¢), which does not depend explicitly on spin (more
|Ocal|zat|0n (Hlkaml, Larklna precisely, does not involve operators that mix the two

NagaOka, Prog Theor PhyS 63, 707 spin orientations) can be expressed in the form
(1980)) 0(8) =+ [Qo(+8)+Qols— )],

where @y is the corresponding bare system quantity.
PanCharatnam-Berry phase We find that, upt?n_auerag:fng. all odd lhurrm:-nic:-‘: vanislh;
argument, generallzed for the n =2 harmonic is multiplied by — 3, the n=4 by 7,

etc. The magnitude of the fluctuations of the n =1 har-

random scattering (Meir, Gefen, 5o, o Sontinis mone conp
Entin-Wohlmann, PRL 63, 798 (1989)) T

Measured directly via AB
oscillation period splititng
(Morpurgo et al. PRL80, 1050 (1998))

Anandan, Christian and Wanelik "Geometric phases in
physics". Am. J. Phys. 65: 180 (1997).

ety 8 35U s1a3

FIG. 1. One of the rings used in our investigations. The white
bar shown is 0.5 pm long.



Berry phase in SO scatterina
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FIG. 2. Single magnetoresistance trace measured in the AB
ring discussed in the text. The insets show an enlargement
of the conductance oscillations and the peak in their Fourier
spectrum (x axis units are in mT 1),

Peak Height (a.u.)
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FIG. 4. Height of the peak in the Fourier spectrum of the
average R(B) curve as a function of the inverse square root
of the number of traces involved in the average. The line
shows that for sufficiently large & the height decays linearly
with N~ !/2 and extrapolates to 0, as expected for an ensemble
average. For small N this is not true because consecutively
measured R(B) traces are not completely uncorrelated.
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FIG. 3. Average of =30R(B) curves (the inset is an enlarge-

ment of the small part of the curve). Note how the reciprocity
relation is rather accurately satisfied, far better than in the data
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frequency (mT ')
The peak of the average Fourier spectrum: the

splitting is evident. as well as some structure on the sides

(pointed by the arrows).

The inset shows the same cuve on a

larger frequency range: note the presence of 1/f noise resulting
from the switching events.






Anderson localization ~ Anderson (1957)

A non-interacting electron in a random potential may be localized.

Gang of four (1979): scaling theory

Weak localization P.A. Lee, H. Fukuyama, A. Larkin, S. Hikami, ....

well-understood area in condensed-matter physics

Unsolved problems:

Theoretical description of critical points

Scaling theory for critical phenomena in disordered systems



A non-interacting electron moving in random potential

Quantum interference of scattering waves

® / _ _
® ° ———> Anderson localization of electrons
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Scaling theory (gang of four, 1979)

Conductance {-hanges when system size is[ nan

drea _
Ld 2

Metal: g =
length

Insulator: g o e_L/f

ding

=d—2-—0(g 1
din L (97

B(g) =

g>> 1 d>2
//

All wave functions are localized below two dimensions!

A metal-insulator transition at g=g. is continuous (d>2).



Prog. Theor. Phys. Vol. 63, No. 2, February 1980, Progress Letters

Spin—OI’bit Interaction and Magnetoresistance
in the Two Dimensional Random System

Shinobu HIKAMI, Anatoly I. LARKIN® and Yosuke NAGAOKA

Research Institute for Fundamental Physics
Kyoto University, Kyoto 606
(Received November 5, 1979)
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3 symmetry classes (orthogonal, unitary, symplectic)

symplectic class: o time-reversal, x spin-rotation
spin-orbit interaction

anti-localization
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Metal-insulator transition in 2D
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PHYSICAL REVIEW VOLUME 109, NUMBER 5 MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices
4202 citations!

' P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

What if | place a particle in a random potential and wait?

Tight binding model eal — ) V,ai = E'a.

V, nearest neighbors, g random potential

Technique: Looking for inestabilities Not rigorous! Small
in a locator expansion denominators

Correctly predicts a metal-insulator transition in 3d and
localization in 1d

Interactions?

Disbelief?, But my recollection is that, on the whole, the
cREINRYRTJIIM | attitude was one of humoring me.

of band theory




A selfconsistent theory of localization J.Phys. C Vol 6. 1973 1734

R Abou-Chacrat, P W Andersonf$ and D J Thoulesst

Perturbation theory around the
insulator limit (locator expansion).

No control on the approximation.
It should be a good approx for d>>2.

It predicts correctly localization in 1d
and a transition in 3d

The distribution of the self energy S. (E)
Is sensitive to localization.

metal
insulator

{ >0 metal

=0 insulator I — 2

[ =ImS.(E+in)

lim lim P(I)
n—0V —oo




Based on
Thouless,Wegner,
scaling ideas

Scaling theory of localization Phys. Rev. Lett. 42, 673
(1979), Gang of four.
Energy Scales

1. Mean level spacing: 0 =/
2 Thouless energy: E

Dimensionless

Thouless
conductance

Diffusive motion
without localization corrections

Ayt p—



The change in the
conductance with the system

Scaling theory of

localization

B(g)

size only depends on the
conductance itself

unstable
fixed point

Weak localization

dlogg_ﬂ(g) g>»1 gOL"™ P(g)=(d-2)-nlg
dInL g<<] gDe'L/Z f(g)=logg<0



Predictions of the scaling

theory at the transition

1. Diffusion becomes anomalous

<7f'2(t)> s2/d

2. Diffusion coefficient become size and

momentum dependent

D(g) qd-Z D(L) Lz_d Chalker

3. g=4g. is scale invariant therefore level statistics are

scale invariant as well




Weak localization ‘ Positive correction to

the resistivity of a metal
atlow T

1.Cooperons (Langer-Neal, maximally crossed, responsible for weak
localization) and Diffusons (no localization, semiclassical) can be combined.

3. Accurate in d ~2.

Self consistent condition (Wolfle-Volhardt)

k’ 2~d ko kd-l
D =Dy B2 [Fge —
mJg

No control on the approximation!




Predictions of the self consistent theory
at the transition

1. Critical exponents:

v=-— d<4

v e EOIE-E[" v=1/2 d =>4

1

Disagreement with

2. Transition for d>2

numerical simulations!!




Why do self consistent
methods fail for d = 37?

1. Always perturbative around the metallic (Vollhardt
& Wolfle) or the insulator state (Anderson, Abou
Chacra, Thouless) .

A new basis for localization is needed

2. Anomalous diffusion at the transition
(predicted by the scaling theory) is not taken
Into account.

DL 1™
D(g) ™







