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The Mean Free Path of Electrons in Metals

By E. H. SONDHEIMER *,
TRoyal Society Mond Laboratory, Cambridget

. §1. INTRODUCTION :
1.1. The foundations of the modern electron theory of metals were

: ;la.id at the beginning of the present century, when the existence of a gas

‘of free electrons was postulated by Drude in order to explain the conducting
properties of metals ; the behaviour of the electrons was subsequently
analysed by Lorentz by means of the statistical methods of the dynamical
theory of gases. The chief success of the Drude—Lorentz theory was the
prediction of the Wiedemann—Franz law connecting the electrical and
thermal conductivities, but-later developments revealed an increasing
mnumber ‘of serious difficulties, outstanding among them the inability of
the theory to explain why the conduction electrons do not contribute
appreciably to the specific heat of a metal. This paradox was not, resolved
until the advent of quantum mechanics, when Pauli and Sommerfeld
applied the Fermi-Dirac statistics to the free electrons in a metal, showing
that in this way most of the contradictions could be reconciled.

- The Drude-Lorentz-Sommerfeld theories are essentially formal in

- charaeter. They involve as arbitrary parameters the number » of free

electrons per unit volume, which is assumed to be of the same order as the
number of atoms per unit volume, and the mean free path  of the electrons

‘which is to be determined from a comparison of theory and experiment.

So far as the electrical conductivity o, is concerned, the results of the.
Sommerfeld theory are summarized by the formulae

- 87 fmwv\3 e o one?
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in which % is Planck’s constant, —e is the charge and m is the mass of

an electron, and v is the velocity of an electron at the surface of the.
Fermi distribution. o, therefore depends on =, I and fundamental

~constants only. In order to obtain the correct order of magnitude for
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’ ivity and the correct temperature variation, it i§ necessary
: g)leasglrizc;}ll;t Blr is of the order of several h}mdrfad interatomic distances.
at ordinafy temperatures, and increases ;ap1dly in a pure metal towards.
: mperatures. : . .
Vegl,l(lz(})lwl;zg If)ree paths which vary with temperature are very dlfii)cu!t
to explain on classical theory, but they can be understood on t_h(? . as1§.
of the recent developments in the theory of metals. These were initiate
by Bloch and elaborated by a great many authors ; .they have b(?en
concerned with a detailed quantum-mechanical analy_sus of .the motl.on
of electrons in a crystal lattice, and they have madg it poss‘lble to glv?
precise meanings to the two fundamental concep'ts‘ of th(? num.ber of -
free électrons’ and the ‘ mean free path’ and to obtajln numerical estamate;.
of these quantities in certain cases. The electrons in > metal are regaa}‘;ig
as distributed over a number of energy bands, filling most o.f t ]:né
completely. All the electrons are free to move through the lal,)ttl(i;z, ut -
only those which are contained in incompletely filled energy bands can
contribute to the resultant current and are to be regarded as free eleCtI'OI.lS-
for the purposes of conduction theory. The number of free t.alectron; in
a metal is of the same order as the number of'a,toms : the precise num el('i .
however, :-depends on the detailed configuration of the energy bands an L,
need not be a simple multiple or submultiple of tbe number.of atoms?
The variation of # with temperature is negligible, since at .ord.maer tem-
peratures the free electrons form a highly degenerate F.er.nm—Dlra,c gas.

An eléctron can move freely through a perfect apd rigid cryst?,l lattice
and there is no resistance. In a pure metal a finite free path is caused
by the thermal vibrations of the lattice anfl is of the same (?rdel.' a,? the
average wavelength of the sound waves mn tlfle metal, which is arﬁez
compared with the interatomic distance and is 1r}creasefi by lowering the
temperature. The free path does not increase 1ndeﬁmtely,'hov‘ve(;rer, as
the temperature is lowered, and at very low' temperatul.’es it _t'en s to.a
constant ‘residual’ value I, which is determined by sta,.tlc .la,ttlce imper- .
fections such as the presence of impurity atoms, and-which is of the order

i ce between the impurities. , - .
9f~n';‘}}llz d;:EzI\:v;g theoretical foEmulaJ may be de(.i‘ucefi 1:0r the: electljwal
conductivity of a metal, subject to many simplifying .assqllflpgons.
‘eoncerning the interaction between the electrons and the lattice vibral fons
(see, for example, Wilson 1936, Chapter VI):

L (mye e (oS
o nefl, T \2) BndeMkOPE\8) J, (e—1){1—e 2
is- smann’s constant, { is the Fermi energy level ({=3jmv ),
giﬁtﬁeﬁ)fl?)lfz temperature, M is'the mass Qf an atqm, 4 is the Volu.me
of the unit cell, and C is a constant which det.ermmes 1':he 1ntera,ct1(1)1n.
between the electrons and the lattice. A.c('aordlng to tl{ls forml}la, the
“ideal * and - residual > resistances are additive, and the ideal res1sta§ce
is proportional to 7' at high and to T® at very low temperaturgs. - (For
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commercially pure metals the residual resistance can be neglected at
ordinary temperatures.) The temperature variation of the " resistance

- predicted by (2) s, generally speaking, in good agreement with observation,
. particularly for the monovalent metals. The absolute value of the free

‘path at any temperature can be estimated by combining (1) and (2) and
substituting  reasonable values for the parameters. The chief uncer-
tainty concerns the magnitude of the interaction constant O, estimates
of which can be obtained by numerical integration if the wave functions
of the conduction electrons are known ; it is of the same order as the:
Fermi energy {. The estimates of the free path are of the right order of
magnitude, but precise numerical values cannot be obtained in this way.

1.2. An important conclusion to be drawn from the detailed quantum-
mechanical theory is that the simple Sommerfeld treatment of the
conduction phenomena remains correct ‘within certain limits. In the
Sommerfeld theory the electrons are regarded as perfectly free, their
energy being proportional to the square of the velocity ; this remains
approximately true for electrons moving in a lattice, but the mass m
which appears in equations (1) and (2) must be regarded as an effective
mass which is of the same order of magnitude as, but not necessarily
equal to, the mass of a free electron. - This model of ¢ quasi-free ’ electrons,
which is implicit in the derivation of (2), applies most closely to the mono-
valent metals in which the conduction electrons are all contained in a
single energy band ; for these metals, moreover, the number of conduction
electrons should be precisely one per atom. In multivalent metals, in
which the electrons occupy more than one band, the model may still be
used to give a semi-quantitative description of the simpler conduction
phenomena, but quantities such as » and m must then be regarded as
representing certain averages of the numbers of electrons and the effective
masses of the electrons in the various bands, and the precise numerical.

~ values have no immediate physical significance. It would, of course, be

possible to consider more complicated models, for example one in which:
the conduction electrons are contained in two overlapping energy bands.
In the present state of the theory of metals, however, it is impossible to. -
work out a theory which fully takes info account the electronic structure
peculiar to any particular metal, and instead of introdﬁcing a large number
of parameters of doubtful physical significance it is best to work with the.
simplest model which gives reasonable results. For more complicated:
conduction phenomena, however, particularly those which are associated
with the presence /6f a magnetic field or with anisotropy effects, the free-
electron model is entirely inadequate (it leads, for example, to a zero.
magneto-resistance effect), and even a qualitative theory can only be
obtainied by using a model in which the energy surfaces do not form a-
singly-connected set of spheres. :
In the Sommerfeld theory the free path is most conveniently introduced-
through the time of relaxation ', which is defined as follows. : Let.
v=(v,, vy, v,) be the velocity of an electron, and let 2(m/hf(v, r) dr dv-

B2
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be the number of electrons in the volume element dr—dx dy dz which
‘have their velocities in the range dv=dv, dv, dv,; f is the distribution

function as usually defined in Fermi-Dirac statistics. Suppose that some -

non-equilibrium distribution function is set up by a system of external
forces which are suddenly removed ; the rate of approach to equilibrium -
-under the influence of collisions alone is then supposed to be given by

| [glt?:lcoﬁ:—_@’ L SR (3)

‘where f, is the equilibrium distribution function. The time of relaxation
need not be a constant and may depend, for example, on the velocity ;
if » is the mean velocity of those electrons to which 7 refers, the corre-
“sponding free path [ is defined by l=vr. In-general [9f/0t].,; takes the
form of an integral operator which does not reduce to the simple form (3);
it is then impossible to define a free path in any natural way. The detailed
- theory of the conduction mechanism in metals shows, however, that a free
path does exist in the above sense under certain conditions for quasi-free
conduction electrons ; thus it can always be defined for scattering by
randomly distributed impurity atoms, and it also exists for scattering
by lattice vibrations if the temperature is above the Debye temperature.
S0 far as the electrical conductivity is concerned, it is a reasonable approxi-
mation to assume that a free path can be defined for all temperatures, so
that equation (1) holds and the temperature variation of the free path is
the same as that of the electrical conductivity. An approximate theoretical
expression for ! in terms of the atomic constants of the metal can be
. obtained by combining equations (1) and (2). It must be borne in mind,
- “however, that the free path associated in this way with the electrical
conductivity is not necessarily the same as the free path associated, for
example, with the thermal conductivity. , .

1.3. With all the provisos mentioned, then, the simple Sommerfeld
picture of the free electrons in a metal and their mean free path retains
its validity and may be used to discuss the conduction phenomena.
Tt is therefore an important problem to determine the various parameters,
of the theory by as many independent methods as possible; such estimates
are of interest in themselves in providing information about the electronic
structure of metals, and they serve as a valuable check on the consistency

of -the free-electron theory. Furthermore, since the calculation of the

free path from fundamental principles is highly complicated and involves
many drastic approximations, it is desirable to have methods by which
7 may be estimaged directly from observational data.

* The simplest procedure (Mott and Jones 1936) is to compare equation (1)

with the observed electrical conductivity, but this gives only n23] and [ .

cannot be obtained unless n can be estimated independently*. It is,

-~ * Tt should be remarked that the value-of I defined by Mott and Jones and
tabulated on p. 268 of their book is twice the free path defined here ; the latter
_is the physically relevant quantity. ' .
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however, possible to obtain ! directly "by measuring the conductivity
( under conditions where the free path may be compared with"some-other-
characteristic length in the metal. Effects of this type have attracted
much attention in the last few years, and it is with them that we -shallA
henceforth be concerned. - I S
The most obvious method is to use a thin film or wire and to arrange- |
t}}‘at the free path is comparable in magnitude with the thickness or
diameter of the specimen ; . the artificial limitation of the free path by
!:he boundaries of the specimen causes an increase in the resistivity above
its value in the bulk metal, and this may be used to deduce the ratio of 3

3 free path to thickness or diameter. "This topic is reviewed in §2.

'In §3 we consider the more complicated effects which occur when a-
thm specimen is placed in a magnetic field. The ordinary bulk magneto-
resistance effect depends in a complicated way on the bindjng of the
elect.rons in the lattice and is zero for quasi-free electrons; in thin
specimens, however, where boundary scattering of electrons is important;
the alteration of the electron trajectories in a magnetic field in genera;i.,

leads to a non-zero change of resistance even if the electrons are regarded.

as free.. These curious ‘geometrical * effects, being classical in nature
are entirely different from the bulk effect and are essentially simplei' t<;~
undejrstand. The details of the phenomena vary with the shape of the.
specimen and with the relative configurations of specimen, current and
n%agnet'lc field ; their analysis in all cases involves a new quantity with the-
d1mfen.s1ons of length, namely the radius ry=mic/cH of a*free-electron
orbit in a magnetic field . The experiments therefore give, in addition
to the free path, a direct estimate of the momentum m# of the eleétrozis:
at the surface of the Fermi distribution, and hence of the number of free-
glect?ons according to equation (1a). The method is, however; severely
res!;ncted in' practice by the disturbing effect of the bulk ’ma,gnetom
resistance phenomenon. : ' '
,In ,.§ 4, ﬁna]ly, we consider. the so-called anomalous skin effect m metals..
This is a more sophisticated size effect in which the free path is compared,

'not with the physical dimensions of the specimen, but with the distance:

to which a high-frequency electric field penetrates into the metal.
Experiments on the high-frequency skin resistance of metals allow values.
o.f [/5 to be deduced, where 8 is the. classical skin penetration depth, and
since & depends only on the frequency and the d.c. electrical conducti’vity 7
the free path can again be obtained directly from experimental ma,gnitudesj
1..4. These phgﬁomena present interesting problems from both ‘experi-
menta}«l and. theoretical points of view. Let us consider the orders of
magnitude of the various characteristic lengths. The free path in metals.
at room tempera,tures is of the order of 10-5 cm or less, but in a pure metal
at hq}ud-hehum temperatures the high values of the condﬁ_ctivity indicate
th?,t it may be .as large as 10-2Zcem. Tt is clear, therefore, that.extremely‘
thin films would be required in experiments on the size effect at normal
f,epera.ffures ; such films are difficult to prepare and uéually shoﬁ
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subsidiary resistive effects, often time dependent, which tend to obscure
the pure geometrical limitation of the free path with which we are alone
concerned. - In order to obtain results which are free from ambiguity,
it is therefore essential to carry out the experiments at very low tempera-
tures where relatively large specimens (of thickness ~ 10~% cm) may be
used. The necessity for using specimens. of this order of thickness
‘becomes even greater when we. consider the effects which take place in
a magnetic field. These effects show up when the orbit radius 7, is
comparable with the thickness of the specimen. Since v is of the order .
of 108 cm/sec, a magnetic field of reasonable magnitude (several kilogauss)
corresponds-to 7y ~ 102 cm ; and since r, is inversely proportional to H,
impracticably large magnetic fields would be required in the case of ’
films much thinner than this. Finally, in the anomalous skin effect {
‘must be large compared with 5: the ratio /8 is proportional to 32 and
to the square root of the frequency, so that both very low temperatures
and high frequencies are required. For a pure metal at liquid-helium
-temiperatures and for microwave frequencies, I3 is of the order of 100.

One may say, therefore, that the size effects are essentially low-
temperature phenomena. Since the free path at low temperatures varies
from specimen to specimen and is not a characteristic property of the metal,
1it, is usual to measure (or estimate in some way) the value of the bulk
-conductivity o, which corresponds to the free path 7, and to express the
results of the experiments-in terms of the ratio o,/l. This ratio deter-
tmines directly the number of conduction electrons per unit volume,
since, according to equations (1 @) and (1), .

oy e 8\ 1/3 20?3 ’ "
7= ooy T <§—> 7 =T1X% 1?7n2/3. ] coe (4)
“Note that this relation involves only the assumption that the electrons
are quasi-free, but not that their offective mass is necessarily equal to
" the mass of a free electron. :

1.5. Many approximatevtheoretical treatments have been given of the
various free-path phenomena, but we shall not refer to these (except
where they are particularly relevant to the discussion), as they have been --
superseded by the strict statistical analysis based on the Boltzmann
equation for the distribution function of the conduction electronst. This ™
equation is formed by equating the rate of change in f due to external
fields to the rate of change due to the collision mechanism, which is
agsumed to be given by equation (3). In the _presence of an _electric

field E and a magnetic field H, the Boltzmann equation for qildsi-free
electrons takes the form

é | | 1 ». . . - b . .
} ' _;_?’<E+Ev><H).gradvf+v.grad,f=eji7—ﬁ), .. (5

* (Jaussian units are used throughout the present article.

The use of the Boltzmann equation in this connection appears to have been ‘

first suggested by Peierls.
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" -which is purely classical except that the mass m is to be ‘rega,rded as an

effective mass, while the equilibrium distribution function is the Fermi-
Dirac function S - . f
S . |

The time of relaxation 7 is supposed to depend on the absolute value of
¥ only. o ' . ' :

f is a function of the velocity vector v_and the space vector r, and
the analysis of the size effects depends essentially on the appéaran,ce in
equation (5) of the term involving the space derivatives of f, which is
}jequired in the bulk metal only if Xtemperafuure gradients ar’e present
This term takes info account the non-uniform distribution in space oi'

“the conduction electrons -which is characteristic of . the size-effect
phenomena. A general feature of the analysis is that boundary conditions
have to be imposed on the solutions of the Boltzmann equation; these
are determined in each case by the nature of the scattering at the p,hy'sical ’

" boundaries of the specimen.

In treating the various problems in this wa; Ii

N . . y we may apply the results
'dl'rectly to _the alkali metals, in which the electrons are most nearly free, and
with somewhat lesser confidence to the noble metals ; for more complex :
metals the model will provide only a qualitative picture, but should give

the orders of magnitude correctly. In the presence of a magnetic field,

eorrections of uncertain amount must be applied to the. classical formulae
to allow both for the bulk magneto-resistance effect and, possibly, for the
effect of the quantization of the electron orbits in a magnet,ic field.
_:.Ijhese refinements are difficult to take into account in any satisfactory
way ; the most reasonable procedure, therefore, is to neglect them entirely
.‘fmd to restrict, the experiments to metals in which they are of Jeast
importance (see § 3.1)." . - » :

{ Thet mgin, problem, then, is to solve equation (5) for the various cases
of -interest, and to use the solution to calculate the current density J b
means of the usual formula V v Y '

J=—2e<%>3jvfdv. .M

1.6. Objections have been raised from time to time against the whole

" basis of the theory of metallic conductivity : thus the uncertainty

;p.rinciple has been l}sed to argue that thé uncertainty in the energy of a
single electron, which is determined by the magnitude of the time of

- relaxation, may /be so large in some cases as to render meaningless any

description of the situation by means of a distribution function which
obgys the classical Boltzmann equation (for a detailed discussion of this
somewha,ﬁl oversimplified statement compare, for example, Peierls 1934)
These objections have never been satisfactorily met, and it must be:

ot E hel‘e den €S bhe ener gy oL an e erIOn. bub else Wh-eIe m t’llls ar bICIG E
Ob A f ]. 3 i i i
‘E\tiﬂldi fCI € E:t]’].:‘j.E]:.'itIEn.gth.
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admitted that there is no entirely rigorous. quantum theory of con- -
ductivity. So far as the effects considered here are concerned, however,
free path appears as a parameter which
need not itself be determined by the theory and which determines the
phenomena in an essentially classical way ; since the physical concepts

involved are classical, it is not perhaps surprising that the effects can be
explained by a theory which employs essentially clagsical methods. In
any case, the great success of the theory in explaining the experimental
facts strongly encourages belief in the basic validity of its assumptions. -

§2. ConpUCTION IN THIN Frzms aND WIRES

2.1. Thin films. The strict analysis of the conductivity of a thin
metallic ilm was given by Fuchs (1938). The method is typical of all
strict calculations on the various size effects and will therefore be presented
in detail. - o v I .

Consider & metal film of thickness @ and suppose that the z-axis is
perpendicular to the plane of the film, the surfages of the film being th
planes z=0 and‘z=a, The problem is essentially a one-dimensional onej
and the distribution function of the electrons may be written in the form.

- ' f:foﬂ“fl(v,'z)’ . ‘ (8
where the function f,- which has to be determined depends on the space)
variables only through z. The electric field E is supposed to be in the
#-direction, and, if we neglect the product of E with f; (which is permissible
so long as we are not ‘nterested in deviations from Obm’s law), the:

Boltzmann equation reduces @'// v
O, f_ B )
' \az TV, MY, avm'/'
. . -
‘The general solution is eﬁsﬂﬁr‘itﬂbexr&owﬁnd is’

Sulv, 2)= <8 % {IT}—F(V) exp (f ;%;)}, . b. (10y

s
where F(v) is an arbitrary function of v.
9.11. To determine F(v) we have to introduce the boundary conditions

(9y

" at the surfaces of the film. The simplest assumption is to suppose that
> every free path is terminated
* scattering-is-entirely.diffuse.

by collision at the surface,
The distribution function of the electrons.

leaving each surface must then be independent of -direction ; equation (10)

! shows that this can only be satisfied if we. choose F(v) so that fi(v, 0)=0

for all 'v such that »,>0 (that is, for electrons moving away from the
surface z=0), and f,(v, a)=0 for all v such that v,<0. There are there-
fore two distribution functions, fi+ for electrons with »,>0 and f,~ for

electrons with v,<<0 ; they are . -

e o O {l_ex'p (_ ) ot

B (1 ey ()}

“m v, -
. - _ .(l!)
fl*;(v! 2)= “m %‘0_

;(fv'?<0).

go that the
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2.111. We can now proceed with the caleulation -
- ce ‘ v of the current densit,

J(z). Combining (7), (8), (11), introducing polar coordinates (v, 8, ¢) 1K

the v-space (with v,=wvcos#), and. rem i
. \ 2 ¢ 3 embe th
v=| v | only, we obtain ' ‘ e % Jo dopends op.

2 . o 2e2m2E o .
J(z)_—_—v—__‘_f d 3 ofo
‘/  ' S X [ﬁnsin"’ﬁ{l——ex - E do
'_1_ nsiv3041_ a—z ;
, J%n " { P (wcosf))}do]' co

(12)

t
g

I '
— [ " dto) G ao—y(o), (13)
which holds for a degénerate electron gas.

This. give
rearrangement, - . gives, after some

- 4%627’)’1,21‘1_)3 n i
J (&)= ——5— E’J sin3 @ {1—- (_ % a—22
73 Jo ] exp oo 0) cosh < 5T oo 9>} de,

. (14

vdvi};:;% é;; ;-I'tlz is the free path Qf t,heA electrpgs at the surface of the Fermi
1;hf}qﬁl;a,tlonﬁ‘(14) gives .thQ »cu‘rl,'ent distribution across the ‘thickness of
m. For comparison with experiment, however, we require the

+ apparent overall conductivity of the film, and we must therefore average
f‘h? .cum:ent density over all values of z from 0 to a. Ca,rryih' out ti :
_integration over.z, we obtain for the effective conductivity ¢ : 'el

o'-:'—LJaJ(z)dzﬂ P g 0 cos 6 @ )] |
Fa § o %), gin® § cos § {1—exp (— m)}d@] s
| ‘ - ~(15)
.((ri) ;)em%;;lhe GOI'IduCtiVity of the bulk mefal, which is,given by equation
metl;} g e Tatio {;Of the resistivity 1/o of the film to that of the bulk
_ etal 1/o, is mogt conveniently written in the f ine
by means of a simple substitution, h or, obtained from (19)

% o Pl)

g. K

. . .

; R ¢ [

where k=a/l and where

11 3 3en 1y
F=x—sataal, (38) . an
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Repeated integration by parts gives the alternative expression

1 3 1 N 03 (B Yok
! :—.——~(1—1—'ZK2>E’L(—K)—‘—'8—K—2(1—€ )_<8_;;+ 16 16 e
, g ' (18)

© e—t

—;Ei(-—u):J‘u T . (19)

which is a tabulated integral ; this form of the result is particularly con-

“venient for computation. . ' o
The limiting form for large « (thick films) is

G . 3 )
=ltg (> )

and for very thin films we have

w____* . N 1

;——“m‘ (K<1). .. | | (21)

hese formulae are discussed further in § 2.3. o
2.12. A somewhat mere general theory, which does not assume ’-nhat
the scattering ab the surface of the film is entirely diffuse, can !oe obtained -
as follows. - We assume that a fraction p of the ele(?trons is scattered
elastically at the surface with reversal of the velocity componient Vs
while the rest are scattered diffusely with domplete loss of 1:,he1r_ drift
velocity. p is supposed to be a constant independent of thfa d}reptlon of
motion of the electrons. This is of course a highly artificial -model,‘
* which in effect merely interpolates between the extreme cases of pf:rfectly
diffuse reflection, considered above, and perfectly specular reflection, for
which the conductivity is unaltered. However, in 'the' absence of any
detailed theory of the nature of the surface scattering mechanism it is
Pest to work with the simplest possible assumptions. o
The distribution function of the electrons leaving the surface 2=0

is now given by o ' :

[ fbft s =0 =p oty a= O} (=plfor - (22)

and Sir%]ilarly, at zf:a, ‘ o
\ : f0+f1_€vz’ z=a’)=_p{f0+f1+(+«"vz’ z=a)}+(1—p)f0. . (23)

These equ\aitionsVare"'sﬁﬂiCient 4o determi_he F(v), and instead of ,(:1:1) _

we obtain for the distribution funetion

- B oy [, o 1=p (_ i>} =0),
- /‘ﬁJr(v’ z); m %i{.ljl——p exp (—a/wz)ef,xp TV, a ) »

| B ofy [ o l=p o (02 (©,<0).
Srtvw A== 67(;{1_ 1—p exp (a/1v,) e,%p( ™, >} ©:<0) o)

1
4
3
L
]

e

g e S S A

SRR A G A
N .

3
3
E
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The current density is calculated as before, and the result is that the -

" function D(k) defined by (17) must be replaced by @,(«), where

1 1 3 © /1 1\ l—e® :
=m0 (G-a) it - e
"This reduces to (17) when p=0, and to the bulk-metal value 1/« when
p=1.. It is, of course, again possible to write down alternative forms of

(25) more convenient for numerical work ; compare, for example, equation
(31). Instead of (20) and (21), we have ’

To

D142 1—p) k>1) . . .. (26)

g
oy 41—p 1
o 3 1+4p xlog (Ifx)

Values of gy/o for p=0 and % are shown in Table 1.

a,nd‘ (e<€). . . . . (27)*

TaBLE 1 .
The resistivity of thin metallic films divided by the
" resistivity of the bulk metal

K ' N Y
(thickness/free path) p=0 p=%
0-001 ' 182 735
0-002 1004 41-5
0-005 46-6 20-0
0-01 - 26-5 11-8 Y
0-02° : 15-3. 7-1
0-05 V . 769 3-87
0-1 472 2-62
0-2 ' 3-00 1-91
0-5 - 190 1-402
! : 1 1-462 1-206
o ‘ 2 ‘ 1221 1-102
5 . 1:081 -1-039
10 \ 1-0390 1:0191
20 -1-0191 - 10095
50 . 10076 1-0038
"100 ' 1-0038 -1-0019

e ) .
2.2. Thin wires. The corresponding analysis for*the case of wires

_ has been carried gut by MacDonald and Sarginson (1950), who considered
- a wire of square gross-section; and by Dingle (1950) for the more important

but more difficult case .of a wire of circular cross-section. The method is
essentially the same as that for a film, but the details of the analysis,
for which the reader is referred to the original papers, are more complicated

" because the problems are now two-dimensional and the Boltzmann

* The corresponding formula given by Fuchs (equation (23) of his paper) is
incorreéct. ) ' ' ‘

;
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equation takes the form of a partial differential equation. in the spacg.
variables. The result for a cylindrical wire of diameter & is¥, for 2)'__-07 »

% _ ¥ (28)
sk’ /
" where k=afl, 1 1o | )
=l 2 a—ene Sty dt, . . . . (29)
Y() « 7 ,fo( 2 Syt) .
and 8, ()= J © w1yt . . . . . (30) -
' 1

-The result for p7£0 may be derived from that for p=0 by means of the
simple relation S :

(2N —a_pp n—l-"-) N €10
' <Uo>x,p‘ (1=p) n=1'np (00 K, p=0 .

this holds incidentally also for the case of a thin film, as may be shown by
expanding (25) in ascending powers of p and comparing with (17). -
For very thick and very thin wires the results reduce tov

AL 43_(1_20) (k>1) . . (32)
o K o o
l—p1l . . (33)
and ?—_—m; e (k1) « o . , (33)

(32) holds also for a square wire (« being a/l as before where a is now the
side of the wire), but (33) must be replaced by
' gy 1—p 0897

= <1). B (34)
o 14p K (1) » .
ical values of o,/o for a eylindrical wire are shown in Table 2. .
Nl%zr.r;.mgazfscussion of t;o/e jbrmulai_. It will be noted that, altho%gh. thg:
general theory is complicated, relatively simple formu.la,e arefo tauﬁl :
for specimens which are either thick or thin comparefi Wlth; the free ];La .
The results for these limiting cases in fact possess a simple mtgrpreta ion..
2.31. The results given above for, thick specinqens are par.tlcula,r l(laa,ses.
_of a formula applicable to wires with cross—secfmons .of arbltrailgr sts.xpe,
the general form of which follows from simple d1mens1on.al conslf era; 1111113 |
(Dingle 1950). When the thickness is large compmjed with the .ree'path,
the deviation in the current density from that which wo_uld ex1§t m1 e. .
bulk metal for the same applied field is appre'ciablg only in a region close
to the surface of the specimen. The deviation in the cur;'ent is pro;
portional to the perimeter P of the cross-section, whilst the mean curzent

is proportional to the cross-sectional area 8. Hence

% _14 1_; « constant—1-+CIP/S,
a

* Note that Dingle denotes the radius of the wire by a.
N

.. (38)

L A A B o DA o T iz

sk
—
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* where C is a dimensionless :cbnsta,nt'independent of the shape of the

. specimen.  For a thin film of thickness a, P/S=2/a, and comparison with
(26) shows that C=3(1—p)/16. Therefore, for a wire of arbitrary cross-
section, : '

9o

3 IP -
D=lb =P . . L (36)

g .
In the notation of § 2.2, P/S=4/a for both square and circular wires,
and we regain (32). _ . ‘
oo TABLE 2 ’ : _
The resistivity of thin wires divided by the resistivity of the bulk metal

K - R Gola o
(diameter/free path) p=0 p=2% ’
0-001 ' 1000 - 337
0-002 : 503 170 - .
0-005 . - 202 - 693
0-01 102 35-7
002 - 521 187
0:05 o 216 831
0-1 1145 - 4-88
02 . 633 3-02
05 3-14 1:84
1 2-04 1-422
2 1-475 1-208
5 : ) 1172 1-080
10 ‘ 1-081 . - 1-038
20 1-0390 10191
50 » ) 1-0152 1-0076
100 o 1-0076 1-0038

- 2.32. We may define an ‘effective’ free path [ for conduction in
thin specimens by writing the effective conductivity in the standard form
a=mnellg/mv. For wires of diameter small compared with the free path,
we see from equations (33) and (34) that [ z=a, apart from a constant of
the order of unity. This result is intuitively obvious; for a very thin
Jilm, however, we find that Iz = a log (//a), so that I tends to infinity
with l.. The qualitative difference between the behaviour of thin films
and of wires may at first sight seem surprising ; its origin becomes more
apparent if we consider a simple qualitative treatment of conduction in
thin films due to Lovell (1936).. We assume that all free paths start
at the surface, and that the effective free path is the average of all free
paths of a given electron, the free path being taken as the distance to

. the next intersection with the surfade or the ordinary free path, whichever

is least. Assuming further that the density of electrons travelling

“inwards from the surface is uniform (diffuse scattering), we have, if 0 is

the angle between the direction of motion and the normal to the film

-surface; . »

L= [ snoday [T . 0.do, -
off = jo cos oo —I—LovsmA s
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where cos f,=a/l. This gives
'leffza,(log(l;/-l—l)z B : 1)

which is in qualitative agreement with the exact result when I>a.
Examination of the integrals shows that the main contribution to I
when I>a comes from values of 6 close to 8, ; the dominant contribution
40 the current in films, however thin compared with the free path, therefore
arises from electrons which, after reflection at the surface of the film, move
in directions so nearly parallel to the surface that their free path remains.
of the order of the bulk free path. In the case of wires the constriction
of fiee paths due to the geometry is more severe, and such electrons do
not play any appreciable part. o , .
2.4. Comparison with experviment. ‘Tt was known already at the end
of the last cemtury that very thin films of metal exhibit a higher electrical
resistivity than the same metal in bulk, and J. J . Thomson (1901) was the
firs, to suggest that the effect arose from the limitation of the free path
of the electrons and to give an approximate theory ; he derived a formula.
similar to (37). Since then an enormous amount of experimental work
has been carried out on the electrical properties of thin films ; we mention.
in particular only Lovell’s careful measurements on films of the alkali
metals (Lovell 1936), and refer the reader for further information and
references to the critical review by Chambers (1951). However, as we
have already emphasized, if the measurements are to give information

about the electronic parameters characteristic of the bulk metal, great .

care must be taken to eliminate all effects which may be peculiar to thin
specimens other than the pure geometrical limitation of the free path
with which the theory is alone concerned. In particular, both strain and
impurity may be expected to play an increasing part in determining the
phenomena as the size of the specimen is reduced. In fact it was not until

. recently that Andrew, working with relatively thick films at liquid-
hydrogen and liquid-helium temperatures, obtained data- which could
be - compared -with any confidence with the theoretical predictions
(Andrew 1949). ' ‘ : ' :

For thin wires there is much less experimental work than for films.
The most important earlier experiments in this field are those of Eucken
and Forster (1934) and succeeding workers, and data on wires were also
obtained by Andrew in his recent work. To illustrate the kind of
information that can be obtained from the experiments, Andrew’s
results on both films and wires are compared with the theory below.

There are two ways in which the  ratio afl -may be varied in
carrying out the experiments. We may firstly use a single specimen.and.
vary | by changing the temperature. Since the bulk conductivity o
cannot be measured on the specimen itself, it must then be assumed that:
the temperature variation of o, and hence of 1, is the same for a thin

specimen as for a bulk specimen. ‘Alternatively (and this was Andrew’s
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procédure) ¢ may be measured at one or more fixed t ]

: : ‘ -temperatures for a
number of specimens of different thickness or diameter ; itpis then impora:
tant to ensure that the bulk free path is the same for all specir;lens.

2.41. Fig. 1 shows Andrew’s results on the resistance of rolled foils

of tin at 3-8° K. The resistance, expressed as a fraction of the value -

at 291°K, is plotted logarithmi i il thi i
e o fom 3 1]3) 2000 1 garithmically against the foil thickness, which
In comparing these results with the theory, it is nécessary to assume a
value for the surface reflection coefficient p. Such evidence as exists
mostly tends to show that the scattering is diffuse, so that p=0 (com are
§§ 2.411 a,n(.il 4.64 below), and this was the value adopted By Andrlt)aw ;
the the(?retlcal curve of oy/o for a film as a function of a/l can then b(; '
fitted directly to the experimental results at constant temperature, and |
the full curve in fig. 1 has been drawn in this way. The rather ’large

»

R

logwm.

el L
: 3

' Experimental results on the resistivity of tin foils at 3-8° K, plotted logarith-

~mically against the foil thickness. T ine i i
P i soattering (p—0) ess. The fu}l line is the theoretical curve

sca,tte_ar {)f the observations about the théoretical curve is probably due ¢ >
a variation in residual resistivity between the specimens, but on tge WholO
the agreement between theory and eXperimént is s,atisfactor : The
process of fitting gives directly the value of the free path I corresy;)nd' .
t9 f;he temperature of the experiment and "the ratio of ‘the bulk I(:ondlng
tivity o, to the. (known) room-temperature value. The results are tllllzi;
1=9-5x 103 cm at 3-8° K, and o,/l=4-5X 1022 gaussian units. Measure-

" ments at higher temperatures confirm that the value of o/l is constant

and With_this. value equation (4) gives n=1:6x102, The number of
atoms per unit volume, n,, is 3:7x10%% for tin, and thus n/n,=—0-43
Such a value for the number of electrons per dtom is entirelAyArea;ona,ble‘

although in a complicated metal such as ti ; .
Signiﬁcance. : ) as tm thﬁ preclse ﬁgure has little
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2.411. Andrew’s measurements on wires were oa,rri.ed out using mercury,
and thé results for 3-5°K and 2-5° K are shown in fig. 2. Thev. exaci;
‘analysis of conduction in thin wires had n.ot been given ab "Eheatlmet }(1)
Andrew’s experiments, and the full curves in fig. 2’ were obtaine Ori ; e
basis of an approximate theory similar to Lovell’s. Dingle (1953?(1& ez
re-examined Andrew’s results and found that thg exact ﬁheory : 11 11}?
substantially alter the conclusions®. Dingle considered in Qamt;cu ar the
question of the value to be assigned to p ; he fqund .tha,t, if a goqg%?o
value is assumed, agreement with experiment could onl}f ]ge qbta,llne : 1y
supposing that p increases slightly With tempera,tux:e. Thl{? is not p ims& tg
‘on theoretical grounds, since the various mecha,m§ms \:vhlch may ea,f
Jdiffuse surface scattering, such as the thermal vibration of the surface

atoms or the number of mobile surface defects of various kinds, would be

Fig. 2.

e

log10 B oom

mercury wires at 3:5° K and 2:5° K,

‘Experimental results on the resistivity of B e

plotted logarithmically against the wire diameter.

theoretical curves for diffuse scattering.

-expe‘oﬁed to become more effe

to decrease. : it '
gmphasized- however, that more experimental and theoretical work is

required before the question can be regarded as deﬁnite_ly sgttlecz. h(cqmpaﬁz
also §4.641). Adopting the value p=0 and ('jl;srega,rdlrlllg ! de res: s
obtained for the thinnest wires used in t.he expgrlments, w ic 10?3110 '
in with the theoretical predictions, it i8 found that I=5-6X cn; a
- 2.5° K and o,fl=2"5x 10%, which corresponds to 0-15 electrons per atom
in mercury. - : » |
>l"If; is worth noting that the simple formula oy/o=1-1/x gives values of

i i m the ex: i an 5 : :
fUO/G Zl(l)l; }:lc dlf%fli% Oformula (or a slight generalization of it) is ’assocmte'ad Wlﬂi
iigiame o;f Nordheim, and was used in the evaluation of the earlier experimenta

work on thin wires (Nordheim 1934, Eucken and FérS‘ger 1934). -

ctive the higher the temperature, causing
The value p=0 is therefore the most likely ; it must be .

e L
Z':f ge— 8l dS/l—}-J
: v

act values (for p=0) by less than 5% over the whole -
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2.42. Corresponding eXperiments have been carried out by MacDonald
“and Sarginson (1950) on thin wires of very pure sodium ; such experiments
" are of particular interest, since for an dlkali metal quantitative agreement

. with the free-electron theory is to be expected. MacDonald and Sarginson
" .compare their results with the theory developed by them for a square
~ wire, using values of [ estimated on the basis of the free-electron theory

from the observed conductivity of a bulk sample. (I X 4-5x 10-3 cm at
4:2°K.) The agreement between theory and experiment is only fair,
and MacDonald and Sarginson conclude that the hypothesis of entirely
“diffuse scattering at the boundaries is not generally fulfilled for their
specimens, and that the degree of elastic scattering is a function of

"the specimen size. Further experiments on sodium are considered in

§§ 3.2 and 3.3. . _
2.5. The * kinetic theory’ solution of thin-conductor problems. Chambers
(1950 a) has recently given an elegant formulation of the theory of thin-
conductor problems, in which he writes down the solution of the Boltzmann
equation in a form suggested by simple kinetic theory considerations.
In the presence of an electric field # in the a-direction, and with
Sf=fo+f1(v, r), the Boltzmann equation takes the form :

Eeofy  h

vogad i T T . (39)

A particular solution is :

‘ el ' r—ry|\) :
- filv, r):.W —aa‘::—‘;{l.—exp <—- LT‘J)}, ... (39)
where r—r, is a vector parallel to v. This solution applies to conductors
of arbitrary shape and, if r=r; is taken to be a point on the surface of
the conductor, it satisfies the boundary conditions corresponding to
diffuse scattering at the surface. ' -

Equation (39) may be derived from first principles as follows. Consider
electrons passing through a point r in the metal in the direction ro—r.
The probability that an electron will travel a distance s and then suffer
4 collision between s and si-ds is e~ * ds/l, but electrons which arrive at
ro will certainly collide there if the scattering is diffuse. The mean
distance travelled by an electron without collision. after passing through
r is therefore % - :

T « . 7 _
Y : . o ,
. II r—r [ e~ dsfl=U1—e~ "m0 (40)

also, for electrons travelling in the opposite direction r—r,, the mean
distance travelled without collision before reaching r is given by the same
expression. The mean drift. velocity acquired by these electrons in the

electric field is theref_ore :

Ay — eEl _\e?E

2 mw m

(l—e—lr—rol/l), L (41)

P.M. SUPPL.—JAN. 1952 ' o S
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nee of the field in the number

and f,, which is the change due to the prese
with velocity v, is given by

of electrons travelling in the direction r—ry

o etk 0 I
in agreement with equation (39). : -
9.51. The current density may now be calculated exactly as in §2.111;
except that the appropriate polar coordinate system (v, 8, ) to be used
_here has the z-axis as polar axis, this being the only preferred direction
which occurs. in’ithe . present general formulation of the theory. The
offective conductivity o is obtained by integrating the current density
over. the cross-seetional area S.of the conductor; and the ratio of o to’
the bulk conductivity o, may be written in the compact form
o 1“\"(“' —3_J ‘dS‘ J% d;rf'r dSHSin 5 cos? 3"6_”—'“ ", | (43)
oo | T-‘k"s s . Jo 0 ’ ’ T

To evaluate ofo, for any shape of conductor it is necessary to express
| r—r,] in texms.of the position of the point r and the angles §-and o
which define the direction of r—ry,
For example, the expressions (15) and (28) given above for a thin film.
and a thin wire may readily be-derived in this way ; for a film, however,
it is convenient first to change back to the polar coordinates (v, 0, o)
used in §2.111. A more complicated problem, which well illustrates
the power of the present method, is provided by the case of a thin wire
placed in a longitudinal magnetic field ; this is discussed in §3.2.

The case of partially elastic scattering has also been considered by
ChambBers, who derived the appropriate generalization of (43); in this
‘case, owever, it is impossible to obtain a’ simp.
‘condueters tof arbitrary cross-section. o

+'§3. Maonmric Errecrs 1N THIN CONDUCTORS .
3.1. In considerin ’

and to carry out the integrations.

le formula applicable to

g conduction in thin specimens when a ‘magnetic

field 7 hall confine attention to the film and the circular

is present, we s _
wire, and. to purely longitudinal ‘or tran:
altogether five possible arrangements : ¢ ;
depending on whether the magnetic field is parallel or perpendicular to

the electric current, and whether the Hall electric field which is set up in

the latter case is or is not uniform across the specimen. '
(A) H parallel to J. No Hall field is produced, and this considerably
simplifies the analysis. ‘There are two cases in this group : ‘
' (Al) the wire with H and J parallel to the axis (§ 3.2), and

gverse fields. There are then

B

" these fall into three groups, '

" (A2) the film with H and J parallel to each other and in the planeof ,

"“the film. e
(B) H perpendicular to J:
in the direction perpendicular t
flow in this direction. If it is developed across & ° thin’ dimension of

T

Hall fild uniform. "The Hall field is set up
ar to both H and J_to. prevent any current .

N
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thf) S]é)'ecimen it will vary in magnitude‘across the specimen and its deter-
In;na 1302 asIa function of position presents considéerable-difficulties
see §3.5). In one case, however, namely that of a thin film with H

. perpendicular to the plane of the film, the Hall field (being in the plane

f)f the_ film) is developed across a ‘long ’ dimension of the specimen and ‘
is consequently constant. This case is in fact very simple to analyse

© (§3.4). A

- (C) H perpendicular to J : Hall field non- i
cases fall into this group : they a,r;]j - nform. . Lhe two romaining
(C1) the film with H in the pl
» ‘ : plane of the film but perpendi
(C2) the.ere with H perpendicular to the axis. P toular fo ) nd
ﬁ;s ap};rc;xln;:te treatment has been given of case (C1) (§ 3.5) ; case (C2)
~hag not yet been congidered, and indeed. i oxit
e ey e indeed is of such complexity as to be
](ihiaﬁzt tre@tmenbs »ha.ve so far been given 'only of cases (Al) and (B)"
an Fse Wﬂ! be considered in some detail ‘below. ¥Experimental datai
arﬁhs.o ar aJv.alla,ble 01.11y f:or wires (cases (A1) and (C2)); the case (A1) of
ZS blel.l Wn;e};l in allongltudlnal magnetic field ig thus of particular interest
ing the only case at present for which the i ‘ ;
28 boing the on osent re.ex1st both an exact
o e theory and experimental results with which to compare
v ;% ];:il;r;i(éo?;igg;)r ?[‘fflect of the present -type was first observed’ by
. e ordinary bulk magneto-resistance
leads to an increase in resistance; M . e owono et
: Lorea : ; MacDonald found, howe tha :
reﬁ{iﬁal.lce of & thin sodium wire decreased with H in a lonO‘izjg,inala;slﬁlie
aw (i stfilln a dtransvels,e field it increased initially, passed throuogh a ma,ximun;
n en decreased. Sodium has also been used i ' |
| . , d in subsequent 1 i-
%:tg)ns (1\'4;410]_)0nald1 and Sarginson 1950, Chambers 1950 a()l' eréhi;n:n?;l
nd possibly pure lithium and potassium) a k nate
the only metal suitable for the experi in viw o e b b0 be
' _ ta] ' periments in view of the higher i :
b;lklkl 'magnetque$1st@nce of all other metals, including evelf tfelr}lllé?:igi
:h ali metals '(M.a,cDona,ld 1950). The bulk effect is greatest under just
toeozs;me cc;}r:(hzlons 1Of ‘low temperatures and high fields as are fequired‘
serve the free elect h ! and i ral i i |
nttor entioety, ectron phenomena, and in geperal it obliterates the
3.2. The conductivity of thin wires X! uds |
: . . n a longitudinal magnetic |
MacDonald, at the time of his discovery of thg effect, cor;rectlygigie?fpiii‘fi »

’1ts’ .pzlysica,l_o?igih,)gnd ip particular he explained the simple decrease in -
resistance which ogeurs in a wire in a longitudinal field as- being due tor

'tile tlessened i;ﬂiien_c’:e of scattering at the walls of the wire when the
electrons are forced to pursue spiral - ! ‘ li "
e ettt 2 P splral paths a-rognd the lines' of force of
N Szlklrlln ?;(gcg .aé_lalysis oti this case (A1) has been given by Chambers (1950 a)
SSUm iffuse scattering at the boundaries, - When the eléctri ’
magnetic fields are parallel, the ma i ‘ loteons it i
. : , gnetic force on the electrons i
perpendicular to the electric force; ‘we can then regard the \eli;:r?:v;’izﬁ'

cz2’
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alone as producing a drift-current in the usual way, and the magnetic field
simply as modifying the electronic trajectories. The solution of the
Boltzmann equation is therefore formally the same as in the absence of a
‘magnetic field (equation (42)), and the conductivity is still given by (43),
" provided that |r—r,] is replaced ‘by the distance s from the point r
o the point on the surface ry measured along the curved trajectory of the
electrons. -~ . SR . o
3.21. The integral (43) was evaluated by Chambers for this case by
means of an ingenious series of transformations. With a magnetic field
H along the z-axis (the axis of the wire), electrons travelling at an angle &
o the z-axis will move in helical paths whose projections on the yz-plane

are circles of radius ,
r=mic sin 3/ eH =1, 8in 3. L. (44)F
If now, while an electron is travelling from r, to r, the projection of its
" path on the yz-plane traverses an angle ¥ around such a circle, then the
projection of the distance s on the yz-plane is 7, sin 3, so that s=r,.
Equation (43) therefore becomes : ’

2n 7! .
o 1 _3_J ds [ dw [ 8 sin & cos? § e~V
S S0

&;’ 478 o .

where y=y(y, 2, 3, ™).
3.29. If we consider a fixed value of the azimuth angle w and perform
the integrations over S and 8, it is evident by symmetry that the result
- must be independent of = ; we may therefore restrict ourselves to a par-
ticular value of @, say w=0. We may farthermore confine ourselves to
values of 8 in the range (0, $7), and write (45) in the form :

g1 3 rﬂ d3 sin § cos? S'J' s (e ") g0
. s ’

oo Sto

The integrand of (46) re
wall, have turned through angles between ¢ and J-+di and are, at the
. instant considered, travelling in the direction (8, @w=0). If -we denote

(46)

the proportion of the total cross-section of the wire occupied by these -
electrons by ply, ¥) i (Where y is defined helow), we may rewrite (46) as -

7 . 2m

T_1-3 f d5-sin § cos? d J ply, ) e dip.
. %o 0 - ~Jo
"It remains to find an expression for p(y, 4); which is a function. only of
and of the ratio of the radius 1a of the wire{ to the radius 1=7ysin d
of the projection of the orbit, i.e. of y=2r/a=2 sin /B, where B=a/r;. -

Chambers has given the following construction for the determination of
ply, ) (fig. 3). Suppose, for example, that r<ja (y<1), and consider
electrons which traverse the proj ection o

* ¢ and 7, in this equation must not, of course, be confused with the magnitudes

of the position vectors r and rg.
+ Note that Chambers uses & for the radius of the wire.

'

.. (45) ,

fers to electrons which, since colliding with the |

(47)

£ their orbit in the anti-clockwise

where the positive value of the square root is to be taken

s
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’ ((lirec‘tign and lwhich'are travelling verﬂically downwards at the instant
cons'ldere(%. Let O be the centre of the wire, and let R be chosen such that.
OR is horizontal and of length ». With centre R, draw the circles OPQ

. of radius 7 and BDE of radius ja—r. The circle BDE is then such that,

for the g?oup‘of electrons - considered, no point within it can be reached
by a trajectory starting from the wall. Suppose that OQ subtends an
angle iy at R, and with centre @ and radius Ja draw the circular arc ABO‘.
which tou?}%es the circle BDE at B ; it is easily seen that this is the locus:
of the positions of all electrons of the kind considered which have turl(lmg
through an angle i, since colliding with the wall. The portion BC ”muet.
l?e excluded, however, since it corresponds to electrons whose tra'ecto: |
lies pj&rtly outside the wire ; if, instead, we continue with the arc] BD )1:
the cg’ele BDE, then the shaded area between ABD and the surface gf '
the wire contains all those electrons which have turned through angles

v b < The shaded area is therefore P( — J " ]
v do)=) ) dp. ply, §)

~ may be obtained from this by differentiation or, alternatively, (47) may

“be expressed directly in terms of P(y, ) by partial integration.
‘ ' Fig. 3. | |

‘surface of wire

-direction of

motion of .

electrons
(@=0)

Construction for the determination of P(y, i,) (see text).

Analytical expressions for ¥ b i .
alyt ply, ¢) may be obtained by consideri
geometry of fig. 3 and the corresponding *figure for y>yl; I; i:#];gam;illl;

~ shown that, for y<{1, ‘ -

(0<y<zm),

7y, )=y(L—y) 472 cos? -ty cos p(1—y? sin? Ryt

and, for y>1, :
By, )=2y cos Jp(1—y2 sin? e (O<h<2 sin1(fy)), )

—0 . . (2 sin (1) <P <27), JL 0
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Note that, for f>2, y<1 for all 5, while for <2, we have y<1 for
small & and y>1 for large 8( ~ ). Physically this means simply that
for strong enough fields (8>2) all electronic trajectories are curved into
paths of radius less than the wire radius ; for smaller fields, those electrons
travelling at small angles to the axis and therefore having small transverse
velocities will still follow such paths, but electrons moving at greater
angles to the axis will follow paths of radius greater than the wire radius.

3.23. Values of ofo, may now be computed by graphical integration
using fig. 3, or by approximate analytical methods using equations (48)
and (49). The final results, as is clear from (47), depend only on the two
dimensionless parameters =a/r, and «=ajl, which are measures of the
strength of the magnetic field and of the free path respectively. In

Fig. 4.

T
o2 05 t 2 18 O 10
2

Theoretical conductivity of thin wires in a longitudinal magnetic feld.

fig. 4 theoretical values of the resistivity ratio o,/ are shown plotted.
against 3B, for various values of x. The values for =0 are those given
by Dingle (§2.2), and, as is to be expected on physical grounds, the
resistance decreases steadily as f increases and tends to the bulk value
as B tends to infinity. . B
3.24. Comparison with experiment. If we plot koyfo against: for
-various «, then, since rk=a/l and oo/l 18 independent of the temperature,
the ordinates are proportional to the resistivity 1/o, and, since
1B=caH[(2mwc), the abscissae are proportional to the applied magnetic
field. The theoretical curves of Ka,o against 36, plotted logarithmically,
are therefore directly superposable on the experimental curves of 1/o
~ .against H at a number of temperatures, and the proportionality constants

J
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- give values of oo/l and of mv directly. The advantage of using a magneﬁé :

field is that all the required information can be obtained from one specimen
only; and it is not necessary to assume, as in zero-field experi}flents, that

. the free path in a thin specimen is the same as in a bulk specimen.

; Fig: 5 shows experimental results obtained by Chambers on a sodium
wire of diameter 30y at various temperatures; also shown are. the
"stheoretical curves for *=0-5, 1 and 2, adjusted to fit as well as possible

Tt has, of course, been assumed that the hypothesis of diffuse reﬂectior;
at the surface is correct, and that the bulk magneto-resistance effect is-
negligible. The departure from theory in high fields is, in fact, due to
the onset of the bulk effect, but this does not interfere seriously';vith the
comparison between theory and experiment. The results of the compari-

_son are that, in sodium, og/l=8-1x 1022 and mv=9-1x 10~ ; these values

Fig, 5.

H(AG)
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sl — 155 °K
i 7_ ﬂ'45°*\
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X
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3~

_Experimental results on a 30y sodium wire in a longitudinal magnetic field at

various temperatures, with theoretical curves.

provide two independent estimates of the number of conduction electrons,

and agree reasonably well with the values
. LI .

c/r,o/l= 6:3%x 102 and mv=9-7x10~2

obtained from (4;/)/ and (1 o) assuming one conduction electron per atom

s 33 Similar experiments have been reported. by MacDonald an.d
Sa,_rgmson: (1950) on sodium wires in both longitudinal and transverse
?llg,gneti'c fields, and some typical results for transverse fields are shown
in fig. 6'; note particularly that in this case the resistance may increase

initially with H. Detailed theoretical analysis of this arrangement (C2)

is prohibitively difficult; and MacDonald and Sarginson compared their



24 n E. H. Sondheimer on the

" results with an approximate theory developed by them for the somewhat
simpler thin-film arrangement (C1) (see §3.5), with which they are in
qualitative agreement. '

3.4. The conductivity of thin films in a transverse ‘magnetic field. The
case (B) of a thin film in a magnetic field which is perpendicular to the
plane of the film has been analysed by Sondheimer (1950). In this case
it is not immediately obvious from simple physical arguments how the
presence of the magnetic field affects the conductivity at all. The formal
analysis, however, presents no diffoulties and -is a straightforward
generalization of the treatment given in § 2.1 for a film in zero magnetic

field ; it leads to the interesting result that the conductivity is an oseilla- -

‘tory function of the strength of the applied magnetic field.

Fig. 6.
.3.0_ :
|
a6k -
% |
o
t22r

3 4
- HK&G)

" Experimental results on sodium wires of various diameters in a transverse -

‘magnetic field. Diameters : 1,20u; 2,30p; 3, 66u. Temperature—4-2° K.

3.41. We use the notation of § 2.1, but suppose now that the film is
- subjected to an electric field (&, By, 0) in the plane of the film and a

magnetic field (0, 0, H). ‘For this particular arrangement, the condition -

ourl E=0 ensures that the electric field components are constant across
the thickness of the film. The Boltzmann equation takes the form ‘

o (0 T (F %15, L), . (60

% T

— —V,5—
z @ ?
- mov, \ Y 90, o, v, 0v,

T mw,
which is the generalization of equation (9). 'To solve this equation we put

a .
J1=(0,61+0,C) 5'):70 ’

(51)
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- where ¢, and ¢, do not depend explicitly on v, and v,. With this form

.for fp_" equation: (50). leads to two simultaneous equations for ¢, and ¢, ;
if we introduce the complex quantities g=c,—ic,, F =F -y . o
vwr1te these equations in the compact form " ’ o VOB
og 1 ieH eF
o 8z+g<7—z)z+mcvz>=@’
and the problem is now formally identical with that of § 2.1
3.42. The rest of the calculation is entirely analogous t‘;) .1;,hat of §2.1,

. (52)

-and the result’ may be expressed as follows. We. define a complex

_ conductivity ¢, by means of the relation 7 o, F T=J J
! : =o,%, where J=J _—iJ is .
the complex current density averaged in the usuaj way a,cross?the ghi‘ckrjlle;:
g}il‘ tl;(}al ﬁi{m WF f;llr_tgfr introduce the parameters x=a/l, B=a/r, (@ being
e thickness of the film), and the complex variable s=x-4
have, as the generalization of (16), P e P ‘ We then
' » ag _ Pls) ’ o ~ '
D L (53)

a, K ) :

where the function @ is given as before by (17) when p=0 and by (25)

. when p=0, but is now a function of a complex variable. (We may remark

here that the present problem is the onl : i

' ) ‘only one of the magnetic-fi

which can easily be solved for the case p40.) gnetic-feld problems
| '31.143. Eq}la,tl_on (53) contfxins all the results required for corhpa,rison
wi experiment. The.: ordinary electrical conductivity o, for example '
is measured by applying an electric field in, say, the a-direction a,ndi

- observing the current in this direction, no electric current being allowed

to flow in - the transverse dirécti()n:‘ We therefore have a:ﬂ(?}/.@(ﬂ )

with #(jf)=0, where # and .# denote the real and imaginary parts

respectively ; eliminati ctri
tha,ri)-, vely ; ellmmétlng the transverse ele.ctrlc field, we readily find

;=o0@<olc>“;g{@(s)}/x. o (54)

zg:tgaﬂﬁc(l)gfﬁcient is defined by AH=E1,/HJ_ «» Where E, is the transverse .
¢ field set up under ﬁhe above experimental conditions, and we

2. easily obtain

 Ag/Ag =D}, . . . . . . (5b)

" where Ay ;=—1/(nec) is the Hall coefficient of the bulk metal.

3.44. In the limit of zero magneti i
_' / magnetic fielll (8=0), equation (54) for the
conductivity r‘eduyes to equation (16), and (55) gives a corresponding

- expression for the' Hall coefficient of a thin film in a vanishingly small

n;.:"gllll?titilﬁ?l.d. In this limit Ag/Ay , depends only on «, and is shown
foef% cally “in ﬁg. 7 for three values of p; it is seen that the Hall
cient of a thin film shows an increase above the bulk value analogous

- to the incrga,se of the electi‘ical resistivity. Ior very small «, we find that

Ay _41—p - 1
Apo 3 14p «flog (1/x)}*’

(56)
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" Fig. 1.
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Fig. 8.
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- which shows that the Hall coefficient increases less rapldly than the

vesistance (compare (27)).

3.45. The field variation of the re51st1v1ty may be computed from
(54), and, as mentioned above, it is found that the resistance oscillates
with the strength of the applied magnetic field. - Fig. 8 shows some
typical curves for p=0 and various values of «. In general the resistance
increases ipitially with H and reaches its first maximum when B is
a,pprox1mately unity ; the higher oscillations are of roughly constant

. spacing but decrease rapidly in amplitude, and in very strong ﬁelds the

res1stance tends to the constant asymptotic value

'<?)ﬁ=w=_1+§(1—p), s e BT

which, for small i, is greater than the value in zero field. 'The oscillations
"die out and the resistance tends towards the bulk value as x becomes
large or as p tends to unity ; the position of the maxima and minima,
however, is almost independent of « and p, and § may thus be estimated -
-unambiguously by observing the value of H for which, for example, the

“first maximum is reached (assuming, however, as usual that the bulk
~ magneto-resistance effect is neégligible).

The Hall coefficient, on the other hand, does not oscillate with H, and
decreases steadily towards the bulk value as H- increases. to infinity.

3.46. The resistance oscillations have been- explained by Chambers
(1950 a) as being essentially due to the oscillations in speed of an electron

. ‘'moving in perpendicular electric and magnetic fields. The speed at time ¢

is a trigonometric function of eHt/mc=vi[ry, and this causes the distri-
bution function f,(v, z) to be a fluctuating function of z/r,. = The effect
oceurs only in thin ﬁlms because the presence of the metal surface is

- required to provide a finite limit to the distance from which electrons

can come to contribute to the current at z; when the thickness is large

~ compared with the free path, the elementa,ry oscillating contributions

to fi(v, 2) add up to glve a non- ﬂuctua,tmg total, and in fact f, is then
independent of 2. :

Equation (57) shows that, in a strong magnetic field, the eﬁectwe
free path of the electrons (see § 2.32) is of the order of the thickness of
the film. We therefore have the physically plausible result that a strong
transverse magnetic field eliminates the ,coptribution, to the current of
those electrons moving neérly parallel to the surface which are responsible
in the absence o/f a field for the logarithmic dependence of Iz on the

" ratio lfa.

3:5. MacDonalgl and Sarginson (1950) have given an elaborate dis-
cussion of a thin film for the case (C1) where the magnetic field is in the
plane of the film but perpendicular to the current. For the details of
the analysis the reader is referred to the original paper. The Hall field
is now in the z-direction (perpendicular to the plane of the film) and varies
across the thickness of the film. It can, in principle, be evaluated as a
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fanction of z and H by soi{ring a complicatéd integral eq}lati?n Whi(}}:
expresses the condition that the current density in the z-direction mus

vanish everywhere. MacDonald and Sarginson have evaluated the Hall

field approximately for the case of small magnetic ﬁelds,.‘and haave'z fo:-,uid:
that it increases rapidly near the edges of the film blflt is apprommihe y

constant over most of the cross-section, as shown in fig. 9. In ;eér
' caloulation of the conductivity MacDonald and Sarginson were force .
however, to assume for simplicity that the Hall field was constant over

‘the whole cross-section. In view of this assumption the results must be -

treated with caution ; they indicate that there are no .osic%lla,tion.s, b}llt.
that, for sufficiently thin films, the resistance increases 1n1t1a.lly with H,
pa,ss:as through a single maximum and then decreases steadily towards

. the bulk metal va}ue. ‘
Fig. 9.
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Theoretical variation of Hall field &, across a thin film of thickness a=0-64 X free- .

path, assuming diffuse scattering at the boundaries. .

3.6. The only ma,gﬁetic—ﬁeld experiments on thin films so far reported.

i ied out on foils of silver,
MacDonald and Sarginson 1950) have been carrie . |
(gold and tin: Although small indications of ‘the effects discussed above

were observed, it was found that the bulk magneto-resistance effect was

' inati i finite conclusions could be
the dominating factor in all cases, and 10 de : . d ber
drawn. Experiments on thin films of sodium in magnejow ﬁel.ds b(()lth 110n<
and perpendicular to the plane of the film are, highly desirable in order to

test the theoretical predictions ; at the same time the theory should be-.

rounded off by a discussion of the third case (A2) where the magneticl
field is in the plane of the film and parallel to the current,

§ 4. Tur ANOMALOUS SKIN EFFECT

4.1. H. London (1940) discovered that the resistivity of metals ajt high;
frequencies'and very low temperatures was much greater than is pre-

- dicted by the usual theory of the skin offect, He suggested that a free-’

path phenomenon was involved, but did. not elaborate his idea. The

|
L
i
!
!
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- problem was later taken up by Pippard (1947), who studied it in detail
both experimentally and theoretically ; using mainly physical arguments
* he succeeded in elucidating all the essential features involved. The
‘ quantitative theory of the effect is based on the methods discussed in the
present article and is due to Reuter and Sondheimer (1948). .~ -

4.2. The normal skin effect. The basic concepts are best introduced
by considering the theory of the skin effect in metals in its simplest form.
Let the surface of a semi-infinite metal be the xy-plane and let the
positive z-axis be directed towards the interior of the metal. The electric
field E(z)ei* is taken to be in the z-direction, w being the angular frequency,
and the magnetic field H(z)e* is in the y-direction ; the factor ¢?! which
occurs in all time-dependent quantities need not be written down explicitly
and will in future be omitted. : : .

Neglecting the displacement current, Maxwell’s equations take the form

—H'(t)=4nJ()fc, = B'()=—iwH@)e, . . . (58)
where J(z) is the current dénsity. Eliminating H, we obtain ‘
E'(@)=4miwd (2)fc2, . . . . . . . (B9)
i and, combining this with Ohm’s law in the form J =o4F, we have
i . .
v : B’ (z)=4miwo B(z)/c?, e e e ... (60)
|- so that o
E(z)=E(0)e ", with k=(1-+1%)v/(2rwoy)fc=(1+1)/5, . (61)
S 8=¢/A/(Crwoy) . . . L . . L (62)

being the depth of penetration of the field (the  classical skin depth °).

In high-frequency experiments the quantity most directly accessible
~ to measurement is not the resistivity of the metal in the ordinary sense,
but the surface resistivity R, which is the real part of the surface impe-
dance Z. Z is defined as the ratio of the electric field at the surface of
the metal to the total current per unit area of surface, and thus

|
l\\ o ' Z:R—i—iX=E(O)/J':J(z)dz,' ... (83)

\ "X being the surface reactance. Equations (59) and (61) give

B ' R=X=1/@rojay), ~ . . . . . . (64).

‘and R and X therefore vary ‘dire'ctl'y as 4/w for a specimen at a givy
| temperature, and inversely as 1/o, for a given frequency. =
- 4.21. These formulae are in good agreement with observation on metals

“'at room temperature for all wavelengths in the radio-frequency region.
i Pippard found, however, that as o, is increased by lowering the tempera-

~ ture, the surface conductivity 1/R increases less rapidly than is predicted
. i by equation (64) and that, as o, tends to infinity, 1/R tends to a constant

\\value which is different for each metal ; the typical form of the curves

. i§ shown in fig. 11 below. This is the phenomenon known as the anoma-

lous skin effect, and it evidently involves a breakdown of the simple
theory outlined above. : .
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4.22. In the above form the theory is essentially phenomenological in
character and makes no direct reference to electron theory ; it is based
only on Maxwell’s equations and the assumption that Ohm’s law may be
used to relate the current at a point in the metal to the electric field at
the same point. It is well known that Ohm’s law must be generalized by
introducing a complex conductivity when the frequency is so high that the
period of the applied field becomes comparable with the time of relaxation.
of the electrons (Drude 1904, compare also Wilson- 1936, p. 124). Relaxa-
tion effects of this nature, however, play no. -significant role in the
anomalous skin effect except, at infra-red frequencies ; they are considered
briefly in §4.71, but may be disregarded for the present. The generaliz-
ation of Ohm’s law which. concerns us here is of a different type, and is

connected with the very long free path of the conduction electrons when the -

conductivity is high ; when the free path is comparable with the skin

depth §, it is not permissible to assume that an electron moves under the

snfluence of a constant field between collisions; and the current at a point
in the metal will depend on values of the electric field at other points.
Mathematically, the departure from Ohm’s law is a consequence of
the appearance of the usual term. v . grad, f in the Boltzmann equation.
The present problem differs from most of the previous ones, however, in
that the electric field in the metal is not given priori, but must itself be
determined by the theory. When the relation between the current and
an arbitrary field E(z) has been found by solving the Boltzmann equation,
it must be combined with Maxwell’s equation (59) to give an equation
from which E(z) can be calculated ; the surface impedance can then be
obtained from the equation : : '
: i E(0) .
‘ Z—--— —?2— E,-(—O) ) . N (65)
which follows directly from (59) and (63). : ,
4.3. The fundamental equation. - So long as.we are only interested in
the surface impedance of the metal (and not, for example, in the trans-

mission coefficient of a thin film), the penetration depth of the field may .

always be treated as small compared with the linear dimensions of the

- gpecimen, and we may continue to consider a semi-infinite slab of metal.
The Boltzmann equation then takes the same form (9) as in‘the discussion

of the d.c. conductivity of a thin film, naniely

O S <y oL (66

0z ' v,  mu, 0vy,

w'h(ere"’_o'l;ié electric field is now,’ howeVér, a functlon q.f‘ z :;(Théz influence

of the high-frequency magnetic field may be neglected, in ,writing, down E 3

equation (66).) The general solution is now - R

fl(v, z)———exi) (— ;_25) {F(v) ﬁe@ -gi—‘;rlﬂ(t)eXp <7%z> dt} ’ (67)

. where
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- The value of F(v) when 9,>>0 is determined in the usual Way- by the nature
of the; scattering at the surface of the metal, which‘is deseribe(-i‘ by‘ a
.reﬂectlon,coefﬁcient p; when »,<C0, F(v) mist be chosen go Ehat f doeé :
not become exponentially large as z— co.  Defining E(—z):E(lz) for

'2<0, the solution which satisfies the boundary conditions may be written

. in the form

+ L g.f‘l Z ¢ Ay o )

gt = aten (=2 ) o [ B e (L)@ |
+0—p) [ Boexp (L)l @
| 1) [ B exp (- ozt} (v,>0), | (63)

B € afy . AN NARAY '
(v, 2)=— — =— —— ' '
fim (v, 2) v avmexp< Tv) L E(t) exp <;_;z> dt (v,<0). |
The first of these expressions shows that the effect i

: ' of -partially elasti

seattering may ].oe,descrlbed formally by replacing the serrll)i-inﬁni{éen?;;:;
slab by an infinite metal in which the field in the region z<<0 is an image

of the field in the region z>>0 and in which a fracti
' act
moves through the image field. raction p of thg electrons /

4.31. The calculation of the current density is n ; »
and the result is ' t Consiy 18 now ‘Strazlghtforwa,rd’
30 f

T&= v : . (f'l—t) ) (;lt—f—(l'—p) J{ : ? <?—_l;t-> (1) dt}, . (69)

where

k(n)=ﬁ(§—§—3>e—slu'ds; L L (10)

" it is seen that the current density at z involves the values of the electric

field at all points in the metal. The two integrals on the right-hand side
of (69) represent the contributions to J of the electrons which suffer
specular and diffuse reflection respectively at the surface ot the metal
We may riote here that in the anomalous skin effect the value of p pla. s
only & subordinate part in determining the surface impedance (see § 4 6137'
there 1§’ thus a basic difference between the present phen‘omenon‘ a,n(él thé
d.c. thin-conductor free-path effects which are in general entirely due to
the presence of diffuse scattering at the boundaries. Y :
4%.32. The equation for E is obtained by combining (59) and (69).

It is convenient to introduce dimensionless coordinates x=z/l, gj:t/l, and

" to write H(lx)=f(z); the fundamental equation of the problem is then

obtained in the form

Fre=ia{e|” M=) dy+0—) [ Mo—n)f)dv}. . ()

- ,a=3w¢zza;,/62=§zé/52.” ‘ . . ('721}

For. the evaluation of the surface impedance it is only necessary to know

f(0)/f"(0) (see equation (65)), and f(x) is not required explicitly. -
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Tt is easily: shown that the results of §4.2 are regained in the limit ’
where o <1. n :

4.4. Solution of the fundafr'nental equation. In the two limiting cases’
p=1 and p=0 equation (71) can be solved by standard methods based on. -
the theory of Fourier integrals (Titchnarsh - 1937). When p=1, for
. example, the equation reduces to ‘ ' '

fH(x)=ta J
where f(x) is, by definition, an even function of #. It is easy to see that
f'(z) is discontinuous at x=0, and tends to a limit p (§a.y) as x->40
(—p as ® -—0). - The formal solution of (73) now proceeds as follows.
Let : : ,

kx—y)f(y) dy, (73)

—

$(t)— J: f@)e dx=2l[:'f(a&) cos @t dx (74)
and ' ) o
()= J'w ke)e = do. . (75)
. From (74), integrating by parts t;v;;e, it foHoWs that
7 peet de— g -5 - (16)
on the other hand, (7 fa:)wimplies that t .
JO_O wf”(x)e“"“'“ dxzioc‘J‘i ) e~ da Jﬁ f ) k('x—y)f(y:)r dy
— () (77)

(inverting the order of integration). Hence, from (7 6) and (77),
SO+ =—2u, »

and the inversion formula for Fourier transforms gives the final Jresu,lt

. 2u (™ cosatdl ,
_ f(x)——;JO Porion())” (78)
For =0, in particular, it follows that _
foy 2j°° dt '
FO) T w)o P’ (7

The explicit form of «(t) is readily obtained from (70) and (75), and is
' (t)=2"{(14F) tan—1¢{—£}. (80)
4.41. When p=0, equation (71) is of the same general type as the

well-known integral equation of Milne which has been much studied in

the theory of radiative transfer and in neutron diffusion problems. The
solution in this case is based on the method which has been applied to

Milne’s equation by Wiener and Hopf; for details of the analysis the

reader is referred. to Reuter and Sondheimer’s paper. The results are
complicated but lead to conclusions which are generally similar to those

found for p=1 (see §4.6).
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4.5. The eleciric field. The electric field f(z) is not itself required for
the evaluation of the surface impedance, but its behaviour is “of interest
It is clear from (78) that f(x) is not of exponential form, and in general its.
evaluation is complicated ; for large values of x, however, it may be
shown (Reuter and Sondheimer 1948, appendix ITII) that, wh’en p=1,
| F@)=C e~ 4-Che-2fa?, L. (81
~-where 0, and C, are constants, and where &, is a complex parameter
-whose real part s, increases steadily with o and equals unity when
g S 263, ‘ ' - |
The physical significance of this result is best understood by considering
the cage of a metal which is unbounded in all directions (Pippard, Reuter
~and Sondheimer 1948). In this case, when. a<(«,, the electri(; field is
~found to be the simple damped exponential wave ¢~*® the penetration
~depth of which is //%s, and is thus equal to I when oc=’oc *, For a>a
: j;here are no solutions at all, which means that an exponentgal wave Whic}(;
is attenuated by a factor ¢ in a distance smaller than the free path cannot
“exist : it would correspond to a situation in which the contribution to
the current at a point is greater the further the electrons contributing
o the current have travelled in the wave direction, so that the expression
for the resultant current density at any point diverges.
L E is therefore clear that, in order to obtain solutions for all values of «
it is essential to take the boundary conditions at the surface of the meta,i
_specifically into account in the calculation; it is to be expected, furthermore
that there will be a fundamental difference in the nature (;f the electri(;
_field for values of « less or greater than the critical value o,. This is in
accordance with the form of equation (81). When o<« tohe first term
s domigant and the field in the metal, at sufficient disot;l,nces from the
* surface, is unaffected by the presence of the surface, being similar in form
to t.h(? solution for an infinite metal ; when u>>o,, however, the second
berm is dominant, and the form of the excitation is now coilditioned at
v'll points by the presence of the surface and never approximates. to a
simple exponential form, being, in fact, a true surface excitation. In
the latter case the-electric field, though largely confined to the suI"fa.ce
hag a long ‘tail’ of small amplitude which is effectively dainpéd out in
a distance of the order of l and which may be regarded as being transmitted
into the metal by electrons which move in the interior under the influence
~of no forces except their collisions with the’labtice. v
< 4.6, The‘surface impedance. The surface impedance can be obtained
from (65) and /(75}/{ (or the corresponding expression for p:O)A and in
%:fezral the iﬁtegrals hagre t0 be evaluated numerically. Explicit. eXI?)ressions
can, however, be obtai i imiti ' '
,freeﬁpa,th e bta,med in the ;1m1t1ng case (x>1) when thg
/ 46{ The :asymptotic expressions for Z. The limiting value of S(O)f (0)
?hgn;;oa>>1 is obtained from (79) by replacing «(f) by its approximate '

* We recall that x is the distance measured in units of 7.
P.M. SUPPL.—JAN. 1052 , ' - D
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value 7ft for large ¢. Therruiiltegral is then readﬂy evaluated and leads
to the following limiting value of Z when p=1: '

Zo=3(1/37m0 [ctao) (14 4/ 39). (82)
The corresponding result when p=0 is /
7 ={1/3rw[ctoy) 3(1-+4/30). (83)

These expressions are to be contrasted with the Tesult (64) which holds
when «<1. We see that Z is independent of [ when the free path is very
large, in accordance with the experimental results ; further, Z varies

with frequency as w2/, and the surface resistivity and reactance are

related by : .
X,=+/3Rs . . . - e o - (84)

under extreme. anomalous conditions. These results hold both for p=1
‘and for p=0, and it is evident that although the precise nature of the
surface scattering plays some part in determining the surface impedance,
the effect is not considerable. ‘ N
4.62. The ‘ineffectiveness concept’. The physical principles underlying
these results are not readily apparent from the detailed calculation, and
it is therefore worth while to outline a simple qualitative theory which
was developed by Pippard (1947) before the exact solution had been
obtained. When: the free path is large compared with the penetration
.depth, the electrons may be divided into two groups, those moving at small
angles to the surface which have & reasonable chance of colliding in the
_ surface layer, and the rest whose chance of such a collision is small. Pippard
gave reasons for supposing that only the former group of electrons
contributes effectively to the resistance, and the proportion of effective
electrons may thus be written 5 /I, where 8’ is the (unknown) effective
penetration depth and where B is a numerical constant of order unity.
Tt is now supposed that the ineffective electrons may be entirely neglected,
and that the effective electrons move in a constant field during a free
path, so that the theory of the normal skin effect applies to them. The
effective conductivity is then o'= B8'ayfl, and &’ is given by an expression
of the form_(62) with o, replaced by o’. We thus obtain an implicit
equation for &', which, when solved, gives : :
_ , 8" = (227 wPay) 3. ORI (157
- Tpserting o’ instead of o, in (64) and using (85), we obtain the surface
resistivity in the form : .
g | Ro=(dm*wPl|Bcta, ", (86)
in qualitative agreement with (82) and (83). '
Later work on the interpretation of the theory (Marcus, to be published}
has shown that the physical picture underlying the ineffectiveness concept
* must not be taken too literally, but it does provide a useful guiding
_ principle which is of particular value when considering more complicatéd
situations for which no exact theory exists (compare, for example, § 4.72).

N
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4.63. Smce E(0)/E'(0)=If(0)[f'(0), equations (65) and (79) show that
Z depends on the free path both through ! and «. It is convenient to
express Z as & function only of « and of quantities independent of /;

. .using equaﬁmns (16) and (72) to eliminate I, we find that .

Z=—i~/(5) A« f(0)/f'(0), (87)
where ‘ o '
. A 72 2/3- nla 1/8 .
’\/6 (602> i 3% . . . . . . . (88)/
‘A is constant for a given metal and a given fi ‘ -
chosen such that, when o<1, e Y requency and has beon
| Z=AoV8(144), (89)
as is easily verified. When «>1, we obtain ‘
442 )
Zy= W,A(l-l‘\/?’@) (p=1) (90)
‘Fig. 10.
3 /
: /
A A /
R X // ______ = -
2t & m=-=-=-=- - -
by 5 p=0
______ p=l
I 2 p=0
X
1 1 { 1 | i .
0 i 2 3 4,5 6- 7l 8‘ 9l

T 8

. o

The theoretical high-frequency surface impedance of metals at low temperatures.

-~ and ; \ |

. Z — A \| | y
0= \/27"1/3 (1 N '\/37’)

.. (p=0); .- . (91)

. equations (89), (90) and (91) are of course equivalent to (64), (82) a,nd.
(83). The Oomplle/te theoretical curves are shown in fig. 10 v;here AR
and A4/X have been plotted against «1/6. Y /
P'4.64. Comparison with experiment. The experimental method used by
ippard to measure R involves the construction of a resonator of the
B H}'etal to be studied and the determination of its selectivity @ ; for a
given resonator, @ is proportional to the surface conductivity 1/1%. The
;esults for any metal are exhibited by plotting 1/R against 4/, at constant
requency. Since 1/o, and «!/® both vary as 4//, the experimental points
D2
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can be scaled directly to fit the theoretical curve if it is assumed that p
equals either 1 or 0. It is then possible, by reading off the value of «
_corresponding to any pair of values of B and g,, to estimate oo/l for any
metal ; according to equations (62) and (72), opfl=1/(3mway®/c?).
Pippard’s (1947) results were in qualitative agreement with the theory,
. but were not sufficiently detailed to indicate which value is to be chosen
for p. Chambers (1950 b) has recently carried out more extensive
experiments, in which the temperature was varied between 2°K and
' 90°K; the frequency (as in Pippard’s experiments) was 1200 Mo/s,
corresponding to a free-space wavelength of 25 cm. Some of Chambers’
results for copper, silver and tin are shown in fig. 11, scaled (I) to fit the
theoretical curve for p==0, and (II) in an attempt to fit the curve for p=1.

Fig. 11.
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- Bxperimental results on the surface registance at low temperatures.:
(I) Experimental points fitted to p=0 curve.
(IT) Attempt to fit to p=1 curve.

The agreement with curve I is really excellent, and it thus appears that
the reflection at the surface is completely diffuse at all temperatures for
all specimens: ' : :

4.641. These experiments, as Chambers has pointed out, suggest
strongly that the value of p which describes the situation in real metals
is zero in all cases, including the d.c. size effects (compare §§2.41 and

9.411). Tt should be noted that the appropriate value of p need. not

necessarily be the same for all the different problems studied : although

has been defined in the same way in each case, it probably represents
some kind of average value of some more complicated quantity, and there
is no reason to suppose that this average should have the same value in
all cases. If Pippard’s ineffectiveness concept is taken literally, the
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: value of p in the anomalous skin effect is determ{ned by the behaviour on

reflection of eleci.:rons,trave']ljng at very small angles to the -surface
If specular reﬂegtlon occurs at all, it seems most likely to occur for thesé
electrons, and since it is not obgerved for them (i.e. since p=0 in the

v anomalous skin effect), it is reasonable to expect that p=0 also for the

d.c. case, where ele i

do oo eléctrons travelling af{ all angles t.o the surface are
© 4.642. Values of .ao/l deduced from the experiments are shown in.
table 3, together with the corresponding values of n/n,, the number
o‘f conduction .electr_ons per atom. The values for copper, silver, gold and
tin were obtained by Chambers*, and are.subject to probable errors of

" about #5% ;’ the values for mercury and aluminium have been deduced
from Pippard’s measurements and have larger probable errors. |

TABLE 3.

Bstimates of oyl and n/na from observations on the anomalous skin effect.

 Motal : (op/l) x 1022

: : (gaussian units) iy
Cu : 139 ’ 10
Ag , 83 0-68
Au 7-6 0-60
Sn ' 86 ' 11
Hg 3-3 : - 023
A . 55 0-37

The results for the monovalent metals are in fair agreement with the

. expected value of one conduction electron per atom, although the figures

for silver and gold are somewhat too low. . The figures for tin and mercury
ma,y.be compared with the corresponding ﬁéures (n/n,=0-43. and 0-15);
obtained from the thin-conductor experiments ; the a;gre?ament is probably
as good as can be expected for such complicated metals. " Y

4.643. The present method of estimating the free path is free from the

- main difficulties which beset the thin-conductor experiments, such as

the 'impossibility Of" measuring the bulk conductivity directly on the V
S];fecunen, or ﬁher disturbing influence of the bulk magneto-resistance
effect. It is, However, very important to ensure that the specimens have

- no surface layer with properties different from those of the bulk metal :

}Gf}',l for f;Xa,mple, th.ere is a thin surface layer, of thickness comparable with
e skin depth, with an abnormally high residual resistance, the tempera-

: Elre variation _of/‘fhe surface resistivity will simulate the behaviour in
- the anomalous skin effect, although in this case the high resistivity will

not be a result of the long free path. . This isin fact what appears to have

“happened in early measurements by Pippard on wires of the noble metals

which led to very low values of n/n,. The process of drawing wires of

These values differ from those given in the published note (Chambers

, ‘l950 b) ; they are based on more accurate values of the d.c. conductivity o,.
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these metals produces an amorphous layer which is not easily removed by
.annealing, but which, in Chambers’ experiments, was removed by electro-
Tytic polishing.. In subsidiary experiments ‘Chambers has confirmed that .
‘the predominant cause of abnormally High surface losses is the presence
of a high-resistance layer, and that possible alternative causes such as the

* roughness of the surface are generally of smaller importance.

Similar disturbing influences appear to have played a part in experi-

‘ments on the anomalous skin effect carried out in the United States
(Fairbank 1949, Maxwell, Marcus and Slater 1949). ‘ ‘

4.644. Pippard (1950 a) has recently made experiments on tin using a |
frequency of 9400 Mcs, corresponding to a wavelength of 3-2cm. By -

comparing the results with the 25 cm measurements, Pippard confirmed
that the asymptotic value of the surface resistance varies with frequency

as w3 for a given material ; this law is found to be accurately obeyed.
At the same time Pippard was able to estimate the surface reactance X .
by an indirect method involving the superconducting behaviour of the
‘metal. He found that X /R, < 1-76 for tin, in quite as good agreement -
with the theoretical value 4/3 as may be expected. These experiments
are considered further in §4.72. . :

4.7. Extensions of the theory. We conclude by considering briefly
~various generalizations of the basic theory given above. '

4771, Relaxation effects. Up to now it has been assumed that the product
wr is small compared with unity. Tn the 9400 Mc/s experiments this
condition is no longer satisfied, but we have seen that the results are in
good agreement with the non-relaxation theory. This is explained by
the extension of the theory to take account of relaxation, which may be
.obtained by replacing the time of relaxation in the Boltzmann equation (66)
by a complex time of relaxation 7/(1-+iwt). It i8 then found (Reuter:

- and Sondbeimer 1948, § 6) that the integrals involve, instead of 7a, the
generalized parameter g=1ta/(14-iwT)® ;. so long as | £] > 1, however, the
final expressions obtained for Z are identical with (82) and (83), so that
relaxation effects are negligible. The criterion | €] >1 for neglecting

. relaxation is equivalent to the condition, which may be easily understood
physically, that the period 1/ of the applied field shall be large compared
with, not r, but the time taken by an electron to traverse the skin depth,
which is very much smaller than 7. As a result it is not to be expected
that relaxation effects will play any part at wavelengths greater than about
2= mm., ’ AU

coefficient & of a metal for normally incident radiation, defined as the

ratio of thé intensities of the absorbed and incident waves, is directly
proportional to the surface resistivity. According to the usual relaxation
theory o varies as v/ at low frequencies (this is the Hagen—Rubens
relation), but is independent of frequency when wr> 1. The difference
in relaxation behaviour which the anomalous skin -effect introduces at
low temperatures is illustrated in fig. 12, which shows the theoretical

So long as the displacement curr.enﬁ is- negligible, the absorption -
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absorption coefficient of a good silver specimen at liquid-helium temg e.r‘
atures -and at frequencies ranging from long radio waves to ultra-vi]?)leiz
]ight: The anomalous effects are most marked in the long inf£a:-red' whil

ab hlg'her frequencies the relaxation effects tend to restore the 1,101“1111(;
behav1our ; the maximum value of &/ in fig. 12 is 1-5X 103 and .
at-a wavelength of 70 . : : -
- "The absorptivity of pure electropolisheéd metals for infra-rjfi'\;;a;a%io\
,‘9f Wa.velen‘gth 144 has recently been measured by Ramanathan (un uloIl
lished) at hqu'id-helium temperatures. The observed behaviour is ngt ir;
a,greemfant with the theory : the absorptivity in all cases exceeds th

theoretical value by a factor of the order of 10, and is in fact abouﬁ .
great as the value obtained by extrapolating the w?? law which holgz

i

Fig. 12.
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. Theoretical absorption coefficient of silver at liquid-helium temperatures for

p=1, plotted logarithmically against the wavelength A.

is lnot‘ (flea,r atvpre.sent,. but it is possible that the disagreement with the
relaxation theory is only apparent and is connected with the value of the

. surface reflection coefficient ' : i

, ; 6 p. p was assumed to be unity by Reut

: iondheuner when gvaluatmg their formulae for high freérueflcies ; ell‘; 3}411;2

‘ hge}rll reported that in the infra-red region the absorptivity for p=0 ,is much
igher than for ps=1 (Holstein, unpublished calculations), but details of

the computationy are not yet available.
4.72. The anomalous skin effect in ani ; : A
‘ . anisotropic metals. In his experi-
:}eplts at 9400 Mq/s, Pippard (1950 a) studied the surface resistanc% of
rlng.- e crystals of tin as a function of orientation. In fig. 13 1/R, measured
under extreme anomalous conditions, is displayed as a funcbio’n of 0, the

. angle between the tetrad axis of the crystal and the axis of the (eylindrical)

Speci .o N
pe%lmen, which is also the direction of current flow.

Lo N
TR (R

o O

, when relaxation effects are negligible. The origin of the discrepancy:

L pbf
X
rE
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f 1/R is interesting, and differs i:rom th'e
1 obeying Ohm’s law. Tn an anisotropic -

metal the usual form of Ohm’s law, J =oE; r;)f}llus::3 }l::oi;nz?ilﬁ:dnzz Ifl:iazgi ;
- as a .symmetric second-order teysor. e. d e N o that,
effect in such a metal has been cons1dere<§l by Pippard, o s o o
for the conditions of his experiments, it leads joo a mlo o opand

i which is at variance with the experimental results. P :
EisR pj)vilrgleg ’out that the reason for the ax.lomalous beha.vm:}f is I‘fgrlrfaiogig
in the form\of _the equations connecting J' am‘i E ll.n re nomma) an
anomalous theories. In the former the relation is a.‘| 1n:a np g
whether the metal is isotropic or not, the value f)f -aI a,t}ylrepanomalous )
determined solely by the value of E at that pom’o.d : n e o
theory, on the other hand, the relatif)n between J and E, W. ey analo:
is no longer & point relation ; there is then no longer any quatl

gous to o which may be simply generalized by the introduction of a

tensor, and as a consequence the mathematical formula{tion of the problem

" The form of the anisotropy ©
result to be expected for a meta

" . TFig. 13.
A

Reo
(ohm")
200

150

60 90
0 , 3(?ﬂ(degrees) :

Variation With orientatibn of surface conductivity of single crystals of t_m. |

| . iour i isotropic metal
permits a much greater freedom of behaviour in an anisotrop :

than is allowed by a point-relation.- 1t ig clear, furthermore, that the free-

electron model which we have always employed hitherto will be entirely

inadequate to deal with the present problem, an:

in r otals.
will depend on the anisotropic form of the energy surfaces in real metals

A first discussion of the problem using the ineffectiveness conclept }2231 b:relg
iven by Pippard, but further investigation, both expgl(“ilnéenbe oly
%heoretical, is required before the phenomenon can-be said to

understood. L - t investi-
— ty. Most of the recen ‘
4.73. Applicotion lo superconductivity ¢ metals ab low temperatures

rations on the high-frequency Behaviour of metals ure
’%zvle been concerned primarily with the properties of ’ohe.a s}lllpergzgilgg ihi
state, a topic which we have ignored hitherto and which 1s

i the
scope of the present article. It should be mentmned, however, that

d the anisotropic behaviour -

 DrUDE, P., 1904, Ann.. Phys., 14, 936.
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methods used in the theory of the anomalous skin effect find an application
in the theoretical analysis of certain models of a supercondugtor, the so-
called two-fluid models. The essential feature of these models is that:
the electrons in a superconductor may be thought of as belonging to
" either of two groups, superconducting and normal respectively, and that
‘the current density may be written as the sum of separate contributions
from each group, the supercurrent and the normal current. Under the
influence of an electric field the normal electrons in a superconductor are
supposed to behave in the same way as the electrons in a normal metal,
and they will therefore exhibit similar free-path phenomera at high
frequencies. The theory has been worked out in detail by Maxwell,
Marcus and Slater (1949) for the particular model of a superconductor

" which is due to H. London (1940), and a careful critical discussion of the

whole subject has been given by Pippard (1950 b), whose paper should be
consulted for further details. It must be emphasized that, since there .
is as yet no accepted and fully developed theory of superconductivity,

- the status of these calculations on superconductors is much more specula-
: . tive than that of the theory which applies to normal metals.

4.74. Magnetic effects. We wish to point out, finally, that effects

analogous to those considered in § 3 are to be expected at high frequencies
if a steady magnetic field is superimposed on the specimen. In particular,-
if the magnetic field is perpendicular to the surface of the metal, the
surface impedance will vary with H in a manner which may be analysed
theoretically by combining the methods of § 3.4 with those of the present
section ; at the same time there will be & high-frequency Hall electric
field, and at low temperatures there will be an ‘anomalous Hall effect’.
The analysis of these phenomena, though laborious, is straightforward in
principle, but elaborate calculations are probably not worth undertaking
until experimental data have become available.

My best. thanks are due to Mr. R. G. Chambers for several instructive

- diseussions and for reading and commenting on the article in manuseript.
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On the Generation of Vacancies by Moving Dislocations* -

. By Prof. FrEDERICK SEITZ,
University of Illinois, Urbana, Ill., U.S.A.+

S AssTRACT
New experiments of Molenaar and Aarts, Blewitt and others seem to

- confirm the view of the author, previously based only on the experiments

of Gyulai-and Hartly and Stepanow on sodium chloride, that vacant
lattice sites, and possibly interstitial atoms, are generated during plastic
flow in ductile crystals, particularly in metals. Tt is pointed out that the
average temperatures near a moving dislocation are probably not suffi-
ciently high to evaporate vacant lattice sites or interstitial atoms as &
Tesult of thermal effects alone. Instead, one apparently must conclude
‘that the imperfections are generated either by purely geometrical means -
-during the looping of dislocations about appropriate obstacles, as the
tesult of dynamical instability in the motion of a dislocation, possibly
mear a jog, or in the very high thermal pulses or ¢ spikes’ which are

generated eitherin the zone where two dislocations of opposite sign annihilate

one another or near impedimenté where dislocations are strongly curved.
It is pointed out that a pair of vacancies is probably stable near room -

‘temperature and may diffuse more rapidly than a single vacancy. It is
-also proposed . that vacancies retained during quenching of Al-Cu alloys
-and those generated by cold-work play an important role in the precipitation

‘., ‘process. The origin of work hardening in single crystals is discussed and

several alternative interpretations, which involve the impediment of
‘Frank—Read generators either directly or indirectly as a consequence of
‘the generation of vacancies, are presented. The importance of prismatic
-dislocations formed by condensation of vacanciés is restated. The role
that vacancies formed by cold-work may play in determining the stored
-energy and decrease in density and in affecting processes such as creep
and the hardening of latent slip planes is also discussed. Finally a few

-experiments are proposed, typical of those which could prove decisive in
isolating the influence of vacancies. -- ‘

. T - .
, § 1. INnTRODUCTION '

IN a recent pap/eé, the writer) has pointed out that experiments of
Gyulai and Hartly® and Stepanow® on the influence of plastic flow upon
the electrical conductivity of sodium chloride seem to imply that vacant
lattice sites are generated within the crystal when dislocations move, as

* This work has been aided by research contracts with the United States

t Communicated by the Author. :

.Office of Naval Research and the United States Atomic Energy Commission.



