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For the case of time-reversal invariance

ator lines. \
O o s selation boms diagrams and the Diffuson:

we thus have the relation between the twisted ladder
DptP') (8.178)

Cp’pl(q’ w) = (p—p'+a)/2,(p' —P+a) /2

In section 8.7 we calculated the Diffuson for small momentum difference (between

upper and lower line momentum input values) and we therefore obtain for the

twisted ladder diagrams for small total momentum

Wl (8.179)
Cpplaw) = —iw+Do(p+p’)2fl_2
where the last equality is valid in the momentum regime, |p+p'|l < &, and

wr L 1, ¢ <K kF. '
In tfle case of time-reversal invariance, we can thus relate a singu

of one class of diagrams to a singularity in different va.riables in an.other set of d}a;
grams. In the next chapter this property will be exploited to classify all f(?ur;pom
diagrams, and diagrammatically derive the self-consistent theory of localization.

lar behavior

Chapter 9

Localization

In this chapter the quantum mechanical motion of a particle in a random potential
at zero temperature is addressed. After presenting the scaling theory of localiza-
tion, and verifying its predictions in the weak-disorder regime, the self-consistent
theory of localization is presented.

In a seminal paper of 1958, P. W. Anderson showed that a particle’s motion in
a sufficiently disordered three-dimensional system behaves quite differently from
that predicted by classical physics according to the Boltzmann theory [35]. In fact,
at zero temperature diffusion will be absent, as particle states are localized in space
due to the random potential. A sufficiently disordered system therefore behaves as
an insulator and not as a conductor! By changing the impurity concentration, a
transition from metallic to insulating behavior occurs. This is called the Anderson
metal-insulator transition. In this chapter we shall discuss the phenomenon of
Anderson localization using the developed diagrammatic technique.

In a pure metal, the Bloch or plane wave eigenstates of the Hamiltonian are
current carrying

<>em = /dx<p|j(x)|p>= evy . (9.1)

In a sufficiently disordered system, a typical eigenstate has a finite extension, and
does not carry any current

<j >ie =0. (92)

The last statement is not easily made rigorous, and the phenomenon of localization
is quite subtle. We shall return to the discussion of wave function localization in
section 9.3.3.

Astonishing progress in the understanding of transport in disordered systems
has taken place since the introduction of the scaling theory of localization [38]. A
key ingredient in the subsequent development of the understanding of the transport
properties of disordered systems was the intuition provided by diagrammatic per-
turbation theory. We shall exploit this in the present chapter, as well as in chapter
11 where we will discuss the weak localization effect. We start by considering the
scaling theory.!

I The scaling theory of localization has its inspiration in the seminal work of Wegner [36] and
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350 CHAPTER 9. LOCALIZATION

9.1 Scaling Theory of Localization

We shall consider a macroscopically homogeneous conductor, i.e., one with a spa-
tially uniform impurity concentration. We consider that the temperature is zero.
The conductance, the inverse resistance, of a d-dimensional macroscopically ho-
mogeneous hypercube of linear dimension L is according to eq.(8.74) proportional
to the conductivity?

G(L) = oL*?. (9.3)
The conductance has dimension of €?/h, independent of the spatial dimension
of the sample. In the following, the dimensionless conductance of a hypercube,

defined as a(L
oy = &Y (94)

A
will be of importance.

The one-parameter scaling theory of localization is based on the assumption
that the dimensionless conductance solely determines the conductivity behavior of
a disordered system. Consider fitting n? identical blocks of length L (i.e., having
the same impurity concentration, and with mean free paths smaller than the size
of the system, | < L) into a hypercube of linear dimension nL. The conductance
of the hypercube g(nL) is then related to the conductance of each block g(L) by

g(nL) = f(n,9(L)) (95)

This is the one-parameter scaling assumption, the conductance of each block solely
determines the conductance of the larger block, there is no extra dependence on

microscopic parameters (such as [ or Ap).
For a continuous variation of the linear dimension of a system, the one-parameter
scaling assumption results in the logarithmic derivative being solely a function of

the dimensional conductance

dlng
Firy A B(9g) - (9-6)

This can be seen by differentiating eq.(9.5) to get

_ ldg(nL)
T g dn

_ 1df(n,9)

ding(L) _Ldg _ L dg(nL)
T g dn

dinL gdL g dL =69) -

(9.7
The physical significance of the scaling function, 8, is as follows: If we start out
with a block of size L, with a value of the conductance g(L) for which ((g) is

positive, then the conductance according to eq.(9.6) will increase upon enlarging
the system, and vice versa for B(g) negative. The S-function thus specifies the

n=1 n=1 n=1

Thouless [37].
2We are thus assuming that it is meaningful to describe the current density through a local

relation between current and field, j = o E. Clearly the size of the system must be larger than
the mean free path, L > l.
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transport properties at that degree of disorder for a system in the thermodynamic
infinite volume, limit. ’

In the limit of weak disorder, large conductance g > 1, we expect metallic
conduction to prevail. The conductance is thus described by classical transport
theory as in relation eq.(9.3), and we obtain the limiting behavior for the scaling
function

Blg)=d-2, g>1 (9.8)

the scaling function having an asymptotic limit depending only on the dimension-
ality of the system.

In the limit of strong disorder, small conductance g < 1, we expect with
Anderson [35] that localization prevails, so that the conductance assumes the form
g(L) o eI/t where ¢ is called the localization length, the length scale beyond
which the resistance grows exponentially with length.® In the low conductance,
so-called strong localization, regime we thus obtain for the scaling function, ¢ being
a constant,

Blg) =Ing+c, gk 1 (9.9)

a logarithmic dependence in any dimension.

Since there is no intrinsic length scale to tell us otherwise, it is physically
reasonable in this consideration to draw the scaling function as a monotonic non-
singular function connecting the two asymptotes. We therefore obtain the behavior
of the scaling function depicted in figure 9.1. This is precisely the picture expected
in three and one dimensions. In three dimensions the unstable fix-point signals
the metal-insulator transition predicted by Anderson. The transition occurs at a
critical value of the disorder where the scaling function vanishes, 8(g.) = 0. If we
start with a sample with conductance larger than the critical value, g > g., then
upon increasing the size of the sample the conductance increases since the scaling
function is positive. In the thermodynamic limit, the system becomes a metal with
conductivity og. Conversely, starting with a more disordered sample with conduc-
tance less than the critical value, g < g., upon increasing the size of the system,
the conductance will flow to the insulating regime, since the scaling function is
negative. In the thermodynamic limit the system will be an insulator with zero
conductance. This is the localized state. In one dimension it can be shown that all
states are exponentially localized for arbitrarily small amount of disorder [39], and
the metallic state is absent, in accordance with the scaling function being negative.
An astonishing prediction follows from the scaling theory in the two-dimensional
case where the one-parameter scaling function is also negative. There is no true
metallic state in two dimensions!*

3This expectation we demonstrate to hold true in section 9.3.5. At this point we just argue
that if the envelope function for a typical electronic wave function is exponentially localized,
the conductance will have the stated length dependence, where ¢ is the localization length of a
typical wave function in the random potential, as it is proportional to the probability for the
electron to be at the edge of the sample.

4In this day and age, low-dimensional electron systems are routinely manufactured. For
example, a two-dimensional electron gas can be created in the inversion layer of an MBE grown
GaAs-AlGaAs heterostructure. Two-dimensional localization effects provide a useful tool for
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Figure 9.1 The scaling function as function of Ing (from E. Abrahams, P. W.
Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673
(1979)).

The prediction of the scaling theory of the absence of a true metallic state in
two dimensions was at variance with the previously conjectured theory of minimal
metallic conductivity. The classical conductivity obtained from the Boltzmann
theory has the form, in two and three dimensions (d = 2, 3),°

62 kpl _

oo = gdﬁd_lkf“ 2. (9.10)
According to Mott, the conductivity in three (and two) spatial dimensions should
decrease as the disorder increases, until the mean free path becomes of the order
of the Fermi wavelength of the electron, I ~ Ap. The minimum metallic conduc-
tivity should thus occur for the amount of disorder for which kgl ~ 27, and in
two dimensions have the universal value e?/h. Upon further increasing the dis-
order, the conductivity should discontinuously drop to zero.® This is in contrast
to the scaling theory, which predicts the conductivity to be a continuous function
of disorder. The metal-insulator transition thus resembles a second-order phase
transition, in contrast to Mott’s first-order conjecture (corresponding to a scaling
function represented by the dashed line in the above figure).”

probing material characteristics, as we discuss in chapter 11.

5In one dimension, the Boltzmann conductivity is oo = 2e2l/mh. However, the conclusion to
be drawn from the scaling theory is that even the slightest amount of disorder invalidates the
Boltzmann theory in one and two dimensions. '

6In three dimensions in the thermodynamic limit the conductance drops to zero at the critical
value according to the scaling theory.
“The impressive experimental support for the existence of a minimal metallic conductivity
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The phenomenological scaling theory offers a comprehensive picture of the con-
ductance of disordered systems, and predicts that all states in two dimensions are
localized irrespective of the amount of disorder. To gain confidence in this surpris-
ing result, one should check the first correction to the metallic limit. We therefore
calculate the first quantum correction to the scaling function and verify that it is
indeed negative.

9.2 Coherent Backscattering

In diagrammatic terms, the quantum corrections to the classical conductivity are
described by conductivity diagrams where impurity lines connecting the retarded
and advanced lines cross. Such diagrams are smaller, determined by the quantum
parameter i /p,[, than the classical contribution. The subclass of diagrams, where
the impurity lines cross a maximal number of times, is of special importance since
their sum exhibits singular behavior (as we already noted in section 8.10). Such a
type of diagram is illustrated below:

R

(9:11)

A

The maximally crossed diagrams describe the first quantum correction to the clas-
sical conductivity, the weak-localization effect, a subject we discuss in full detail
in chapter 11.

In the frequéncy and wave vector region of interest each insertion in a max-
imally crossed diagram is of order 1, just as in the case of the ladder diagrams.
Diagrams with maximally crossing impurity lines are therefore all of the same order
of magnitude and must accordingly all be summed (2Q = p + p');

" "

P} Py p
/
P+ Py P+ e P
+
N ” n + ’;5‘".’% l\qw/‘ + ... (9.12)
b 3 P- p_
hQ-pY rQ-pY hQ-pY

From the maximally crossed diagrams, we obtain analytically, by applying the
Feynman rules, the correction to the conductivity of a degenerate Fermi gas,

in two dimensions is now believed to either reflect the cautiousness one must exercise when
attempting to extrapolate measurements at finite temperature to zero temperature, or invoke a
crucial importance of electron-electron interaction in dirty metals even at very low temperatures.
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hw, kT < ep,?
rastae) = (5)'L fombss frpmiss peth Comlers ) G e+ )
G, e + ) (B, )G (P ) (0.9

To describe the sum of the maximally crossed diagrams, we have introduced the
so-called Cooperon C,° corresponding to the diagrams (ef = er + hw)

P+ P+
Cp,p’(éFy%W) =
pP— p_
, R R D!
P+ Pt P+ 7% Yo o
\\ €;pf£ ,,/ ~§F\px :c pf+’ -
= o~ + A o
X X K.
/x X\ ,"A 1 A T~_ .
p- +ft—s>—»p. p- L —~»> pL
erhQ-pY erhQ-pY ephQ-pYy
R !
P+ Py
F
S
] 1
= X X
1 I
] 1
1 A '
p_l 1" p_
ephQ-pY
R R Y
P+ =T T < P}
vokel el
] 1 )
+ X X X + ... (9.14)
, : i
, 0 A 1 A :4 P
P! X _

erhQ-pY ephQ-pY

8In fact we shall in this section assume zero temperature as we shall neglect any influence on
the maximally crossed diagrams from inelastic scattering. Interaction effects will be the main

topic of section 11.3. '
9The nickname refers to the singularity in its momentum dependence being for zero total

momentum, as is the case for the Cooper pairing correlations resulting in the superconductivity
instability.
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In the last equality we have twisted the A-line around in each of the diagrams, and
by doing so, we of course do not change the numbers being multiplied together.
Let us consider the case where the random potential is delta-correlated®

<VE)VE)> = u?(x—x). (9.15)

Since the impurity correlator in the momentum representation then is a constant,
u?, all internal momentum integrations become independent. As a consequence,
the dependence of the Cooperon on the external momenta will only be in the
combination p + p’, for which we introduce the notation AQ = p + p’, as well as

Cu(p+p) =Copler,0,w) = éw(Q), and we have

P R , p R R ,
+ r———<——T¢ D + T T < D
e T DRy ¢ agey |
~ ] ' ] 1 1
Cu(Q) = X X + X X X +
i A ‘ : N ! !
P S ep p-' . ‘e p_
erhQ-pY erhQ-pY{ ephQ-pYy
R R
bkl Pochey
1 1 1
= X X I + X
' ' ‘
1 A 1 ' A
—_———
erhQ-pl erhQ-pY
R R
DRy 1 ey
1 L]
+ X X +
: '
' A ' A
erhQ-pY ephQ-pY
R /
+ . P+ < ¢ Py
i SPPE
1 1
= X X C : (9.16)
' i
[N A ' ,
— - ¢ P—

—
erhQ-pY

10As we already noted in section 8.5, the case of a short-range potential goes through as usual,
the only change being the appearance of the transport time instead of the momentum relaxation
time. For a discussion of the effects of anisotropy we refer to [40].
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For convenience we have extracted a factor from the maximally crossed diagrams
which we shortly demonstrate, eq.(9.23), is simply the constant u? in the relevant
parameter regime. We shall therefore also refer to C as the Cooperon. Diagram-

matically we obtain according to eq.(9.16)

ol = 1 + x™|C|. (9.17)

Analytically the Cooperon satisfies the equation

C.(Q)=1+u? /(;:;:)d GR(p",,er + hw)GA(p", — hQ, er) Cu(Q) . (9:18)

It is obvious that a change in the wave vector of the external field can be com-
pensated by a shift in the momentum integration variable, leaving the Cooperon
independent of any spatial inhomogeneity in the electric field which is smooth on

the atomic scale.
The Cooperon equation is a simple geometric series which we immediately can

sum!!

Cw(Q) = (1 + C(Qaw) + CZ(Q,U)) + CB(va) + . )
14¢(Q,w) Cu(Q)

-——1——— . 9.19
1- C(Q7w) ( )

Diagrammatically we can express the result

L . (9.20)

Cu(Q) =

1 - X

A

.

erhQ-pY

We have previously calculated the insertion ¢(Q,w), €q.(8.69), and for the
region of interest, wr, @l < 1, we have

(Q,w) = 1+iwr— Do7Q’ (9.21)

11This result we already derived in section 8.10, where we established the relation between the
Diffuson and its twisted diagrams in the case of time-reversal invariance.
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and for the Cooperon

1

——zw + .D() Q2 ’
The Cooperon exhibits singular infrared behavior.
In the singular region the prefactor in eq.(9.16) equals the constant u? as

Cu(Q) = (9.22)

R
s;p;" !

X = ' {(Qw) ~ u’ (9.23)
A |
ephQ-pY

ie., in- the region of interest we thus have C' = u2C.. As far as regards the singular
behavior we could equally well have defined the Cooperon by the set of diagrams

P R !
' +
i ey 1
C.Q = x4 X %
: p_ll A ] B
erhQ-pY
P R R
+ T < P/
A
" X X X + o (9.24)
! A : A i

cth—pf(‘ EFhQ—pf{_l

as adding a constant to a singular function does not change the singular behavior.
Changing in the conductivity expression, eq.(9.13), one of the integration vari-

ables, p’ = —p+AQ, we get for the contribution of the maximally crossed diagrams
2h [ d 1dQ 2
§oma(qw) = (_) hopdp dQ _wr
sl w) m) /(Qwh)d /(27r)d Pa (—ps + hQp) —iw + DoQ?

GT (p4) GTy (~ps + Q) G2 (~p- + hQ)GA(p-)  (9.25)

where the prime on the Q-integration signifies that we only need to integrate
over the region @/ < 1 from which the large contribution is obtained. Everywhere
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except in the Cooperon we can therefore neglect Q as [p—hQ| ~ p ~ pr. Assuming
a smoothly varying external field on the atomic scale, ¢ < k,,'? we can perform
the momentum integration, and obtain to leading order in i/prl

3 2
[ s G (2)GE (i) G4 (~p )G (p-) = “ToEIES
(27h) h>d
(9.26)
where we have also safely neglected the w dependence in the propagators as for
the region giving the large contribution, we have w < 1/7 < ep/h.
At zero frequency we have for the first quantum correction to the conductivity
of an electron gas

2€2D0 /dQ 1
mh (2m)¢ Do@?

do(L) = — (9.27)
In the one- and two-dimensional case the integral diverges for small ¢}, and we
need to assess the lower cut-off.!® In order to understand the lower cut-off we
note that the maximally crossed diagrams lend themselves to a simple physical
interpretation. The R-line in the Cooperon describes the amplitude for the scat-
tering sequence of an electron (all momenta being near the Fermi surface as the
contribution is otherwise small)

pP—pi—.—pyv—=px~—p (9-28)

whereas the A-line describes the complex conjugate amplitude for the opposite,
i.e., time-reversed, scattering sequence

P = —pyv = .. & —p1r—=p~-—p (9.29)

i.e., the Cooperon describes a quantum interference process: the quantum interfer-
ence between time-reversed scattering sequences. The physical process responsible
for the quantum correction is thus coherent backscattering.!* The random po-
tential acts as sets of mirrors such that an electron in momentum state p ends
up backscattered into momentum state —p. The quantum correction to the con-
ductivity is thus negative as the conductivity is a measure of the initial and final
correlation of the velocities as reflected in the factor p - p’ in the conductivity
expression.

12]p a conductor a spatially varying electric field will due to the mobile charges be screened (as
we discuss further in section 10.5). In a metal, say, an applied electric field is smoothly varying
on the atomic scale, ¢ < kp, and we can set ¢ equal to zero as it appears in combination with
large momenta, p,p’ ~ pp.

13Langer and Neal [41] were the first to study the maximally crossed diagrams, and noted that
they give a divergent result at zero temperature. However, in their analysis they did not assess
the lower cut-off correctly.

14The coherent backscattering effect was considered for light waves already in 1968 [42]. It is
amusing that a quantitative handling of the phenomena had to await the study of the analogous
effect in solid-state physics, and the diagrammatic treatment of electronic transport in metals a
decade later.
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The quantum interference process described by the above scattering sequences
corresponds in real space to the quantum interference between the two alternatives
for a particle to traverse a closed loop in opposite (time-reversed) directions.!

Figure 9.2 Coherent backscattering process.

We are considering the phenomenon of conductivity, where currents through
connecting leads are taken in and out of a sample, say, at opposing faces of a
hypercube. The maximal size of a loop allowed to contribute to the coherent
backscattering process is thus the linear size of the system, as we assume that
an electron reaching the end of the sample is irreversibly lost to the environment

(leads and battery). For a system of linear size L we then have for the quantum
correction to the conductivity

2¢2Dy (U1 dQ 1

do(L) = mh Jiyr (27)¢ De@?

(9.30)

Performing the integral in the two-dimensional case gives for the first quantum
correction to the dimensionless conductance!®

1. L
bo(L) = ——In 7. (9.31)

We note that the first quantum correction to the conductivity indeed is negative,

describing the precursor effect of localization. For the asymptotic scaling function
we then obtain
1
Blg) = ——=—,  g»1 (9.32)

mw2g’

15This all important observation of the physical origin of the quantum correction to the con-
ductivity (originally expressed in reference [43]) we shall take advantage of in chapter 11, where
the real space treatment of weak localization is done in detail. ’

6The precise magnitudes of the cutoffs are irrelevant for the scaling function in the two-

dimensional case, as a change can only produce the logarithm of a constant in the dimensionless
conductance.
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and the first quantum correction to the scaling function is thus seen to be negative
in concordance with the scaling picture.

Exercise 9.1 Show that in dimensions one and three we get for the first quantum
correction to the dimensionless conductance

- d=t
So(L) = (9.33)

and thereby for the scaling function to lowest order in 1/g

flo) = (=2~ (539

where
(9.35)

We introduce the length scale describing localization, the localization length, as
follows: for a sample much larger than the localization length, L >> £, the sample is
in the localized regime and we have g(L) ~ 0. To estimate the localization length,
we equate it to the length for which g(€) ~ go, i.e., the length scale where the scale
dependent part of the conductance is comparable to the Boltzmann conductance.
The lowest-order perturbative estimate based on eq.(9.31) and eq.(9.33) gives in
two and one dimensions the localization lengths (@ ~ lexpmkpl/2 and €W ~ [
respectively.

The one-parameter scaling hypothesis has been shown to be valid for the aver-
age conductance in the above considered model [36]. Whether the one-parameter
scaling picture for the disorder model studied is true for higher-order cumulants
of the conductance, < g" >, is a difficult question which seems to have been an-
swered in the negative in reference [44]. However, a different question is whether
deviations from one-parameter scaling are observable, in the sense that a sample
has to be so close to the metal-insulator transition that real systems cannot be
made homogeneous enough. Furthermore, electron-electron interaction can play a
profound role in real materials invalidating the model studied, and leaving room
for a metal-insulator transition in low-dimensional systems [45].

We can also calculate the zero-temperature frequency dependence of the first
quantum correction to the conductivity for a sample of large size, L >> 1/ Do/w =

L. From eq.(9.25) we have
§0ap(w) = d0(w) dap (9.36)
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where

11
o) = XD fda
' hm (2m) —iw + DQ? (9.37)

0

Calculz?tmg the integral, we get for the frequency dependence of the quantu
correction to the conductivity in, say, two dimensions [46] ! .

So(w) 1 1

oo mkpl tor (9.38)
We note that for the perturbation t i i
oo o for ¢ p ion theory to remain valid the frequency can not be

The quantum correction to t ity i i i i
il ¢ o the conductivity in two dimensions is seen to be
1 e? 1
do(w) = —=—— In—
(w) g M- (9.39)
Let us calculate the first quantum correction to the current density response

to a spatially homogeneous electric pulse, recall eq.(8.81)

03(t) = do(t) Eo (9.40)
where
22Dy Tdw . l/ldQ 1 2 1/1
5U(t) =7 3 o9 e—lwt/ - = _26 Do / dQ —iDoQ2t
T 1 L(QW)d —w + Do@? hm (2m)d ‘
1/L
which in the two-dimensional case becomes (9-41)
2
So(t) = — % (o2 _ -2
o) = S (e eF) (9.42)

After.the'sho?t time T the classical contribution, eq.(8.84), and the above quantum
contribution in the direction of the force on the electron dies out, and an echo ;
the current due to coherent backscattering occurs ’ '

62

_ ~t/T
e By (9.43)

i) =

on the large time scale 7p = L?/ Dy, the time it takes an electron to diffuse across

he Sam[)le (f T even la.r tl‘]]l q t I e(l‘ ons l)ey() e
l (o) (S ger es t >> T, uantum co
). D 11 nd h ﬁI‘St
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Exercise 9.2 Show that in dimensions 1 and 3 we get for the frequency dependence
of the first quantum correction to the conductivity

A de!
do(w) _ (9.44)
70 5(ki7)72 d=3

In dimension d the quantum correction to the conductivity zs of.relative order
1/(kpl)¥=1. In strictly one dimension the weak localizth@ regime 1s thus absent;
i.e., there is no regime where the first quantum correction is small compared to the
Boltzmann result, we are always in the strong localization regime.

From the formulas, eq.(7.142) and eq.(9.39), we find that in a quasi-two-
dimensional system, where the thickness of the film is much smaller than the
length scale introduced by the frequency of the time-depender}t.externaq field,
Ly, = (Do/w)Y/?, the quantum correction to the conductance exhibits the singular
frequency behavior

€2 1
5<Gaﬁ(w)> = ——‘27'_—27_L 6aﬁ ].HE . (945)

The quantum correction to the conductance is in the limit of a large two-dimensional
system only finite because we consider a time-dependent external field, ar.ld the con-
ductance increases with the frequency. This feature can be understood in terms (.)f
the coherent backscattering picture. In the presence of the time-dependent elect.rlc
field the electron can at arbitrary times exchange a quantum of energy hw‘\mth
the field, and the coherence between two otherwise coherent alternatives will be
partially disrupted. The more w increases, the more the coherence of the I?ackscat—
tering process is suppressed, and consequently the tendency to localization, as a
result of which the conductivity increases. '
The first quantum correction plays a role even at finite temperatur'es, and in
chapter 11 we show that from an experimental point of view there are important
quantum corrections to the Boltzmann conductivity even at weak disorder. We
have realized that if we can break the time-reversal invariance for the electron
dynamics, we can disrupt the coherence in the backscattering process, a.nd suppress
localization. The interaction of an electron with its environment invariably breaks
the coherence, and we discuss the effects of electron-phonon and elect?on-.elec.tron
interaction in section 11.3. A more distinct probe for influencing localization is to
apply a magnetic field which we discuss in section 11.4. o
We have realized that the precursor effect of localization, weak locahza‘?lon,
is due to coherent backscattering. The constructive interference betwe.en time-
reversed loops, which increases the probability for a particle to return t‘o 1t's start-
ing position. The phenomenon of localization can be understOOfi 'quahtatlvely as
follows: The main amplitude of the electronic wave function incipient on the first
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impurity in figure 9.2 is not scattered into the loop depicted, but continues in
its forward direction. However, this part of the wave also encounters coherent
backscattering along another closed loop feeding constructively back into the orig-
inal loop, and thereby increasing the probability of return. This process repeats at
any impurity, and the random potential acts as a mirror, making it impossible for

a particle to diffuse away from its starting point. We now turn to a quantitative
discussion of localization.

9.3 Self-consistent Theory of Localization

In the previous section we indeed demonstrated that the first quantum correction to
the conductance is negative in concordance with the prediction of the scaling theory
of localization. We shall now go beyond first-order perturbation theory in the
quantum parameter Ap/l, and construct the self-consistent theory of localization
following reference [34]. The self-consistent theory!” provides a good approximate
description of Anderson localization, as comparison with numerical results testify,
except possibly very close to the metal-insulator transition in three dimensions.1®
To probe the motion of the electrons we shall consider the density response, which
according to eq.(8.169) is specified by the diffusivity. In order to establish the
self-consistent theory of localization we shall utilize the diagrammatic structure
of the skeleton perturbation expansion of the four-point function describing the

motion of a particle in a random potential. We assume for simplicity the isotropic
scattering model where 7, = .

9.3.1 Weak-Localization Regime

In the previous section it was shown that the first quantum correction to the
conductivity is governed by the infra-red (small w) behavior of the Cooperon. Let
us therefore first investigate the contribution from the Cooperon to the diffusivity;
i.e., we approximate the irreducible vertex U in eq.(8.159) by the Cooperon C,,(p+

p’), and obtain in this approximation for the diffusivity (for ¢ < kp we can set q
equal to zero)

Do dr / . u?/r A
L -4 AG " &) AG,,
Do (w) + Whmanl;p, (P &) AGy —iw + Do(p + p')?h 2 (p'-4) AG,
(9.46)

17As all self-consistent theories, such as also the one we employ in the next chapter to describe
the electron-electron interaction in a metal, it is uncontrolled, in the sense that no small parameter
estimates the accuracy of the theory. However, we do not have any general tool to calculate
properties of strongly interacting many-body systems (except in one-dimensional systems, where
it is possible to obtain exact results).

'8In the field theoretic formulation of the localization problem, the self-consistent theory is
known to be equivalent to in the effective action to keep all vacuum diagrams up to two-particle
irreducible level; see reference [47].
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where the prime indicates that the summation is restricted to the singular region
|p+p'| < A/l. Changing momentum variable to the total momentum, hQ =
p + p’, we obtain

2
(p-4)AG {_—Wu:%@} (hQ —p) - q AGhq-p -
(9.47)

The singular behavior of the Cooperon is in the small Q-limit, Ql <« 1, so that @)
can be set to zero in the spectral function which is peaked at kr, leading to the

simplification of the expression eq.(9.47)

Doy s gpacy: [
Do(w) 1_7ThmnV2pzy(:Q (p- a)"(AGy) [—iw-l-DoQ?] . (9.48)

D d /
0 =14 T

De(w) ThmnV? g%

The momentum integral is readily evaluated, and the diffusivity is to lowest order
in the quantum parameter given by

Dy 14 1 / 1
DC’(W) - 'ﬂ'hN() \% Q —iw + D0Q2
1 d 7 Q!
= — — kz‘d/ daQ ————; . 9.49
1+kpl T ' ¢ —iw/ Dy + Q* ( )
In less than two dimensions, d < 2, the first quantum correction is seen to diverge
d-1 . d=1
V2 T
Doy _ ( h ) (9.50)
Do(w) mpr! In L i=2.

In order for perturbation theory to be valid, the zero frequency limit can not be
taken. If, on the other hand, w is not too small, the second term in the expression
eq.(9.49) is much less than one, and from the Einstein relation, eq.(8.170), the
weak-localization expression for the conductivity is recovered

So(w) b d 44 Q4!
= —— 2 k% d/o dQ /DT (9.51)

oo prl
However, the zero frequency limit is precisely the one of interest as localization
is signaled by the infrared divergence of the inverse diffusivity, K(w). Based on
the perturbative result, eq.(9.49), a natural guess for a self-consistent equation for
the diffusivity is obtained by substituting on the right-hand side of eq.(9.49) the
diffusivity instead of the diffusion constant

Do _ 1 / 1
D(w) Lt ANV 5 [_¢w+b(w)Q2] ' (6.52)

Obtaining this conjectured self-consistent equation can be based on a diagrammatic
classification. In order to obtain the result, the key point to notice is that a

9.3. SELF-CONSISTENT THEORY OF LOCALIZATION 365

qu'a,ntity Where exactly the desired denominator appears is known, viz. the four-
point function ®(q,w) of eq.(8.167). If the irreducible four-point function U can

be related to @, a self-consistent : s !
obtainal nsistent equation for D is thus according to eq.(8.159)

9.3.2 Self-consistent Equation

We now demonstrate that the conjectured self-consistent equation for the diffusiv
1§y7 eq.(9.52), can be justified diagrammatically by taking into account the ;
singular contribution to the irreducible vertex function Up p. e
. A four point vertex diagram can be classified accordinéio whether it is imm
¢?zately left or right two-line reducible, i.e., has an Impurity correlator (or ¢-matri e)_
line connecting the particle lines at the utmost right or left of the diagram r\lg;
deﬁn(? the auxiliary four-point vertex consisting of all immediately leﬁgand.ri h(:f
two.—lme‘ irreducible diagrams, i.e., the sum of all the diagrams which have no ifn—
pur‘lty line connecting the R and A line at the very right or left of the dia,
This vertex function is denoted yp, (g, w) S
The four-point vertex consists of the immediately left and right irreducible di-
agrams v, the Diffuson D, the immediately left reducible diagrams, and the im-

mediately right reducible diagrams, and finally the both i ] '
bt y the both immediately left and right

P+ - !
* Py P+ < P’y P+ 'y
r = v + D
—_ !
p >p _ P- >p’_ b o’
R
- R
P+ 9 " pl+ P+ « < ’
p " Py
+ P,
+
D Y + 0 D
A
pP— > ’ A
7/ P P~ D’
P _ p"
R
P+ - - R‘ p,+
l:’/II p/,
+
+ D
Y D (9.53)
A A
pP- - ’
" " >P -
P p'_
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i i corresponding to the equation (the energy variables, E +hw on the upper retarded we have
line and E on the lower, advanced, line, are suppressed, and in view of eq.(8.30) 1+RD =1+ RU, _ 1 _ py-t
fixed at the Fermi energy, F ~ ¢,) 1-UsR 1-U,R 0 (9.60)
| and thereby
Lo (0,0) = Ypp(aw) + D(a,w) + D(a,w) 3 Rpr(ayw) prp(6«) 1+ RD = DU o)
| p” . . . ) .61
| Using this equality we can rewrite €q.(9.57) as
| + D(q,w) Y Tppr(@w)Bpr(ayw) ,
v [Dla, @) 2(a,w) = US o(a,w) - D(q,w) + Uy (9.62)

Since T'p i .
+ (D(qw)? Y Rpn(a,w) vmpn(a, ) Ro(a, ) - (9.54) pp'(Q,w) is the full vertex function we have according to eq.(8.172)
p".p"
il The notation Rp(q,w) = G§+ G4_and D(q,w) = Dy p(q,w) has been introduced.
H Furthermore, we have used the fact that since E =~ €., Dp,p(Q,w) is slowly varying
compared to the peaked function Rp/(q,w) in the variable p’, and has been taken r = T (9.63)
outside the summation. According to eq.(8.13) the function ®(q,w) is related to .
the four-point vertex by

P+ p’+

P+ - p/+

i .
' O(q,w) = vz Y Ppp(aw) —
I = where the particle lines on the right-hand side run parallel.

expansion, however, is analogous to the one in €q.(9.53) as the topological classifi-
ciatlon ma'de no reference to the directions of the particle lines. We now twist the
diagrams in this expansion on the right-hand side of eq.(9.63) and obtain

The diagrammatic

1 1
= 52 Rp(aw) + 375 2 Fo(aw) Tpp(aw) Fir(aw) - (9:55)
p p.p’

For the considered case of a delta impurity correlator (Up = u?), the four-point
vertex I'pp(q,w) is independent of p and p’, and when the expression eq.(9.54) for ,
T is inserted into eq.(9.55), we just have products over q,w-dependent functions!® P+ P’y P+ 4 P, - b,
B(q,w) = R(q,w)+Z(q,w)+ D(q,w) B*(q,w) +2D(q,w) B(q,w) Z(q,w) r = 5 n
+ (D(q,w))2 R*(q,w) Z(q,w) - (9.56) p- o’ - oo o .
The above equation can be rewritten as
®=R(1+DR)+Z(1+ DR)? (9.57) Py P+ hQ/2
c A
where we have introduced the notation + v
1 1 \
R = R(q,w) = VZRP ) 7 =17(q,w) = Ve E Ryvp,p(d,w) By -
p ' pP- % > >~ ’
(9.58) b thQ2
According to the expression for the Diffuson, eq.(8.108),
_ Us P+ hQ/2
D = D(q,w) = TR (9.59) SR - 5 A
19For a potential with range small compared to the mean free path, the peaked character of + /
Ry, restricts momenta to the Fermi Surface, and upon performing the angular integration the
discussion is equivalent. p- P
-p"+ rQ/2 -
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368
p'” + ﬁQ/2 l)// + ﬁQ/? -,
P+ _ < p)
C R 5 R C
+ >< . (9.64)
A A |
p- = P
-p" +hQ/2 -p" +1Q/2

rsal symmetry. In that case the two Cooperons in

We shall now invoke time-reve
ent Q,w, where hQ = p+p’. The

the last diagram are seen to have the same argum
last four diagrams in eq.(9.64) are explicitly two-line irreducible, and are thus part
of the irreducible vertex Up p/(g,w). The very last diagram in eq.(9.64) contains
two Cooperons with identical arguments, and are therefore more singular than the
other diagrams. We therefore have for the dominant contribution to the irreducible

four-point function

Uppl(aw) = Ulm™(qw) = [C(p+p @) Z(p+Pp,w)

S [Clp+p,w)2Z(p+p,w) +Cp+piw) . (969

The Cooperon added in the last line, ensures that we get the correct limiting

behavior in the weak-disorder limit, the aim of the self-consistent approach being

to interpolate between the weak- and strong-localization regimes.
In the time reversal invariant situation we then get, using the relation eq.(9.62),
for the dominant contribution to the irreducible four-point function

Udomin(q,w) — Uo = Ug ®(p +P'w) - (9.66)

Inserting the dominating contribution on the right-hand side of eq.(8.159) we ob-

taln

DO dT ~ 1 TN
- =14+ ——7 -Q)AGp Uy @ , CQ)AGy  (9.67
Bao - T 7r,.m,mﬂ];pl(p GAG, Uy @(p +p',w)(p' - @)AGy  (9:67)
and performing the integration over one of the momenta we have
Do 1 /
- =14+ —= o(Q,w) . 9.68
Bla,) s % M) (5.68)
Upon inserting the expression eq.(8.169) yields a self-consistent equation for the
diffusivity
2—d 1/1 d-1
Doy Phr / g —9 . (9.69)
D(q,w) mm Jo —w + D(Q,w)Q?

The result, eq.(9.69), is independent of the small external momentum q and we
can set q = 0 in D(q,w), and since Q is small, Q@ < 1/l < kp, we can neglect the
Q-dependence in D(Q,w) as well, and we obtain

2—d 1/1 d-1
Do _y Bkr / jo—99 (9.70)
D(w) mm Jo —iw + D(w)Q?
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This is precisely the self-consistent equation conjectured for the diffusivit

Wfa note the different roles played by the two infrared divergencies in they .th ;
the Diffuson, which we used to classify the diagrams of the four-point vert eor};’
the Cooperon, introduced by twisting the diagrams (the quantity represe te‘X, T}]l
cohe'rent backscattering process which drives the localization transi%c)’ ¥ m§ he
cruaal' role of time reversal symmetry that relates the two.2° ton, and the
" ;Wll"llting thfa equation in terms of the inverse diffusivity K'(w), eq.(8. 159), we find
th: fzr;solutlon of the self-consistent equation has at small frequencies, w’<< waT,

K _ WET
K (w) 1+ " (9.71)
where wy is determined by
- hk}Z:‘—d /l/ld Qd—l
= Tm b Py (9.72)

In two dimensions, for exampl
ple, we find from eq.(9.72) for t
where localization becomes of importance: 072 for the frequency scale

1 _rkpt

N (9.73)

The di'scussed solution, eq.(9.71), is infrared divergent, and corresponds to the
insulating phase, and the diffusivity vanishes as w — 0 according to

Wy =

D(w) = —iw—=. (9.74)

9.3.3 Localization Length

In order to get a quantitative criteri izati
rion for the localization length i
the spectral correlation function Bl e can consider

A(x,x',E,E 4+ hw) = <SmG¥(x,%, E + hw) SmGH(x',x, E)>

m2N(E)
h
= N5 <§¢A(x) DX (X)) 5 (%) 8(E + hw — ex) §(E — ) > (9.75)
where
N(E) = < ; ha(x) ¥3(x) 6(E — €)) > (9.76)

is the impurity-averaged density of states.

It has therefore not been ossible to extend the self-co siste: the f
) possi 1 i y e
» - self-con: istent theory to th case of b ok
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According to eq.(7.26) we have

x(q,w) = 7dE7dw’ fol B + ) = So(B) N %E) Al B, E+h) (977

w —w—10

—00 —00

where A(q, E, E + hw) is the Fourier transform of A(x,%, E, E + hw). Since the

Fourier transform is real,

h
A(an>E+hU)) = m%e (Q(Evcbw) - q)RR(an’w)) (978}

we have

Smyx(q,w) = ™ /dE N;_LE) (fo(E + hw) — fo(E)) A(q, E, E + hw) . (9.79)

Since

1 : /
< GR(x,x, E + hw) GAX,x,E)> = —‘72 ¢t §(E, q,w) (9.80)
q

we obtain by using the spectral representation of the propagators, eq.(2.154), that

© 00 N(E/) A(q, E,E+ hw)
_ el O
o(E,q,w) _/dE_/dw T B i0)E-F o= i0) (9:81)

We note that it follows from equation eq.(9.79) that at zero temperature

x
Alg, ep, e+ hw) = —37%";—). (9.82)

The term in the spectral correlation function, eq.(9.75), where X' = A gives a
delta function contribution, proportional to é(w). In the case of extended wave
functions the coefficient of the singular term vanishes in the thermodynamic limit,
whereas from the region of energies where the states are localized we have a singular
contribution.?! States which have equal energy, thus also have correlated wave
functions. For the Fourier transform of the spectral correlation function we have

A(q, B, E+w) = Ap(q) 5() + Ag(a,w) (9.83)
where )
An(x) = [ty e Asla) = s < X GO WO 8(E — ) >
(9.84)

21This is the localization criterion of Berezinskii and Gor’kov [48].
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and A% (q,w) is a regular function vanishin i
, gat w=0. W
and eq.(9.83) the small w behavior © obtain from eq.(8.81)

2rN(E)
@ ~Y —_—
(q,w — 0) ~ i Ag(q) . (9.85)
In the insulating phase
_ . D(w) _ .
= €0) = iy 20 = I e (950
Is a positive constant, and the self-consistent theory gives
2N, 1
OB, qu) = 2
(B,quw) = —— T o (9.87)
or
Ap(a) = —=
ek (9.88)

Accor@ing to eq.(9.84)‘ we therefore find that the wave functions in a random
potential are exponentially localized. In three dimensions, for example, we have
?
or?
and we identify { as the wave function localization length.

In two dimensions we obtain from e i
od q.(9.73) for the wave function localizati
length within the self-consistent theory o localization

wk rl

£ = Eer) = 1 (9.90)

Exercise 9.3 Show that the localization len ) )
. gth for a particl )
determined by the ezpression g particle with energy I i

2 1 2
E(B) = gqnggy [T <D AE- )G O > . (091

Solution

The result follows from the sum-rule
Jto Aa, B, E+ho) = 1 (9.92)

and the fact that in the small q-limit, q — 0, we have
Alg, E,E+hw) = (1-E(E)q*)dw) + q° AR(w). (9.93)
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Let us consider the localization length within the self-consistent theory in more

detail. Multiplying both sides of eq.(9.70) with D(w)/ Do yields

D) _ | b, @7
Do rkrl Jo —iw/D(w) + Q?

Il

d [ 1\ (e, e
el d ) 9.94
-2 () ( 2 b e -

Since the diffusivity vanishes in the insulating phase we get the equation to deter-
mine the localization length

dki* [ Q!
kel Jo —iw/D(w) + Q2

o) d-1

In dimensions 0 < d < 2 the integral converges for arbitrary { = §{(w = 0). In one
dimension we get the localization length

£ = 2611 (9.96)

i.e., the localization length is of the order of the mean free path, in fair agreement
with the exact result £ = 41 [39].
In two dimensions we get

exp hel kpl>1

£ = lep) = lexp{%(ﬂ'kpl—l)} = { (9.97)
kgl kpl < 1.

In the weak-disorder limit, kpl > 1, the localization is exponentially weak in
two dimensions, and experimentally weak-localization effects can easily be probed
in two-dimensional systems, the subject of chapter 11. We note the nonanalytic
dependence of the localization length on the disorder parameter 1/kFl.

The localization length calculated from the self-consistent theory agrees up to
a numerical factor with the lowest-order perturbative estimate of section 9.2. This
indicates that the higher-order terms in the scaling function, 1/g",n =2,3,.. are
small. In fact, Wegner has shown that the expansion starts out with a finite term
of order 1/g* [49].

9.3.4 Critical Exponents

In this section we will discuss the case where the spatial dimension is larger than
two, d > 2, and the system can exhibit a metal-insulator transition. In dimensions
larger than two, there always exists a solution of the self-consistent equation for
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which tJ};e d)i\ﬂusihv/ity at zero frequency is nonzero, D(O) # 0, provided the disorder

parameter A = h/mppl is smaller than a certain criti i i

e n critical disorder value A.. Using
idi = 2931 = 1

14 22 1+ xz}

the expression eq.(9.94) can be rewritten as

N

m (Lelya

o(w) =1 d 1( 1 )d‘1+ d(k——l)d_1 /ﬁlﬁ’)—dx 243
)

E = (g : T (9.98)

In the metallic phase, A < A, where ¢(w — 0) i
' . , o —+ 0o, the third t i
all dimensions d > 2. In the limit of small w we have e erm vanishes for

%‘3) _ p(%)d—l = COVA) (1_%), A< | (9.99)

Cc

where C(z) = Y2222 2", and the critical value of disorder is identified as

oo (d=2\ T
o= (=) d>2. (9.100)

The Flc conductivity vanishes at the critical disorder value A = \.. and the transi
tion i1s approached according to K )

d(0) o< Ao — A (9.101)
i.e., with a critical exponent s for the conductivity equal to 1
a(0) o< [A. = A , s=1, d>2. (9.102)

In the insulating regime, A > )., th ivi i
. ¢, the dc conductivity vanish
determines the localization length , Y venishes, and q.(9.95)

1= (%) o [1 —(d=2) (%) Z_d/f/fzx 1’”:;} . (9.103)

lFor dlmgnsions 2 < d.< 4, the integral in eq.(9.103) converges as the localization
ength dlverg.es, yielding a certain constant ¢(d) depending on the dimension d
We are ontly interested in the scaling behavior of the localization length as the
transition is approached, and there one has

— =1

d—12
d—1 md| 2
, c(d) = (2 in —
(d) [WZ——d sin 2} (9.104)

i.e., the critical exponent v for the localization length is 1/(d — 2)

£ o [A— A7V, v=—— 2<d<4. (9.105)
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For dimensions larger than four, d > 4, one finds

- (%)d_l [1 _ g_:_i (_5[) —2] (9.106)

and thereby the scaling behavior

£oc (A=), A> A (9.107)
i.e., the critical exponent for the localization length is
1
v = ¢ d>4. (9.108)

2 K
In dimensions 2 < d < 4 the critical exponents satisfy the scaling relation

s=v(d—2), 2<d< 4 (9.109)

which in three dimensions makes the two exponents identical, v = s.

The critical exponents were originally obtained by Wegner [36] employing the
renormalization group in a field theoretic treatment of the disorder problem. In-
stead of studying the localization problem using diagrammatic perturbation the-
ory, in this approach the impurity average is performed from the outset, and one
is led to the field theoretic description of transport properties. For the impurity
case one encounters the nonlinear o model [36] [44]. The renormalization group
technique can then be applied, thus making an interesting connection between
quantum transport theory and the theory of phase transitions. The self-consistent
theory of localization is the mean field approximation of the field theoretical model
[47], and we have found that the critical dimension is d = 2, and the upper critical

dimension is d = 4.

9.3.5 Scaling Behavior

n localization can be understood in terms of the
mirror backscattering the electronic wave function,
thereby leading to a spatial localization of the particle.?? To probe the spatial lo-
calization we investigate the length-dependent scaling behavior. In a finite system
there is a finite probability for a particle to reach the sample ends. As discussed
in section 9.2, this influence on the conductivity is represented by a lower cutoff
1/L on the Q-integration. The diffusivity at zero frequency for a sample of length

L, D(L) is thus given by

The phenomenon of Anderso
random potential acting as a

D(L) dkg® /1 Q!
=1- dQ =3 - 9.110
Do nkpl Jyn© 2+ Q (8110

calization, and the lo-

22[n two dimensions even the slightest amount of disorder leads to lo
e being in a

calization phenomenon is thus quite different from a localization due to the particl

bound state in a potential.
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In the insulating phase, where D(w = 0) = 0, we have from eq.(9.94)

dk?p_d Ef 2d-1

= kil b T T (9.111)
Subtracting eq.(9.111) from eq.(9.110) leads to
D(L) d ¢L, gt
2\0) e 2—d Z
Dy Trkpl(kpf) ) de 1+z2° (9:-112)

Let us Fompute the current density J flowing in a sample of finite length L
under the 1nﬁuenc§ of the applied electric field E in, say, the z-direction. The
(Cil.li;‘reI.lt density J is determined by requiring it to be equal and opposite to the

iffusion current under open-circuit conditions. The cu i
. rrent
e e e rent density at the end of

(9.113)

dx ol

Z}(}el)‘e 5n(g2[/1s th<; electronic density change induced by the electric potential
z) =€ — ). The density change due to th i is 1
) ety g e to the external electric field is in

L
dn(z) = /0 dz’ x(z — 2") U(z"). (9.114)

The density response function in eq.(9.114) is according to eq.(8.167) the Fourier

transform of
e

x(q,0) = g

2No (9.115)

and we obtain

+oo .
x(z) = /_ ) % e x(q,0) = 2N, [5(35)—21_68*'?—'} . (9.116)

For the current density we therefore have -

_ L ¢/L d-1
J(L) = 2 2—d il T
where
o = 2 54
d = 71‘(27r)d (9.118)

and Sy is the surface area of the unit sphere in d dimensions.
For the dimensionless conductance we then obtain

9(L/§) = ca(1 + L[€) e ¢ ha(L/€) (9.119)

where we have introduced

241
y2 + 2 :

haly) = [ da




376 CHAPTER 9. LOCALIZATION

. . 23
In one and two dimensions we have

hi(y) = % arctan% , ha(y) = %ln(l +1/y%) (9.121)
leading to
21+ %) e L€ arctan (/L d=1 o122
9(L) = L %)e_L/g In (1-1— %) d=2

(9.104) for A < Ac. In the insulating

. . . b .
where ¢ is the localization length given by eq e bly amall when

regime, the conductance g(L) decreases exponer;tially, T
i ization length .

the length of the sample is larger than the localiza . S ]

Theg self-consistent theory thus gives for the scaling function in the strong

disorder regime (in all dimensions)

B(g) = Ing, g< 1. (9.123)

This was precisely the input we used in our discussion of the scaling theory of

localization.

23Note that for d > 2, ha(y) = 25 — ¥2ha-2(y)-

Chapter 10

Interactions in Metals

In this chapter we shall consider the interactions between the constituents of say
a metal, i.e., electrons and ions. By adopting a mean field approach, the dynam-
ics of the electrons can be obtained by perturbation theory from the properties of
the noninteracting electrons, and the effective electron-electron interaction in good
conductors is considered.! We shall not be interested in properties due to devi-
ations from a spherical Fermi surface, and throughout we consider the isotropic
model of a metal. The dynamics of the ions can for our purposes be treated in the
harmonic approximation. In chapter 6 we introduced the formalism for describ-
ing a particle interacting linearly with oscillators without referring to the physical
nature of the oscillators. As stipulated, this is a generic case which has wide ap-
plications. Indeed in this chapter, we shall give an account of the electron-phonon
interaction, profiting from the results of chapter 6. In the case of phonons, the
oscillators represent collective degrees of freedom, and we shall show how such an
effective description comes about. We then calculate the collision rates due to
electron-phonon and electron-electron interaction.

10.1 Isotropic Model of a Metal

A solid, such as a metal, is an assembly of nuclei and electrons. From a first
principles point of view, the dynamics of such a system constitutes an unsolvable
many-body problem as the number of involved particles is astronomical (~ 10%).
We shall therefore be interested in an approximate description of the system, which
is justifiable for the particular type of phenomena which is of our interest.
Electron diffraction or X-ray experiments reveal the grainy character of a metal.
Charge is separated spatially into two pieces: the nuclei and the tightly bound
electrons (core electrons which are concentrated in spatially well-localized regions),
and the conduction electrons, which have their density spread throughout the solid.
We are interested in the low-frequency dynamics, and can assume that the core
electrons follow the motion of the nucleus adiabatically. The core electrons stay in

! We shall use the words metal and good conductor, as applies to a heavily doped semiconductor,
synonymously.



