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Chapter 3

Particle in a Random Potential

In this chapter we shall introduce the diagrammatic impurity-averaging technique,
which will be our basic tool for studying the physical properties of systems with
quenched disorder. After introducing the concept of a random potential, we first
study the average propagator order by order in perturbation theory, and finally
the average density matrix. In the course of this we shall show how to partially
sum perturbation expressions based on the topological structure of diagrams, and
encounter the important concepts of self-energy and skeleton diagrams.

A metallic conductor exhibits at low temperatures a temperature-independent
resistance, the value of which is called the residual resistance. The residual re-
sistance is due to the deviation of the sample from that of an ideal crystal. A
conductor always has imperfections: foreign atoms substituting for atoms of the
crystal, vacancies due to missing atoms, dislocations in the crystal, grain bound-
aries, etc. These defects will scatter an electron in the conductor between the
different current-carrying eigenstates of the ideal crystal Hamiltonian, and thus
cause current degradation. The effect on the electron motion of such imperfec-
tions we can model as giving rise to a potential deviating from that of the ideal
crystal. We shall call this potential the impurity potential, and view it as a result
of impurities. We shall in the following assume static impurities characterized by
an effective potential. This is in contrast to the case where a defect has several
energy states available, between which it can make transitions either by thermal
excitation or by quantum tunneling. We shall in chapter 11 discuss a case where
the dynamics of the defects is of importance, viz. electron-phonon interaction in
dirty metals.

3.1 Random Potential Model

Consider that in a given sample we have impurities located at some definite posi-
tions r;, 7 = 1,.., N'. The impurity potential felt by a particle is the sum of the
individual impurity potentials, and we assume for simplicity that the impurities
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are identical:

N

V() = 3 Viy(x = 1) = i Vi () pimp(x =) (31)
where
»
Pimp(X) = pimp(X; T1, -, TN7) = Z §(x—r) (3.2)

is the impurity density distribution, which has the Fourier transform

N/
Pimp(K) = pimp(K; 11, ., TN0) = /dx e~k Pimp(X) = Z ek (3-3)
=1

The Fourier transform of the potential is

v
V(@) = Vimy(a) 3 e (3.4

where we have introduced the Fourier transform of the potential of the individual
impurity

Vimp () = [dx €79 Vi (x) (3.5)

V' denoting the volume of the system.

In a large system, where the impurities are evenly distributed, one might ex-
pect that the properties of the system would be characterized solely in terms of the
macroscopic parameter, the mean impurity concentration n; = N’/V. This is in
accordance with the usual statistical description of macroscopic systems in equilib-
rium, where one assumes that the behavior of the system can be characterized as
an average over its ensemble of macroscopically identical subsystems. The sample
is said to be self-averaging. The precise conditions under which this macroscopic
ensemble point of view provides a sufficient description of the transport properties
of a sample is a question which has only been resolved recently. It has been realized
that average values are not exhaustive for characterizing a conductor at sufficiently
low temperatures. There are important quantum interference effects contributing
to transport properties which do not behave in the fashion of thermodynamic fluc-
tuations. For example, in two dimensions the quantum fluctuations in transport
properties at zero temperature are independent of the size of the system, and hence
do not vanish in the thermodynamic limit. In this case a transport property is not
completely characterized by its average value, we need to know higher moments of
the distribution as well. We shall discuss these so-called mesoscopic fluctuations in
detail in chapter 11, where we will obtain quantitative criteria for the applicability
of the macroscopic description.

In each subsystem of a disordered conductor, having N impurities and volume
V, we contemplate a mesh of M cells of volumes Ar);, assumed to be so fine that
the mean distance between the impurities, nyY? = (V/N)Y? is much larger than

4
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the cell size. The probability for having more than one impurity in each cell is
therefore insignificant (of order 1/V2).
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Figure 3.1 Individual impurity configurations of subsamples of a macroscopic
sample.

A particular impurity configuration of any subsample is thus equivalent to
specifying in which cells the impurities are located: one in Ar;,,.., one in Ar;,. In
the limit of small cells the probability, P(Ar;,, .., Ar;, ), for this configuration of
impurities is specified in terms of a probability density

P(Ar;,, .., Ar;,) = P(ry,, .., riy) Arg, - -Ar, (3.6)

where r;, is a point in cell k. Assuming that the positions of the impurities are
distributed independently, we have for the probability density for having the im-
purities located at points ry,..,rx

N
P(ry,..,rn) = P(r1)-- P(ry) = [[ P(ri) (3.7)

=1

where P(r;) is the probability density for having an impurity in the cell around
point r;.

In the random case where we assume equal probability for an impurity to be
located in any cell, we then have by normalization!

P(r)= = (3.8)

the random potential case.

1No confusion between the notation for the potential and the volume should arise.




132 CHAPTER 3. PARTICLE IN A RANDOM POTENTIAL

In the self-averaging case, the value of a physical quantity F' is represented by
the average value over the ensemble of macroscopically identical subsystems. The
average value is obtained by taking the average over systems where the location
of impurities differ, but they have identical mean impurity concentration. In any
given system of this ensemble, each with N impurities, the quantity F' will depend
on the actual positions of the impurities, ' = F(r1,rs,..ry), and for the impurity
average of ' we have

<F>

N
/ H dr; F(ry,ra,..,ry) P(ry,rs, .., rN)
i=1

N dl‘i
/H v F(ry,ra,..,TN) (3.9)
=1

where the last equality is valid for the random case.

3.2 Propagation in a Random Potential

The all important ingredient in the further analysis is the impurity-averaged prop-
agator. It is the basic building block we shall need when we discuss the motion
of a particle in a random potential. Using the results of the previous chapter we
study the impurity-averaged propagator order by order in perturbation theory.?
In a given sample or subsystem the propagator (here displayed in the momentum
representation )

GR(p7 t; plv t/) = GR<pa t; pla tl; ry, I, "rN) (310)

depends parametrically on the impurity positions.

The impurity-averaged propagator can be obtained by averaging each term in
the perturbative expansion of the propagator in terms of the impurity potential.
With each impurity potential we have in the momentum representation, according
t0 eq.(3.4), associated the factor V(p—p’) depending on the incoming and outgoing
momenta to the vertex (in accordance with eq.(2.132)).® Expressing the impurity
potential in terms of the individual impurity potentials

N .
V(p—p') = V(p,Pit1,2, . tn) = Vimp(p — P/) Y e #®PI™ (3.11)
=1
we have associated with each potential term the impurity phase factor

v

N
pimp(P — P'sT1,.,TN) = D eXp{ =(p =) ri} . (3.12)
=1

2We follow the original presentations of references [19] and [20].
3We shall, when convenient, instead of the wave vector representation use the momentum
representation of the previous chapter, V(k — k') — V(p — p’), p = kk. :
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Averaging the first-order term, eq.(2.121), we get in the momentum representa-

tion*

/ Wal / 1 N _i Nop:
<GP, P\ E)> = Gi(p, B) Vimp(p—P') GG (P} B) 77 < 37 FP7PIT > (3.13)
=1

and we have to impurity average the Fourier transform of the impurity density.
When p # p’, the oscillating exponents average to zero, and for p = p’ we get the
npumber of impurities; i.e.,

N .
<Y S = N, (3.14)
=1

because there are N terms in the sum giving identical contributions. The overall
factor in eq.(3.13) is therefore the average impurity density. As expected we have
recovered translation invariance for the first-order impurity-averaged propagator

< G{%(papla E) > = ny ‘/imp(p = O) [Gé%(p7 E)]2 5P;P' . (315)
The factor in front of the Kronecker function
GH(p, E) = niVimp(p = 0)[G{(p, E))® (3.16)

we can depict diagrammatically

X
Gl By = —2——L (3.17)
as we introduce
>:<
b oer = Vim(p — P) (3.18)

where the cross designates the impurity concentration, n;, and the dashed line the
Fourier transform of the impurity potential, Vim,(p — p’), where the argument is
the outgoing minus the incoming momentum.

The first-order term is proportional to Vim,(p = 0), the spatial average of the
impurity potential, whose value is arbitrary, and just acts as a constant, n; Vimp(p =
0), added to the Hamiltonian. This term therefore has no observable consequences,
and we can assume it to be zero, or redefine the reference for measuring energy.

4We shall for simplicity assume the free electron model for the conduction electrons. Formally,
however, all formulas are identical for Bloch electrons; we just have a suppressed band index.
Eventually, one must usually in order to obtain analytical results resort to a simple Fermi surface,
and neglect interband scattering.
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The latter case is a simple example of renormalizing the term away; i.e., we add the

constant —n; Vim,(0) to the Hamiltonian, and this term will generate the first-order
term

Q

R . R

pE pE

= Go(p, B)(—1 Vins (0)) G (p, E) (3.19)

canceling the previous term. The extra diagrams generated by the added term to
the Hamiltonian will exactly cancel all the dangling impurity-scattering diagrams
as

? X
P<iep = — peiep . (3.20)
For the second-order term, eq.(2.127),
R / _ R R R
Gy(p,p,E) = ~ . 7 (3.21)

we get, upon impurity averaging,
<G¥(p,PLE)> = G&(P,E)Y. Vimp(p — P") G (D", E) Vierp (" — P')

N . .
Gé%(p/’ E) __( Z e—%(p—p")'!‘i—%(p”—p')'rl> (322)

and we have to average the sum over the impurity positions. The terms in the sum
corresponding to scattering off different impurities, ¢ # 7, gives the factor

1

N
) " in! ’ N N —1
W < Z e‘ﬁ(p‘p )'r‘_i(p -p )'r] > = ——( ) 5}),])” 5pllypl (323)

2
Ewy 4

as there are N(N — 1) terms in the sum giving identical contributions. We shall
be interested in the thermodynamic limit where we lét V and N approach infinity
in such a way that the ratio is kept fixed, n; = N/V, and we get

1 N i N (o — )y
vz ( Ze_g(p_p Jro(etop )-r,> = nf Op,p Oprrpr = nzz Op,p Op,p’ (3.24)
i#)
and thereby the contribution from scattering off different impurities

< GF (PP, E) > = Gpp 0l Vimp(p = O)] [GE(p, B)J?

= GRp,E)# 6y p . (3.25)
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The prefactor in this term has the diagrammatic representation

X X
i#5 R : R : R
GzR(p’ E) ¢] = pE’ pE pE'
= [G§(p, E)* n} [Vimp(p = 0O)) (3.26)

with two dangling impurity lines. The term can be kept or renormalized away by
the above mentioned prescription.
The term corresponding to scattering off the same impurity : = j gives the

factor

N ;
(Y ea®PImy = N, (3.27)
=1

as there are N terms in the sum giving identical contributions, and we get the
contribution to the impurity-averaged propagator
1

<GE(p.P,B) > = nibpp[GI(p, B

S | Vimp(p — P") | G&(P", E)

P
= GER(p,E)= §pp . (3.28)

The prefactor in this term has the diagrammatic representation

G¥p, B~ = —2 &~ L (3.29)
where we have introduced the impurity correlator in the momentum representation
p1 << Py

X = i Opiapypitpy Vimp(P1 = P1) Vimp(P2 — P)

p'z > —> P2

= Ni Opy+ps,pi+p) [Vimp(P1 — PY)I? . (3.30)
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The Kronecker function reflects that translation invariance is recovered upon impu-
rity averaging, and expresses that the sum of the incoming momenta in the impu-
rity correlator equals the sum of the outgoing momenta. In the above second-order
case the momentum conservation is trivially expressed as 1 = dpp = dptprpip-
Summation (and an inverse volume factor) over the internal momentum variable
is implied as a Feynman rule.

To second order in the impurity potential the impurity-averaged propagator
has recovered translation invariance and we have in the continuum limit

G(p, ) = (630, E)F e [ Vins(p ~ 9)PGE(DLB) . (331)

For the third-order diagram

R , _ R R R R R
G (PP, E) = e—ee—ox—se (3.32)

we have the sum of position-dependent impurity phase factors

N . .
B T L L T (3.33)
1,5,k=1
which for triple scattering off the same impurity, 1 = j = k, gives the prefactor
Ndp,pr and thereby the diagram

|
5 2 Vim(P = P2)GE (P2, )

P1,P2

n: (G5 (p, E)]

Vimp (P2 — p1)G§(p1, E)Vimp(P1 — P) (3.34)

where the three-leg represents the three impurity potential factors, and the cross,
as before, the impurity concentration. Terms with three or more scatterings off
the same impurity, we shall refer to as multiple scattering.

The terms with double scattering off the same impurity, the i # j = k, i = j #
k terms, contains a dangling impurity line, as the average gives

N(N -1) N?
RZE Op,pz Opa,p! = vz Op,p2 Op,p/ (3.35)

where the last expression is an identity in the large volume limit. For example we
have the contribution
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R R /R R = n:Vimp(p = 0)[G(p, E)°

1 , ,
nigz 2 [Vimp(p = PG (P, B)  (3.36)
pl

which can be kept or renormalized to zero.
The fourth-order diagram

R R R R R (3.37)
PE " p:E’ pE° pET PE '

has the impurity phase factor
N .
< Z e‘%(P“Pa)'r"%(Pa—Pz)'Y]—%(Pz—Pl)'Pk-%(Dl-P')'Fz > . (338)
1,5,k,1=1

The term corresponding to quadruple scattering off the same impurity, 2+ = 5 =
k = [, contains the factor

N .
< Z e #(P=pa)Ti= 5 (Pa=p2) T (P2=P1) Tk 5 (P1—P) 11 o Ny p (3.39)
i=j=k=l

giving the multiple scattering term corresponding to the diagram

GE(p, B)=

“ dps dP2 dP1
. ‘/im —
”’/ (2nh)? / (2nh)? / Grrye Vme (P Po)
Vimp(P3 — P2)Vimp(P2 — P1) Vimp(P1 — P)

GE(ps, E)GE(p2, E)GE(p1, E)GH(p, E))* . (3.40)

We also get fourth-order terms corresponding to diagrams with dangling im-
purity lines. For example the N(N — 1)(N —2)(N — 3) terms where the scattering
is off different impurities ¢ # j # k # [,
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X X X X
R0 om L om L om | g
pE pE pE pE pE (341)

or terms with two dangling lines, for example the term where 1 # j = [ # k,

\
\
\
\

R R /R R\ R
SRS el (3.42)

’
’

/x\
X X
| !
1 1

All such dangling impurity line diagrams we can keep or renormalize to zero.

Interesting terms arise when we have double scattering off two different impu-
rities — for example, the case where we consider the term ¢ = j # k = { in the sum.
The impurity phase factor is then

. .
—#(P—p2)ri ,~ 5 (P2—P') Tk — —
<en e h > = dpp,Opop’ = Oppylpp

= 5P3+P2:P3+P 5p2+p1,p’+p1 : (3‘43)

Double scattering off two impurities can occur in three different ways, the con-
sidered one + = j # k = I, and the other two possibilities 1 = k # j = [ and
t =1 j =k, and the three contributions correspond to the diagrams

X
// \\\
// \\
X X SOX N
// \\ // \\ /, // \\ \\
R /RY R /R R R SR /R% R. R
PE psE pE pE PpE pE psE p,E pE pE

XX

’ ’

N
. Nz

R R B, R:_ R
PE  p;E p,E pE pE

(3.44)

The impurity correlators lead in each term to different momentum-conservation

constraints. :
Continuing impurity averaging the higher-order terms, the impurity-averaged

propagator is expressed as a perturbative expansion in the impurity concentration
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or the impurity potential, and the bare propagator, G¥, the propagator in the
absence of the impurity potential.

The approximation where multiple scatterings can be neglected we shall call
the Born approximation, and we establish the quantitative criterion for its validity
in section 3.5. As we discuss in section 3.7, the multiple scattering terms can
be taken into account without qualitative changes for the cases we shall have in
mind.’ In the Born approximation we therefore have an easy prescription for
obtaining all the diagrams for the n’th order impurity averaged propagator: Tie
all the impurity crosses pairwise together in all possible ways! We note, that in
the no-dangling Born approximation the perturbation series is an expansion in the
parameter n;|Vimy|*.

To each order in perturbation theory we have translation invariance of the
impurity-averaged propagator, and we have analytically for the impurity-averaged
propagator

< GR(p,p,E)> = GR(p,E)bpp: . (3.45)

The translation invariance of the impurity-averaged propagator is obvious from a
physical point of view because the averaging procedure distinguishes no point. We
have verified this property to each order in perturbation theory, as the momentum
conservation at the impurity correlator, eq.(3.30), assures that the total momentum
flow through a diagram is conserved.®

The diagrams of third order in the impurity concentration are in the Born
approximation (leaving out all dangling impurity line diagrams) the following

5When the potential can give rise to resonances, multiple scattering can give rise to effects
not included in the Born approximation.

8Such an identification of a property valid in each order of perturbation theory can forcibly
be turned around to allow statements valid beyond perturbation theory.



140 CHAPTER 3. PARTICLE IN A RANDOM POTENTIAL
/X\
/x\ X \
XX x
+ L + \
X IX‘ X
+
/x\ /X\ /x\‘
+ Y P . + o (3.46)

Exercise 3.1 Draw the rest of the 15 third-order diagrams.

3.3 The Self-energy

We have previously derived diagrammatic formulas from formal expressions. Now
we shall argue directly in the diagrammatic language in order to generate new
diagrammatic expressions from previous ones, and thereby diagrammatically derive
new equations.

In order to get a grasp of the totality of diagrams for the impurity-averaged
propagator we shall use their topology for classification. We introduce the one-
particle irreducible (1PI) propagator, corresponding to all the diagrams which can
not be cut in two by cutting an internal particle line. In the example

1PI 1PR
X\ /x\ /X\ /X\
L AN A D (3.47)

the first diagram is one-particle irreducible,, 1PI, whereas the second is one-particle
reducible, 1PR.
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Amputating the external legs of the one-particle irreducible diagrams for the
impurity-averaged propagator, we get an object we call the self-energy:

>R(E,p) = »E @ PE

X
! // \\
| X X
p ! p + - ~ + .7 PN N
- i< AP PIEPIAOMNIS N
x\
.
// \\
, AN X X
e \\\ e S AN
+ // /X\ /X\ \\ —I— // // \\ \\
X
// \\
// /X\ \\
LA AL AP N D T (3.48)

consisting, by construction, of all amputated diagrams which can not be cut in two
by cutting one bare propagator line.

We can now go on and uniquely classify all diagrams of the impurity-averaged
propagator according to whether they can be cut in two by cutting an internal
particle line at only one place, or at two, three, etc. places. By construction we
uniquely exhaust all the possible diagrams for the propagator

R —

—R+§@§+
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+ . . (3.49)

By iteration, this equation is seen to be equivalent to the equation”

R _ R R R
pE ~  pE + pE @ PE (3:50)

In terms of the self-energy we therefore have for the impurity-averaged propagator
the equation

G™(p, E) = G3(p, B) + Gg(p, B) 2" (E,p) G"(p, E) (3.51)
which we can solve to get

1 1
P B) = o B - S B ~ F-e-oiEp

The self-energy determines the analytic structure of the propagator, the location of
the poles of the analytically continued propagator, and thereby the lifetime of (in
the present case) momentum states. The effect of the random potential is clearly
to give momentum states a finite lifetime (see also exercise 3.3 on page 147).

Fourier transforming eq.(3.52) we get in our isotropic model (in three spatial
dimensions for the prefactor to be correct)

_ £lx—x'|\/2m(E-ZR(E,pgD))
R _ R m ek
GE(X — x’) = < GE(X, x’) > = Py IX — X’l (353)
where pg is the solution of the equation
pe = \/2m(E — SR(E, pgp)) . (3.54)

3.4 Skeleton Diagrams

So far we only have a perturbative description of the self-energy; i.e., we have a
representation of the self-energy as a functional of the free propagator X, g[GE]. In
a realistic description of a physical system, we always need to invoke the specifics
of the problem in order to implement a controlled approximation. To this end

“In the last term we can interchange the free and full propagator, because iterating from the
left generates the same series as iterating from the right.
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we must study the actual correlations in the system, and it is necessary to have
the self-energy expressed in terms of the impurity-averaged propagator. Coher-
ent quantum processes correspond to an infinite repetition of bare processes, and
the diagrammatic approach is precisely useful for capturing this feature, as irre-
ducible summations are easily described diagrammatically. In order to achieve a
description of the self-energy in terms of the full propagator, let us consider the
perturbative expansion of the self-energy.

For any given self-energy diagram in the perturbative expansion, we also en-

' counter self-energy diagrams with all possible self-energy decorations on internal

lines
/x\
A XX
. X, XN %
L o L 4 et +
X
= Ly
_+
+ +
/x\
= pE @<—e—erE. (3.55)

We can uniquely classify all the self-energy diagrams in the perturbative expansion
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according to whether the internal particle line can be cut into two, three, or more
pieces by cutting particle lines. We can therefore partially sum the self-energy
diagrams according to the unique prescription: for a given self-energy diagram,
remove all internal self-energy insertions, and substitute for the remaining bare
particle propagator lines the full impurity-averaged propagator lines.® Through
this partial summation of the original perturbative expansion of the self-energy
only so-called skeleton diagrams containing the full propagator will then appear.
By construction, only skeleton diagrams which can not be cut in two by cutting only
two full propagator lines appear, and we have the partially summed diagrammatic
expansion for the self-energy®

ER(E’p) = P 4@ P + pE Q;‘_:;‘})E

X X X
+ PE 4—e—= +——e—@rF
X X
/// \\/\//X\\\
+ PE @< —e—e—eerl + .. . (3.56)

What has been achieved by the partial summation, where each diagram corre-
sponds to an infinite sum of terms in perturbation theory, is that the self-energy
is expressed as a functional of the exact impurity-averaged propagator

SR(p, E) = =F4[GR) . (3.57)

We can continue this topological classification, and introduce the higher order
vertex functions; however, we defer this until chapter 8.

Exercise 3.2 Draw the rest of the 4 skeleton self-energy diagrams with three im-
purity correlators.

8Synonymous names for the full Green’s function or propagator are renormalized or dressed
propagator.

9Since propagator and impurity lines appear topologically on the same footing, we can restate:
in the skeleton self-energy expansion only two-line irreducible diagrams occur.
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3.5 Impurity-Averaged Propagator

In the next section we show that, for sufficiently high energies and momenta, we
can for the self-energy neglect skeleton diagrams where impurity lines cross. We
are thereby left with a single self-energy diagram?!®

SNoa(B,p) = pF e * —~pE (3.58)

in the Born approximation.!! Analytically we have for the self-energy in the Born
approximation
R dp’ N2 AR( !

Sfoap, B) = ni [ ss Vims(p = 9 G*(6', ) (3.59)
which is an implicit expression since the propagator is in turn specified in terms
of the self-energy.

In order to orient ourselves as to the effect of impurity scattering, we insert the
free propagator into eq.(3.59) and obtain

SEp,E) = <L o= - 57 (D) +  RexXf(p,E) (3.60)
where we have introduced the momentum relaxation time (in the Born approxi-
mation)

I
7(E,p)
where pg = V2mE, and the real part of the self-energy is the principal value
integral

dp’ .
27T7‘L1N0(E) /ﬁ Ivzmp(p - pEp/)|2 (361)

- o 1 ap’
%eZ?(p,E) = TL{P/O dey N(cp,)E___ T|

— €p!

Vimp(P — /2mey P)I* (3.62)

where the P signifies that the principal value of the integral is to be taken. In this
first iteration we thus have for the impurity-averaged propagator
1

“R E _ _
Gg( 7p) E— € — %ezg‘(p,E) + Zh/2T(E7 P)

(3.63)

In the following we shall only be interested in the region of large energies F ~
E, > h/7 and large momenta p ~ p, = +/2mE, > h/l, where 7 = 7(E,,p,),

10Here the index NCA simply stands for noncrossing approximation, but as mentioned, we
establish its validity in the next section.
171 section 3.6 we show that inclusion of multiple scattering is handled with equal care.
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and we have introduced the impurity mean free path [ = v, 7, and the velocity
v, = p,/m."> We shall further assume that the impurity potential has a range, a,
much shorter than the mean free path, a < [, say!'®

1
Vimp(r) o ;e-'"/“ (3.64)
or for the Fourier transform
4
Vimp(k) = (3.65)

In the region of energies |E — E,| < E,, and momenta |p — p,| < p,., the other
relevant quantities for the calculation of the self-energy, density of states and im-
purity potential, are essentially constant, since they vary only on the large scales
E, and p,, say a >~ fi/p,. In the region of interest, the real part of the self-energy
is thus essentially constant, only giving rise to an irrelevant shift in the reference
for measuring the energy.!* The first iterated propagator expression, eq.(3.63), is
therefore as a function of momentum sharply peaked at the value p, with the small
width A /l. The result for the imaginary part of the self-energy, eq.(3.61), is there-
fore unchanged, to order A/E, 7, by the substitution of the improved propagator,
GE, instead of the free propagator. We therefore have, to order i/ EpT, for the
self-energy in the Born approximation, |E — E,.| < E,, |p — p,| < p,,

o™, p) PE @ qupF

where

= ——. (3.66)
h dp’

T = (B [ Vi (VomBr G- 00)[ . 67)

For the impurity-averaged propagator we therefore obtain, |E — E,| < E,,
lp = prl < ps,

< GR(E,p,p') > = GR(E,p)cYp,pz (3.68)
where
1
GME,p)= —
(E,p) ey (3.69)

!>The present single-particle problem has of course no built-in energy scale. However, when
we eventually shall discuss the transport properties of degenerate fermions, such as electrons in
a metal, say, a large energy scale will be provided, viz. the Fermi energy.

3We show in section that this is indeed the relevant case.

For a d-correlated impurity potential < V(x)V(x')> = u?§(x —x') (see also eq.(3.100)), the
real part of the self-energy ReXF(E,p), though divergent, can be absorbed into an irrelevant
renormalization of the energy.
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We note that this form of the propagator can be used for all values of E and p
without violating the sum rules eq.(2.157) and eq.(2.158).

In the region of interest, £ ~ E_, we have according to eq.(3.53) that the
impurity-averaged propagator decays exponentially as a function of its spatial vari-
able with the scale of the mean free path, and is in three spatial dimensions given
by the expression

m exp{|x - X/]( (i’) ikE - 1/215)}

px-x) = <GV X)> = - = x
= GR@) (/) Xl (3.70)

where kg = vV2mE /h is the electronic wave vector, and lg = hkgTg/m the im-
purity mean free path. The imaginary part of the self-energy leads to exponential
damping of the propagator as a function of spatial separation. In the present case
the damping of the propagator is due to the directional scattering of a plane wave
(the spatial representation of the momentum eigenstate) due to the impurities,
(say by passing a slab of material with impurities the amplitude of a plane wave
is damped).

According to eq.(3.70) and eq.(2.157) the density of states is unchanged by the
presence of weak disorder!®:

N(Ep) = No(Ep)(1 + O (h/Ep7)) . (3.71)

Exercise 3.3 Show that for p ~ pr we have (to order i/ EpT)

dE i 1
R _iEt R —t/2r
_ - = i .
G*(p,t) _/27r ek . wlgp) Gy(p,t)e (3.72)

i.e., T is the momentum relazation time.

3.6 Diagram Estimation

In the skeleton expansion all internal propagators are the exact impurity-averaged
propagator instead of the bare propagator as in the naive perturbation expansion
in the potential. This is advantageous since it is the full propagator that reflects
the physical properties of the system. The properties of the full propagator are
determined by its analytic structure, its poles. When we wish to estimate the order
of magnitude of the contribution of various diagrams, the quantity of interest to

15The specific heat of a degenerate Fermi gas is proportional to the density of states at the
Fermi surface. The presence of weak disorder does therefore not change this result, which is not
surprising in view of the scattering being elastic.
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estimate is therefore the self-energy. This is the quantity determining the pole in
the propagator, the singular point where a small change in variables makes a huge
difference.

We shall only be interested in estimating the various contributions to the prop-
agator for large energies and momenta, p ~ p, > h/l , E ~ E, > h/7. For
E ~ E,, the impurity-averaged propagator, eq.(3.69), is therefore only large near
the momentum value p, where we have for the order of magnitude of the propa-
gator G ~ 7/h, as we have in the Born approximation for the order of magnitude
of the self-energy ¥ ~ #i/7, a small value compared to E,. For conduction elec-
trons in a metal the large momentum value p, is the Fermi momentum, and we
shall in the following refer to the surface in the space of momentum values at the
large momentum value p, as the Fermi surface. The large contribution to a dia-
gram therefore comes from the internal momentum integration regions where the
momenta of the propagators are all on the Fermi surface.

Let us start the diagram estimation by establishing the criterion for the validity
of neglecting multiple scattering. Consider for example the fourth-order (in the
impurity potential) diagram for the skeleton self-energy

Pie K AN dp3 de / dpl
E < —g= PE = % . m, -
e e = (27rh)3/ @ty | ey e PP

‘/imp(pZB - p2)‘/imp(p2 - pl)V;mp(pl - p)

G%(ps, E)G"(p2, E)G®(p1, E) (3.73)

The impurity concentration appears to first order, giving for one of the integrations
a self-energy type contribution, and since the Fourier transform of the impurity
potential is assumed slowly varying we have the estimate

///,//// ‘\\\\\\ dp/ " , 2
it ¢ ¢ ~ ¢ ~ 4 —
pE P:E  pE  pE pE |:V;mp(p 0)/ (27l'h)3 G (p ’ E)

n/ (;rphl)s [Vimp(P1 = P)I* G (p1, E) . (3.74)

For the momentum integral of the impurity-averaged propagator we have

oo 6o, B) ~ o) ~ T (3.75)

and we obtain the estimate

PAARANN
PSR YN

- R - _ 2
bE - / N ~. DE ‘/zmp(p = 0)pF
D T E——— T ] —_—
Psll pE pi B
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In the case where the range of the impurity potential is specified in terms of p,,
a ~ h/p,, the Born criterion is (see for example reference [13])

Py Vimp(p = 0) < h° Ep . (3.77)

We therefore have that the multiple scattering term is small relative to the Born
term when the Born criterion is satisfied

F eitm——t——trige pF
P Pzl pE piE P 2\ 2 2
- Vimp(P = )PF E, 1 1
X e <\ ) 2"
AN Up Vp /) Pg

(3.78)

To show that the crossed self-energy diagrams can be neglected when calcu-
lating the propagator, we note that the intermediate momentum integrations in a
self-energy diagram with crossed impurity lines (E ~ E,,p ~ p,)

SN dps [ dp
Pl @oe—ca——e—pl = nf/W/@h—)g [Vimp (P = P3)[*|Vimp (P1 — P)?
G*(ps, E)GF(p1 + ps — p, E)GR(p1, E)  (3.79)

for the region of large contribution, are not free. In order for all the momenta
of the propagators to be in the thin shell of extension A/l around the sphere in
momentum space with radius p,, where the large contribution arises, one of the
angular integrations is restricted to a cone of angle i/p,l. The crossed diagrams
will therefore be relatively smaller by the same factor compared to the diagram
where impurity lines do not cross and no angular restriction occurs!®

16The argumen{ being based on an angular integration restriction is thus not valid for the case
of one spatial dimension.
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/x\ x
PE e V\_ ~pF
Ps  P1+tPs—P D1 N i . (3.80)
X prl
PE < a S -~ &= pE
p'E

Using the diagrammatic technique we have thus achieved the goal of identifying a
parameter on which we can base a perturbation theory. A nontrivial perturbation
expansion as the expansion parameter 1/ppl is not a parameter in the Hamiltonian.

3.7 Multiple Scattering

If we relax the Born restriction, eq.(3.77), we would to order h/ppl < 1 have for
the impurity-averaged propagator

RON
R R 8 B
N . X
—e — <o - + ——
p E p p E p pE p"E Pp'E
/I‘\
P AR NN
7 ! N N
7’ ! \ N
7’ ! \ N
4 1 \
7 / \ N
- L +
,'l R
R R _-R R
=7 » T ~— . (3.81)
P pE P'E P'E

The result beyond the Born approximation is simply obtained by summing all
the multiple scatterings, and we will everywhere instead of the Born amplitude
Vimp(P — P') encounter the t-matrix for scattering off a single impurity, where the
t-matrix satisfies the equation

L

tﬁp’(E) = nivimp(P - Pl) + %

3 Vimo(p — ") GR(p", E) tR.(E)  (3.82)
pII
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corresponding to the diagrams for the t-matrix

j X P
t -
1 e
' e

p p’ P<4¢'<€4p |+ pe= p’

I

E p"E E
X
: I/x\\ //):<\
: ’ \ |
’ \ 4 !
= pe'<epP |+ pPe—e—er | pPe—e——e—er
P E p.E pE
X
AN
// / \ AN
s ’/ \\ S
+ pe~—e—i—e——e—epr |+ .. . (3.83)

psE pE pE

The above t-matrix equation differs from the one for scattering off a single impurity
in free space in that the impurity-averaged propagator appears instead of the free
propagator, reflecting the presence of the other impurities.

Except for the obvious connection to the previous notation there is no logic to
tying the potential lines together since we are concerned with multiple scattering
off a single impurity, so we could equally well use the depiction

PAP': P <P + p‘—po—u-p’ + P @—e——e—qr’
1

E b2 | 1

1
= Vimp(P - p') + v Z Vz‘mp(P - p1) GR(Ph E) Vimp(P1 — p/)
P1

1
+ 77 2 Vime(P—P2) G (p2,E) Vimp(P2—P1)

P1,P2

G P1,E) Vimp(P1—P') + . (3.84)

and extract the factor of n; from the previous definition of the t-matrix. For the
self-energy we then have in the noncrossing approximation
g

5, B) = 3 Vim(p — ) G0, E) tiy (E)

p’
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= PB4k pE (3.85)
p'E E
and for the imaginary part
R R
SmYI(p,E) = n; Smity,(E). (3.86)

Similarly we encounter when we consider the advanced propagator
top (E) = 1 Vimp(p — ') + < Z topr(E) GA(P", E) Vimp(p" = P')  (3.87)

corresponding to the same set of diagrams, but with the impurity-averaged ad-
vanced propagator appearing instead of the retarded

X -
pAPI = pe'er + b T L ap’ . (3.88)

E p"E
We note the hermitian property
top (B) = [ty (E)]" (3.89)
and as always
4(p, E) = [Z7(p, E)]" - (3.90)

Combining the two t-matrix equations we get (extracting the factor n; from the
definition of the ¢-matrix)

tRA(E) = Vimp(p Z tau(E)GR(p", E) th/(E)
v E tho (B) GA(p1, E) Vimp(p1 — p2) GR(pa, E) 15 /(E)  (3.91)
and similarly
th (E) = Vimplp — Z t5u(E)GA(p", E) thy (E)
% pr: top, (E) GA(P1, E) Vimp (P1 — P2) GF (P2, E) th oo (E) . (3.92)

Subtracting the diagonal terms we get

Int(B) = —5(E) — th(B)] = 33 W (B SmG (o, ) (399
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and thereby for the imaginary part of the self-energy

\smER (p, E Z |t mGR(p',E) . (3.94)

Assuming that the t-matrix is a slowly varying function of momentum on the
scale /! (i.e., no resonances), we get to lowest order in % /pl

h

SImEF(p,E) = —————
SR E) = e )

(3.95)

where (p' = V2mE)

I
(p, E)
The only change from the Born approximation, eq.(3.61), being that the exact

differential cross section for scattering off an impurity appears instead of the Born
expression

= 2mn; No(E) dp (B2 . (3.96)

P 4——@ D}

l
\
|
1

x = ;i [Vimp(p1 — P})I? Op1+p2,p}+p}
|
1

o
=
1

- | = M |t§1—p’1(E)|2 Opy1+pa,p)+p - (3.97)

Py P2

Going beyond the Born approximation thus adds nothing qualitatively new if there
are no resonances. Furthermore, the topological structure of the diagrams of the
disorder problem is also unchanged by including multiple scattering off the same
impurity, as the t-matrix correlator simply appears instead of the Gaussian impu-
rity correlator.

3.8 Gaussian Approximation

According to the analysis of impurity averaging the propagator in momentum
space, we realize that if we can neglect multiple scattering, and are considering
the thermodynamic limit, (N —1)/V ~ N/V, the impurity average corresponds to
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tying potential vertices pairwise together, through the impurity correlator, in all
possible ways. In this approximation the impurity average is a Gausslan average
in the random variable, the potential. Fourier-transforming, we find that in the
position representation the Gaussian average is done according to the specification
(for an even number of potential terms)

< V(Xl)V(Xg) .. V(XzN_l)V(XQN) >

= Z < V(Xp(l))V(Xp(g)) > L. < V(Xp(zN_l))V(Xp(gN)) > (3.98)
P

where we sum over all permutations P. We have assumed that the mean value
of the potential is zero, < V(x) > = 0, so that only fully contracted terms are
nonvanishing (diagrams with dangling impurity lines vanish). For an odd number
of potential vertices, we always encounter a dangling impurity line, and the con-
tribution is proportional to the mean value of the potential, which we have chosen
to be zero.

When impurity averaging a diagram in the position representation, we therefore
get the sum of diagrams with all possible pairings of potential vertices by the
impurity correlator in real space

o= L ovEVE) > (3.99)

which is specified by

1 i(pextn’-x! N i(pritp'r
<VEE)VE)> = ‘—/-2-2, e PXHPX) o (0) Vi (') ( Y e (PTetPIra) )

3,7=1
= i T ORI + o ina(p = O
= A ()
= / At Vi (% — 1) Vi (X' — 1) . (3.100)

where we in the third equality have used that our reference for measuring energies
is such that the spatial average of the potential vanishes. Inversely we have

<V(p1—p)V(p2—p3) > = /dx /dx' e~ Rx (PP =X (P2=P2) </ (x)V/(x') >

N |V;m:n(p1 - pll)l2 5p1+P2:P’1+p’2 (3'101)
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the impurity correlator in the momentum representation.
A d-correlated impurity potential

<VE)V(E)> = u?§x—x) (3.102)

corresponds, according to eq.(3.100), to the limit of dense point scatterers.
The self-energy in the Born approximation is in the position representation
specified in terms of the impurity correlator

Ix\
SRx,xE) = SRx—-x}E) = x'/—%——\ax’
= <Vx)V(E)>GRx,xE). (3.103)

In the momentum representation we encountered products of propagators and
self-energies. Upon Fourier-transforming, these turn into convolutions in the posi-
tion variable.

3.9 Motion in a Random Potential

We now have all the ingredients enabling us to perform perturbative calculations
for the motion of a particle in a random potential. We introduce the impurity-
averaged density matrix in the position representation

f(x,x,t) = <p(x,x,t)> = <<x|p(t)|x'>> . (3.104)

_ A diagonal element has the interpretation: Start a particle off at the same point in

each impurity sample; then f(x,Xx,t) gives the probability that we by an arbitrary
pick of sample will find a particle at position x at time ¢.

In the following we shall obtain a perturbative description of the time evolution
of the impurity-averaged density matrix in terms of an integral equation. Let us
assume that at time t' the particle is described by the statistical operator ().
The impurity-averaged density matrix at time ¢

Xt = fiR i < T, %, 4% %, ) > 0 (% %) (3.105)
is then expressed in terms of the density matrix at time ¢’
PE %) = pxx,t) = <x|p(t)x > (3.106)
and the impurity-averaged density-matrix propagator equals

<J(x,x,6%,%,t) > = <GE(x, 4% ¢)GAX, t;x,t) >
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(o]

= Z(%)n i(%)m /nf:I1 dz /oo ﬁ dtn//ﬁldim/ /_o; mflldfm,

n=0 m=0 X pr=1 m'=

GR(x,t; %X, 1) GE (X by X1, tnn ) GR (X1, 115 %, )
Gé(ila tIE X, 7:{171)C7Y0A()~(77‘ba t~m§ im-—him—l)“G(/){(ilv 7?1; Xla t)

< V(&) V (Xme1). VE)V (%) V (o) V(%1) >

where we have assumed ¢ > #.17 A virtue of the diagrammatic approach is that
we shall not have to deal with unwieldy perturbative expressions as the above!
Before the impurity average has been performed, the perturbative expansion
of the density matrix corresponds to the sum of diagrams with any number of
potential vertices on the upper and lower lines as depicted in eq.(2.246). In the
approximation where we neglect multiple scattering we get the impurity-averaged
density matrix by tying all the potential vertices pairwise together, the Gaussian
average, and obtain for the impurity-averaged density matrix the diagrammatic

expansion
/X\
R R -R __
X o Xe—<—eoX X O <<L—<—><9% *r——<——@
1 1 | 1
— !
tor o=t R e+ .
x' @ x'o—> o %' Y PN—
A \\ /r
X
X
// \\
¢—<—T <9 O<T<T <@ O <—~4<T <> <9
1 1 1 i 1 I i
1 1 i
+ X Lt XX 0 o+ X |
1 1 1 1 | 1 |
*r—>—>—9 *->—>—>0 *r—>—>—0
& —<—F—<—9 @O <~—<—F<9
| | N7 '
+ X 4+ X0+
! | s N |
O>—<>—>—>0 *r>—> >0
¢

In the diagrammatic language the perturbative structure of the impurity-averaged
density matrix is thus easy to grasp. We recall that on the upper line only retarded

propagators appear, and on the lower line only advanced propagators.

We have drawn impurity correlators connecting upper and lower particle lines
vertically, although their space-time points are different, as the presence of the

17For ¢ < ¢’ the retarded and advanced labels are interchanged, and we are concerned with
retrodicting the state of the particle at previous times consistent with our knowledge of the

present.

later.

R
X Qg X

matrix in chapter 8.

for the impurity correlator

<VE)VE)> =

.;
o----o
Il
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+
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retarded and advanced propagators makes the distinct topology of a diagram cor-
respond to a unique virtual physical process. The fifth and eight diagram on the
right-hand side of eq.(3.108) thus represents two physically different processes. The
first contributes to the classical probability, while the other, as we shall see, repre-
sents a quantum interference process with which we shall be particularly concerned

Every particle line can be dressed by self-energy insertions so that the exact
impurity-averaged propagator appears everywhere, and we get the skeleton dia-
grammatic expansion for the impurity-averaged density matrix

X 0o+ xx

1 1 | 1 1

x W - (31
TS & SR el

We shall return to study this integral equation for the impurity-averaged density

In order to include multiple scattering, we only need to substitute the t-matrix

=t (X1, X)) th (X2, Xp)

(3.110)

here specified in terms of the Fourier transform with respect to time, and the
t-matrix is carrying either an R or an A label depending on the attachment.




