Coherent and collective
phenomena in quantum transport

8.513

e | ectures T, TR 1-2:30

e Homework handed out in class, collected two
weeks later — except holidays and HW#1

* Term paper: choose topic by the end of October,
submit before or in the last lecture

* |nstructor: Leonid (aka Leo) Levitov, office 6C-345,
email: levitov@mit.edu

 Course webpage: http://www.mit.edu/~levitov/8513


mailto:levitov@mit.edu

Quantum transport; Lecture |

e | ocalization vs. diffusion
e Anderson model, localization transition:

* Quantum-coherent effects in diffusive
conductors: weak localization, negative
magnetoresistance, Aharonov-Bohm effect

(2d0 and Po)

* Transport as a scattering problem:
conductance = transmission: Landauer
formula



50 years of Anderson Localization

PHYSICAL REVIEW VOLUME 109, KUMBER 5 MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P, W, ANDERSON
Bell Tolephone Laboratories, Muwrray Hill, New Sersey
(Received October 10, 1957)

This paper presents a simple moclel for such processes as spin difusion or conduction in the “impurity
band.™ These processes invalve tansport in a Inttice which is in some sense random, and in them diffusion
i expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary mndomly from site to site. It is shown that at low
enough denmties no diffusion at all can tpke place, and the criterin for transport to ootur are pven,

from lectures by Boris Altshuler



| was cited
disorderec

In each he

Nobel Lecture

p h I | I p W. An de rso n Nobel Lecture, December 8, 1577

§ [he Nobel Prize in Physics 1977

Local Moments and Localized States

for work both. in the field of magnetism and in that of
systems, and | would like to describe here one development
d which was specifically mentioned in that citation. The two

theories | will discuss differed sharply in some ways. The theory of local
moments in metals was, in a sense, easy: it was the condensation into a
simple mathematical model of ideas which. were very much in the air at
the time, and it had rapid and permanent acceptance because of its

timeliness

and its relative simplicity. What mathematical difficulty it

contained has been almost fully- cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and
even fewer saw _,|ts_ Importance; among those who failed tofull

adequate mathematical treatment, ‘and one has to resort to the indignity
of numerical simulations to settle even the simplest questions about it .



Einstein Relation (1905)

[ Conductivity Density of states j

Diffusion Constant j

No diffusion - no conductivity

Localized states - insulator
Extended states - metal

Metal - insulator transition



VoOLUME 85, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SEpTEMBER 2000

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and S. Sridhar

Department of Phvsics, Northeastern University, Boston, Massachusetts 021145

(Received 28 February 2000)

f=3.04 GHz f=733 GHz

Anderson Insulator Anderson Metal
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Fermi Pasta Ulam 1955

outside world evolve to a
microcanonical distribution
(reach equipartition).

Anderson 1958

Will a density fluctuation (a wave

Q : packet) in a system of quantum ‘?
particles in the presence of disorder °
dissolve In the diffusive way.

Will a nonlinear system (system ‘7 qe et
Q of interacting particles) !
completely isolated from the =S R




Localization of single-electron wave-functions:
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@ Scattering centers,
e.g., impurities

Models of disorder:
Randomly located impurities
White noise potential

Lattice models
Anderson model
Lifshits model



Anderson : : : : :-Lattice-tight binding model
MOdel ® ® ® ® @ Onsite energies %-rﬂandom
©0060 .-Hopping matrix elements I ..
®9 000 7

IQJ

I l and ! are nearest
0

neighbors

'W<‘5}<W

0 otherwise

.. I 1 1
Anderson Transition W = (Qd) (lnd)

uniformly distributed

I<I. I1>1
Insulator Metal
All eigenstates are localized There appear states extended

Localization length & all over the whole system



Why arbitrary ®® e
weak hopping 1 is ? ®® e
not sufficient for - ..
B : @0 e
the existence of ™ ®9 e,
the diffusion IQ& |

Einstein (1905): Marcovian (no memory)
process —> diffusion

uantum mechanics is not marcovian
There is memory in quantum propagation =

Why 7
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von Neumann & Wigner “noncrossing rule”
Level repulsion

What about the eigenfunctions ?
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What about the

! e s e

eigenfunctions ?

DEPE, =W, B, By

£ 8]
e

Wi, =@, O

LG )
Off-resonance

Eigenfunctions are

close to the original on-
site wave functions

£ g aa |

D, 1
Wi, = @, s D |

Resonance
In both eigenstates the
probability is equally
shared between the sites



Anderson insulator
Few isolated resonances

Anderson metal
There are many resonances
and they overlap



Simplest example: Anderson Model Cayley tree:

J. Phys, C: Solid State Phys, Vol. 6 1973, Printed in Great Britain. i 1973

A selfconsistent theory of localization

R Abou-Chacrat, P W Andersoni§ and D J Thoulesst
t Depariment of Mathematical Physics, Universily of Birmingham, Birmingham, B15 2TT

¢ Cavendish Laboratory, Cambridge, England and Bell La®boratories, Murray Hill New
Jersey, 07974, USA

Received 12 January 1973

Abstract. A new basis has been found for the theory of localization of electrons i disordered
svstemns, The method is based on a s¢lfconsistent solution of the equation for the self energy
in second order perturbation theory, whose sclution may be purely real almost everywhere
(localized states) or complex evervwhere (nonlocalized states), The equations used are
exact for a Bethe lattice. The selfconsisténcy condition gives o nonlinear integral equation
in two variables for the probability distribution of the real and imaginary parts of the self
energy. A simple approximation for the stability limit of localized states gives Anderson's
‘upper limit approximation’. Exact solution of the stability problem in a special case gives
resulis very close to Anderson’s best estimate. A general and simple formula for the stability
limnit is derved; this formula should be valid for smooth distribution of site energies away
from the band edge. Results of Monte Carle calculations of the selfconsistency problem
are described which confirm and go beyond the analytical resulis, The relation of this
theory to the old Anderson theory i5 exammed, and it is concluded that the present theory
% similar but better.



Simplest example: Anderson Model Cayley tree:

Parameters: I, W and branching number K (here K=2)
Crucial simplification: no loops

The probability : | )
amplitude to find the . K
particle at a distance A(n) oc | H . R S
n is proportional to = J /4




The probability
amplitude to find the
particle at a distance

n is proportional to

At each step among K site we can
choose the one, which energy is

(_the closest to ¢, I.e.,

g—gj‘ﬁW/Kj

K>1. Competition between exponentially small amplitude of
each path and exponentially large number of paths.

Conclusion: for [ < I ,where I ~ W /K the systemis an
Insulator, because A(n — oo) — 0 In the opposite case - metal

More precisely / ~ W /(K log K)



e T (£

J=1 8—8}. W

Conclusion: for / < [, where [, ~ W /K the system is an
Insulator, because A(n —> oo) — 0 Inthe opposite case - metal

More precisely [ ~ W/ (K log K )

i S W/ K Typically there is a resonance at every step

The particle can travel

Infinitely far through the
W/ (K log K ) ST<WIK iocommnees of sites, which

are not nearest neighbors

1 > W Typically each pair of nearest neighbors is at resonance



Quantum effects in diffusive
transport



from lectures by Ben Simons

Weak localization

Phase Coherence Phenomena in Normal Feynman Trajectories
Conductors N _
- Transfer probability amplitude: _
How does disorder influence transport? G(r,0;t) = (rle*1t/R|0)4(1)

= Classically, from Drude theory X

0
ne’r , r
= 1/t scattering rate -

- /Dr F}Lp[ ] ZAp

- Impurity average
i.e. over realisations of random impurity potential

> Quantum mechanically? Naively...

(i) for £ = vpr > Ap, interference is unimportant
& can add intensities ~~+ Drude!

(i) for £ ~ Ap conductivity vanishes: (G(r,0: )y, = <Z A; e > .
h_)'

metal-insulator transition

...However, mechamsms.of gudnkim mterferenrce i.e. random phase cancellation ~+ short-range correls.
impact even on metallic phase



Quantum diffusion

= Probability density:

G(r,0:1) = ) A;e'

] 1

(P(r,t))y classical quantum Yl

-~

.

(;G{r,n:t1|‘2);=<2-f’tf> i <Z-f1e-f1_;- cos(ipi — ;)
v

i iF]

- ‘Classical contribution’
~ long-ranged diffusion, D = vi.r/d

8,P(r,1) — DAP(r,t) = (r)d(1)

& predicts classical Drude conductivity o = e?vD

...but is this the whole story...?

Quantum Interference...

...leads to new phenomena which impact
on metallic regime well before Anderson transition!

=

- Consider, e.g., return probability:

A x|
'l.II i
A _
contrib. from time-reversed paths: 1 &% .
0

classical quantum

| A1e™! + J-".Ilgf.-"“:3|2 =;'1f - _;‘1;' + 24145 cos(w — :,-:-2)‘

In T-invariant system, A, = A3, 1 = 9

1.E. Jlpn:;u:-lnturn =2 X P(fl[-lf-%!ii(‘[ll

- Constructive interference ~+ tendency to localize

~»» quantum correction to conductivity...



Suppression of conductance

Weak Localisation!

2,
Yo  OP - SR
i e ”:PI'E?I'-HI’JI - '“1")"}-' THd/2
o . /. Dn?

~ singular correct®- in low dim.

...accumulation of WL correct22:: scaling?
~+ Anderson localisation

LGor'kov, Larkin & Khmel'nitskii '79
2.-E'dznr:thalms, Anderson, Ramakrishnan & Liciardello '79

Experimental Signatures:
Negative Magnetoresistance

> Quantum Wires?
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IMailly and Sanquer '90



Long-range quantum coherence

...together, diffusion modes form basic elements of

diagrammatic perturbation theory
> Quantum interference effects mediated by two

long-ranged modes of density relaxation...

e ‘Diffuson’
A L

(GR(0,5;6)GA(r, 0;1)),, = %

o + iw

~ characteristic weak localization phenomena

e 'Cooperon’

= But magnetoresistance is not the only
physical manifestation of quantum interference...

...effects recorded in fluct™ phenomena...

P N sy
GR0.1:8) GAO.1: )y = —0—
(@010 CTO O =



Scattering approach



| from lectures by Markus Buttiker
Conductance from transmission

Heuristic discussion Fermi energy left contact i + €V

Fermi energy right contact [

el & . S— |

Re— I

applied voltage €V ,

transmission probability 7",

reflection probability 12 ,

incident current Lin = evpAp
density Ap = (dp/dE) eV
density of states dp/dE = (dp/dk) (dk/dE) = (1/2x) (1/hvf)
— I;;,, = (e/h)eV independent of material !!
I =(e/h)TeV =
Landauer e?

G=dI/dV = —T
formula / h



Drift and diffusion
j =ok —eDdn/dx
E = —-dU/dz
dn — v d}u, —evdl Electrochemical potential u-eU

at constant M Einstein relation

j=0= —0dU/dz + €?> Dv (dU/dz) = o =e®Dv

for space dependent M

j=—evDdpj/dz = j=evD(u,—pgr)/L
2

i=E s DWW —F — I="7%
h



Scattering matrix

scattering state

= ok

0 2 ptRT = . o~ / =
W >per= g
W Ztra — t elk"fﬂ
scattering matrix

by X o T # al

b | % B ot ao
current conservation = S 1s a unitray matrix

In the absence of a magnetic field S 1s an orthogonal matrix

t' = ¢



Transfer matrix

B ? 1l l/t* —?"*/t* )@
- (3)= (0 ) (3)

Transfer matrix is muliplicative =~ —>  arbitrary array of scatterers

B ———t

One dimensional localization:

o2
(G) = z exp(—L/A) localization length A

but log G 1s normal distributed

characterize the sample through 1ts distribution

P(G) dG Discuss again later



Conductance from transmission

— T

I

dI/d e’ R = dV/dI = JL
conductance quantum resistance quantum
€2 h
— — ~ 24 kOhm
h e?

dissipation and irreversibility

W=1V=GV?



Conductance from transmission

h 1
e2 T
conductance quantum resistance quantum
e2 h
— — 7 24 kOhm
h e

dissipation and irreversibility

T .- Dissipation for elastic scattering?!



Conductance from transmission

h 1
e2 T
conductance quantum resistance quantum
e2 h
— — 7 24 kOhm
h e

dissipation and irreversibility
. Dissipation for elastic scattering?!
W=I1V=GV Energy is lost to the reservoirs.



General properties of S-matrix
Current conservation

Scattering matrix 1s a unitary matrix ( . )
o Jp—

STSZ]. sl

r*r 4+ttt =1 = R+T=1,
t*r 4+t =0
4+t =0
gt G R T = EeE g

ssT =

— R4+T=1
— R4+T' =1

— P =0 EF =R



Magnetic field symmetry

(2)-(:2)(z) (3)-o(

Time reversal: Hamiltonian is invariant when all momenta and B field are reversed

o b* aq kR bl
(d)=cm(id) =(5) = (i)

—> s (-B)s(B)=1 = s'(B) =s(-B) =
s (B) = s(—B)

t'(B) = t(—B) — T(B) = T(—B)
but 77 (B) = T(B) — T(B) = T(—B)

G=dI/dV = ET is an even function of magnetic field



Aharonov-Bohm conductance oscillations

FT (arb. units)

251

R (h/ed)

0 100 200 300

ol 1/AB (T

15

2 22 24 2.6
B(T)

G(P) = > Gpcos(2mnd/dg)

Buttiker, Imry, Azbel, Phys. Rev. A30, 1982 (1984)



Persistent current

(periodic boundary conditions)

5.5 €
1 /& X:f ds A = 27®/Pg ,
a ' circle

& < >
\/ I = —dF/d®
S~ k=—(2n/L)(®/dy),
[ = —dF/d® = - dEn(®)/de = — 3 (dEn(k)/dk)(dk/dP)

= el o



General properties of the S-matrix



Unitarity

- ?"f ";{;1’?9 eyy; y) 4 ?* C;rrent conservatlon
e L - @ . 1
"" CESeet e "‘Tfl :
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%15 [d.’ﬁﬂi" bLLH_ L{Qmiyﬂﬁf?)

& 5"" ton b P ot S SBme

g2 ﬂbawﬁ%& Vit r/saq,w-wg
Z ? *k% »xgmg‘ﬁztﬁw‘“’*

Sadﬁm‘f" w-Sw-h_,%fw?’w
S el SwD> = <f-?>%~m\> z?(wmgw¢,

H&m&& S S= '/' , BT 5+m S_ L

Example 1: single
channel, a 2x2 unitary
matrix

Example 2: many

channels, an NxN

unitary matrix,

eigenvalues of the form
= exp(2igj)

9j scattering phases



Causality in EM and in QM

Cause-effect relation, linear response

D) = \ H(t)E (t — 1)dr; out-state in-state
. B = S4

& = S Eoemdw, D= Sﬁjme*imf dw
A()=0at t<0, B()=0 att<t, t>0

g

@m = &fm S (T) f‘fimt d‘lf,

: = S A(t)et dt, B, =\ B(t) e« dt.
0

L

1

Bm = SAO}

7 o0

P{IJ &

s e s 5 # () et dr.
0

. _ _ . S(w) could have singularities at the zeros of A(m),
Dielectric function &(w) analytic in the  put this is impossible b/c S is a property of the
upper half-plane scattering potential, independent of the in-state

0 = 0+ ing, 0>0,
b/c of exponentially decreasing €. As a function of energy, S-matrix
IS analytic is the upper complex
half-plane







