86 CHAPTER 1. QUANTUM MECHANICS

have true probabilities for the possible series of events, histories, emerging from
the quantum description. In order to reconcile the probabilistic predictions of
quantum mechanics with almost certainty to the deterministic predictions of clas-
sical mechanics, it is convenient to use a relaxed quantum logic.®” In this way the
certainty of implication becomes a quantitative question of probability: proposi-
tion « implies proposition 8 with a probability at most in error with the magnitude
¢ if p(8; @) > 1 — e. Having implication or to certainty limiting implication in our
possession, we can reason about the probable course of events exhibited by an iso-
lated system akin to how an experimenter goes about discussing an experiment or
designing its equipment.®® Sound reasoning about a quantum system has become
a quantitative matter, a matter of calculation. The smaller the value of €, the
better will the reasoning and conclusions be in concordance with reality.

87For details on recovering classical physics we refer to the references [16] and [18].

88Extending the above analysis, we can conclude that particles keep on circulating in a storage
ring in accordance with the classical equations of motion, because the probability for not doing
so is by proper design insignificant.

Chapter 2

Diagrammatic Perturbation
Theory

This chapter is concerned with propagators. After introducing the retarded and
advanced propagator we study their perturbation theoretic structure in a potential
in terms of diagrams. The scattering cross section is introduced, and the implica-
tions for the propagators of the discrete symmetries of space inversion and time
reversal are established. The analytical properties of the propagators are discussed,
and the spectral function introduced.

At present, the only general method available for gaining knowledge from the
fundamental principles about the dynamics of a system is the perturbative study.
This consists in dividing the Hamiltonian into one part representing a simpler
well-understood problem and a nontrivial part, the effect of which is studied order
by order. The expressions resulting from perturbation theory quickly become un-
wieldy. A convenient method of representing perturbative expressions by diagrams
was invented by Feynman. Besides the appealing aspect of representing perturba-
tive expressions by drawings, the diagrammatic method can also be used directly
for reasoning and problem solving. The easily recognizable topology of diagrams
makes the diagrammatic method a powerful tool for constructing approximation
schemes as well as exact equations that may hold true beyond perturbation the-
ory. Furthermore, by elevating the diagrams to be a representation of possible
alternative physical processes, the diagrammatic representation becomes a sugges-
tive tool providing physical intuition into quantum dynamics. We now embark on
the construction of the diagrammatic representation starting from the canonical
formalism presented in the first chapter.

2.1 Green’s Functions and Propagators

The Schrédinger equation describing the dynamics of a single particle in the posi-
tion representation is
OP(x,t)

h—2;

= Hy(x, 1) . (2.1)
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In order to describe a physical problem we need to specify particulars, typically
in the form of an initial condition. Such general initial condition problems can
be solved through the introduction of the Green’s function. The Green’s function
G(x,t;x', ') represents the solution to the Schrédinger equation for the particular
initial condition where the particle is definitely at position x" at time ¢’

tli\r%d)(x,t) = §(x—x) = <x, X t'> . (2.2)

The solution of the Schrédinger equation corresponding to this initial conditjon
therefore depends parametrically on x’ and #/, and is by definition the conditignal
probability density amplitude for the dynamics in question’

hew(x,1) = K(x,t;x,t) = G(x,t;x,1) (2.3)

connecting the two incompatible complete descriptions defined by the operators
:iH(t) and .%H(t/).

The Green’s function, being the kernel of the Schrodinger equation on integral
form, eq.(1.5), specifies the dynamics of the system. We shall therefore refer to
the Green’s function as the propagator.? The propagator, being a transformation
function, is the trace of the transition operator P(x,t;x/,t')*

G(x,t;x,t) = Tr(P(x,t;x,t") = Tr(x,t'><x,t]) = <x,tx,t'> . (2.4)

Since the Green’s function is defined to be a solution of the Schrédinger equa-
tion, we have (as also verified by differentiating eq.(2.4))

{ihgt— - H}G(x,t;x',t')=0. (2.5)

We note that the partition function and the trace of the evolution operator are
related by analytical continuation:

Z = Tre‘H/kT:/dx <x|e” x> = TrU(—ih/kT,0)
= /dx G(x, —ih/kT; x,0) (2.6)

showing that the partition function is obtained from the propagator at the imagi-
nary time 7 = —ihi/kT.

In the continuum limit the Green’s function is not a normalizable solution of the Schrodinger
equation as is clear from eq.(2.2).

In appendix A the path integral expression for the propagator is derived starting from the
transformation function. '

3The absolute square of the propagator, the conditional probability density P(x,t;x’,t'), can
also be viewed as the probability density for a history since P(x,t;x',t') = |G(x,t;x/,#")|? =
Tr(P(x,t)P(x,t')) is the probability for the history where the particle is at position x at time
t given it was at position x’ at time ¢'.
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Exercise 2.1 Derive for a particle in a potential the path integral expression for
the imaginary-time propagator (consider the one-dimensional case for simplicity)

z(h/kT)==
Gz, o' h/kT) = Gz, —ih/kT;2',0) = <z|e /T |a'> = /D:c, e~ Selerl/n
z(0)=z'
(2.7)
where the Fuclidean action
B/kT
Selz,] = Odr Le(zr,2r) (2.8)
is specified in terms of the Euclidean Lagrange function
1
Le(z,, ) = gmmf + V(z,) (2.9)

where the potential energy is “added” to the kinetic energy.

Solution

According to eq.(2.6) we obtain by writing e~ HIKT 45 the product of N + 1
identical operators e B/FT = e=H/(IN+DET _ o=H/(N+OET " qnd inserting N complete

sets of states

<m|e'H/kT|x’> = /a’a:l /dxz../de <:c|e‘H/NkT|:cN><:tN|e'H/NkT|xN_1>

<$N._1|€_H/NkT|ZL'N__2> . <:1:1|e'H/NkT|2:'> . (2.10)

We have introduced N time slices in the so-called imaginary time interval [0, /KT,
each separated by the amount AT = h/(N+1)kT. The calculation is now analogous
to the one of appendiz A, eq.(A.3 ), except for the substitution 1At — AT, and we

obtain
AT

< mn|e“ﬁ/(N+l)kT|wn_1 > = <Jcn|e_TH|xn_1 >
AT N
= §(Tn— Tp-1) — - < zp|H|znoy > +O(AT?).

- %eéwn-%—ﬂ-%mwn)+0(AT2) (2.11)
™

where H(zn,p,) is Hamilton’s function, eq.(A.6), and we get the path integral
ezpression for the imaginary-time propagator
N+1

N
—H/kT) 1 — .
<zle |z'> A}]_I)I;O/ n]:[:ldzn 11

Pn e%pn(mn_%_l)_%mxmpn)

2mh

n=1

_ /DSCT Dp, e%ﬁah/deT [prér+iH (zrpr)] (2.12)
2rh
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and upon performing the Gaussian momentum integrations the stated result (which
is the expression in eq.(1.23) after a so-called Wick rotation, it — 7 = h/kT).
Interpreting T as a length, we note that the Euclidean Lagrange function Lg equals
the potential energy of a string of “length” L = h/kT and tension m, placed in the
external potential V. The classical partition function for the string with ends fized
at ¢’ and z is

z(h/kT)=z
Zg(z,z') = /DxT e~Selerl/h — G(z h/ET; 2, 0) (2.13)
z(0)=z'
and we have established that the imaginary-time propagator is specified in terms
of the classical partition function for the string. The propagator evaluated at
imaginary time —ih/kT, G(z,—iki/kT;z',0), equals the classical partition func-
tion Zu(z,2') for a string of “length” h/kT evaluated at the “temperature” 1/h.

2.2 Retarded and Advanced Propagators

For later use we introduce the retarded Green’s function or propagator (the choice
of phase is for later convenience)

Riy 4.t i — ) —1G(x,4;x,t) fort > ¢
G (x,t;x,t) = {0 for t < t' (2.14)
The retarded propagator satisfies the equation
. 0
{zha - H}YGR(x,t;x',¢') = h §(x — x') §(t — ') (2.15)
which in conjunction with the condition
GR(x,t;x,t") = 0 for t<t' (2.16)

specifies the retarded propagator. The source term on the right-hand side of

eq.(2.15) represents the discontinuity in the retarded propagator at time ¢ = ¢', and

is recognized by integrating eq.(2.15) over an infinitesimal time interval around #'.

The retarded Green’s function propagates the wave function forward in time.*
According to eq.(2.4), the retarded propagator is given by

GR(x,t;x,t) = —ib(t—t') <x|U(t,t)|x'> (2.17)

4The retarded propagator also has the following interpretation: prior to time #’ the particle
is absent, and at time ¢ = ¢/ the particle is created at point x’, and is subsequently propagated
according to the Schrodinger equation. In contrast to the relativistic quantum theory, this point
of view of propagation is not mandatory in nonrelativistic quantum mechanics where the quantum
numbers describing the particle species are conserved.
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and is immediately seen to satisfy the initial condition
GR(x, ¥ +0;x,t) = —id(x—x) (2.18)

and due to the step function the condition eq.(2.16). By direct differentiation with
respect to time it also immediately follows that the retarded propagator satisfies
eq.(2.15).

We note the path integral expression for the retarded propagator (see also
appendix A)

GR(x,t;x,t) = —if(t —t)G(x,t;x,t') = —if(t — ") K (x,t; %', t)
X=X . .
= —if(t—t) /Dx;eifad‘”"f”‘f). (2.19)
xt/=x’

We shall also need the advanced propagator

0 fort >t

A R A
G (X,t,x,t) = {iG(X,t;XI,tl) for t < ¢/

(2.20)

which propagates the wave function backwards in time, as we have for ¢ < ¢ for
the wave function at time ¢

b(x,1) = —i /dx’ GA(x, ;X ) (', t') (2.21)

in terms of the wave function at the later time ¢'.
The retarded and advanced propagators are related according to

GA(x,t;x,t") = [GR(X,t;x,1)]". (2.22)

The advanced propagator is also a solution of eq.(2.15), but zero in the opposite
time region as compared to the retarded propagator.
We note, that in the spatial representation we have

Q(x,t;x,t) = <x|Utt)x'> = i[GR(x,t;x,t') — GA(x,t; X, 1))
= A(x, ;%) (2.23)

where we have introduced the notation A for the Green’s function G, and also refer
to it as the spectral function.
Introducing the retarded and advanced Green’s operators

GR(t,t) = —ib(t — "\ UL, t") , GA®E) =0t —t)U(t,t) (2.24)
we have for the evolution operator

Ut,t') = i(GR(t,t) — GA®, 1)) = G(t,t) = A(t,t) (2.25)
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and the unitarity of the evolution operator is reflected in the hermitian relationship
of the Green’s operators

GAt, ) = [GR( )T (2.26)

The retarded and advanced Green’s operators are characterized as solutions to
the same differential equation

~

(ih% - H) GRA @) = hé(t—1)] (2.27)

but are zero for different time relationship.

The various representations of the Green’s operators are obtained by taking
matrix elements. For example, in the momentum representation we have for the
retarded propagator

GR(p,t;p',t') = —if(t —t') <p,t|p, t'> = <p|GE(t,)|p'> . (2.28)

Exercise 2.2 Defining in general the imaginary-time propagator

G(x,7;X,7) = 0(r — ') <x|e” T x> (2.29)

show that for the Hamiltonian for a particle in a magnetic field

i = ﬁ(ﬁ—eA(f{))z (2.30)

the imaginary-time propagator satisfies the equation
hi + 1 h V A 2 ! / — h 5 / 5 /
or om \7Vx ¢ (x) G(x,7;x,7") = hé(x—x")d(r—7") (2.31)

and write down the path integral representation of the solution.

2.3 Free Particle Propagator

In the previous chapter we established, by appealing to correspondence, that the

Hamiltonian for a (low-energy) free particle of mass m is Hamilton’s function of
the momentum operator

. 52

Ho = Ho(p) = +— (2:32)

2m
The free particle propagator in the momentum representation

GH(p, ;P t) = —ib(t —t') < ple”#Holt=t)|p! ~ (2.33)
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is therefore given by

p,p’

/ ! 4 -p
Gy(p,t; 1) = Gg(p,t,¥) <plp'> = GS{(p,t—t){ 5(p ) (2

where the Kronecker or delta function (depending on whether the particle is con-
fined to a box or not) reflects the spatial translation invariance of free propagation.
The compatibility of the energy and momentum of a free particle is reflected in
the definite temporal oscillations of the propagator

GR(p,t,t') = —if(t —t') e~ we(t=*) (2.35)
determined by the energy of the state in question
=2 (2.36)

the dispersion relation for a free particle.
Fourier transforming we obtain for the free particle propagator in the spatial
representation

GR(x, X, 1) = —ib(t — ') <x|e wHol=)|x'>

/2 na

m im (X=X
_0(+ — 1 - 2R t—¢! 2.37
i t)<27rhi(t—t’)> ¢ (2:37)

in accordance with eq.(1.24).

Exercise 2.3 Show that the retarded propagator in the momentum representation
satisfies the equation

{in D~ e} GE(p, 5 00,t) = ihd(p— P61 1) (2.38)

2.4 Perturbation Theory

Situations are ubiquitous where an interaction with a system is adequately de-
scribed in terms of a time-dependent classical field. Furthermore, in perturbation
theory we shall for calculational reasons encounter time-dependent Hamiltonians
(though the Hamiltonian for a closed system is time independent). We therefore
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where the antitime-ordering symbol, T, orders the time sequence oppositely as
compared to T, as the adjoint inverts the order of a sequence of operators.

Exercise 2.4 Verify for an arbitrary operator X(t) the following property for
time-ordered ezponentials for the time relationship t' < t" <t

Tl X ® _ pofudik@ pofi 40 (2.50)

From the unitarity of the evolution operator, [= UT(t, t)U(t,t"), and eq.(2.48),
one verifies readily (as also obtained by taking the adjoint of eq.(2.48)) that

_ih &5;”[ = e,y B (1) (2.51)

and using eq.(1.331) we get
)H(t) (2.52)
thereby establishing that differentiating the time-ordered exponential, eq.(2.47),

with respect to the lower integration limit brings down the Hamiltonian to the
right with the time label given by the lower limit of the integral.

Exercise 2.5 Consider a particle in the potential V (vanishing in the far past)
for which we have the Hamiltonian H = Ho + V. Show that

B> = 160)> + = [d e D V() [p(e)> (2.59)

‘is a solution of the Schrédinger equation provided |$(t) > is a solution of the
Schrodinger equation in the absence of the potential.

Solution
Upon Taylor-expanding the exponential to lowest or in At we obtain from
€q.(2.53)

[+ A > —[¢()> [+ AL)> — |¢(t) >
At At
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t+At ;
1 » o o
AL ( /dt’ e_ﬁHo(t+At—t) V(tl) |¢'(t/)> _ /dt/ e‘iHO(t—t) V(t/) W)(t’) >)

At p if n e -
= (—,:H Jae RO V() () > + AL V() (1) >) (2.54)

and thereby the sought result.

2.5 Interaction Picture

Let us consider a Hamiltonian consisting of two parts:
H = Ho+ H, . (2.55)
We can rewrite the evolution operator:

O(t,¢) = Te  Jothe = fo(t,4,) Or(t, ¢) OS(F, 1) (2.56)
in terms of the evolution operator in the so-called interaction picture, the Heisen-
berg picture with respect to Ho,

Oi(t, ) = Ter JutfH10) (2.57)
An operator in the interaction picture is specified by”
Hi(t) = Ul (¢, t,) H, Uo(t,,) (2.58)

and assuming that H, is time independent, we have for the evolution operator in
the absence of H, .
Ul(t,t,) = entolt=t) (2.59)

The arbitrary reference time where the interaction and Schrédinger pictures coin-
cide we denote by t,.

We can derive the construction, eq.(2.56), explicitly, but let us here use our
above derived differentiation rules, thereby noticing that the operators on the two
sides of eq.(2.56) satisfy the same first-order differential equation, and are therefore
identical as they satisfy the same initial condition.

Often it is convenient to take the reference time as zero, t, = 0, and we have

Te—,%f:,df}qg — 6—%ﬁ°t(T6—;‘;ftt’d[f{}(z))ef%got, (260)

where .
s

Hit) = enfotfl emwHot (2.61)

7We note, that had we studied the case where H'is time independent we would still encounter
a time-dependent operator in the interaction picture, H}(t).
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2.6 Propagation in a Potential

The simplest example of diagrammatic perturbation theory is the case of a particle
in a scalar potential V(x,t); i.e., we consider the particle to be in an environment
whose influence on the particle can be described in terms of a classical potential.
We then have the Hamiltonian

= H +V, (2.62)
where the effect of the potential is represented by the operator
V.=V, t). (2.63)

The Hamiltonian in the absence of the potential, ﬁ]p, we assume to be time inde-
pendent.

The retarded propagator in the external potential is specified by the matrix
element of the evolution operator

GR(x, t;x,t") = —ib(t—t') < x|U(t,t)|x >

= —if(t—t) <x|Ten Judt i)y’ s (2.64)
The perturbative expansion of the propagator is obtained by introducing the time-
ordered exponential expressed in the interaction picture

Temw Jodt e = (4, ,) Tex JadVEDD 1t (4 4 ) (2.65)

where we have used that the potential operator in the interaction picture is the
potential function of the position operator in the interaction picture

V() = U(t,4) V3,0 Dot 1) = VIX(),1) (2.66)

now dropping the index indicating the interaction picture as no confusion should
arise

x(t) = %1(¢) = U (¢, t,) X Uo(t, 1,) . (2.67)

Expanding the time-ordered exponential, we get the perturbative expansion of the
propagator

-
GR(x, X, 1)) = —if(t—t) <x,t|Texp{——% /dfw(a}[x', >
tl

= ZG’ (x,t; %/, 1) (2.68)
n=0

where the n’th order term is equal to
R rog 1 a
GR(x, t;x, 1)) = —zG(t—t)( ) -n—/Hdt <X, tT(V(X(tn), t2)

V(R(tnet)s tat) - VI(R(t2), 12) V(R(11), 1)) X', /> (2.69)
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and the time-labeled states now denotes the eigenstates of the position operator
in the interaction picture

(1) |x,t> = x|x,t>, Ix,t> = Us'(t,t) x> . (2.70)
By inserting a complete set of such states

- /dxi I, £ >< i, 1] (2.71)

in front of each operator Vi(t;) = V(X(t:),t;) in the perturbative expression, the
operation of the potential operator is turned into multiplication by the value of
the potential at the space-time point in question as

V[(ti)lxz‘,ti> = V(f(( ) )IXt,t > = (/dx IX,ti> V(X,t,’) <X, t1|> IX,‘,ti>

= V(Xi,t,‘) |Xi,t¢> . (2.72)

The zeroth-order propagator, the propagator in the absence of the potential V/,
is given by
GR(x, ;%' 1) = —if(t — t') <x|e #Ar=|x'> (2.73)

The first-order correction to the propagator is given by
GR(x,t;x,t') = —%G(t —t') /t;itl <x, tV(%(t), )X, t'> . (2.74)
For the time relations t < ¢t; < ' we have for the step function
Ot —t') = 0(t—t1)0(t1 —t') (2.75)

and for the first-order term we therefore have the expression
GR(x,t;x,t) = /dxl dty GE(x,t;%x1,t1) V(X1, 1) GE(x1, 815, ) (2.76)

as the retarded propagators restrict the time integration to the original time in-
terval.

The first-order contribution to the propagator can be thought of as a product
of three terms: the amplitude for free particle propagation from space-time point
(x',t") to (x1,t1), where the particle experiences interaction with the potential,
described by the factor V(x1,t1), and finally the amplitude for free particle prop-
agation from (x;,%1) to (x,t). Since the event of interaction with the potential,
which we shall refer to as a scattering of the particle, can take place anywhere and
at any time, we are summing over all these alternatives.

Graphically we represent the first-order term for the propagator by the diagram

GR(x,t;x,t) = o2& L Y (2.77)

xt X1t1 x't!
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where a cross has been introduced to symbolize the interaction of the particle with
the scalar potential

—— = Llv(x) (2.78)

xt

and a thin line is used to represent the zeroth-order propagator

— R o = GRxtx,t) (2.79)

in order to distinguish it from the propagator in the presence of the potential V/

—Ff o = GR(x,t;x,t) (2.80)

depicted as a thick line. With this dictionary the analytical form, eq.(2.76), is
obtained from the diagram, eq.(2.77), since integration is implied over the internal
space-time point where interaction with the potential takes place.

Similarly we get for the second-order term by inserting complete sets of states

_\2 st ty
GR, X, 1) = —ib(t— 1) (%) [t [t <x,tixata> V(1)
t! t!
<X2,t2|X1,t1> V(X],i]) <X1,t1|Xl,t/>
oo 00 R
= h_z /dX2 dtz dX]/dth(])%(X,t;Xg,tg)V(Xz,tz)Go (Xz,tg;xl,tl)

V(X],tl)G(};(Xhtl;X,,t/) (281)

where we in the last equality have utilized that for the time relationship, ' <1 <
ty < t, we have for the step function

B(t —t') = B(t — ) 0(ts — t1) 0(t, — 1) (2.82)

and we can lift the time integration limitations as the step functions automatically
limit the integration region to the original one.
The second-order term for the propagator is therefore represented diagrammat-
ically by
R R R
Ghx, ;X ) = o o (2.83)

xt Xoto x1t1 x't

corresponding to propagation governed by I:Ip in between the scattering twice by
the potential.

Repeating this scheme of inserting complete sets of states, letting the system
propagate through all the possible position property values at all possible times,
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we obtain that the n’th order term consists of n scatterings by the potential and
n + 1 propagators

, , 1 n t n
GR(x, ;%) = ;Tn/H dx, /t IT dtm V(5a)V (Xn1) - V(x2)V (1)
m=1 m=1

GR(%, b5 Xn, tn) GE (X tn; X1, tnet) -« GR(x1, t1;%, 1) (2.84)
represented diagrammatically by

R R R
GR(x,t;x,t") = e - t o (2.85)

xt Xnin X1t x't

and the perturbative expression for the exact propagator is represented by the
infinite sum of terms

R tx _ R
= [ e o
G (X, 7X7t) xt x't!

R R R R R R

= % + 141 + he ®

xt x't xt x1t1 x't xt xate  X1t) x't

R R R R 9,86

+ xt Xa3ls  Xata X1t x't! + s ( )

Following Feynman we can elevate the diagrams to represent alternative physi-
cal scattering processes. The propagator in a potential being the sum of all possible
scattering alternatives for the particle: not being scattered, being scattered once,
being scattered twice, etc.

Such a series of scattering processes where each subsequent process has an extra
scattering event and propagator (each subsequent diagram has an extra cross and
propagator line) is iterative, and the propagator for the particle in a potential
satisfies the diagrammatic equation

R o R .
——— | _nm,_ﬂb{-gxqr—l— . " (2.87)

xt x't xt x't

el
-

as seen by iteration. Analytically we have the equation

1 oo _
GR(x, t;x,1t') = GF(x,t;x,1') + %/d)"c dt GR(x,t; %, )V (X, )GE(x, ; X, 1) .
(2.88)
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The equation for the advanced propagator we obtain by using its relationship
to the retarded propagator, eq.(2.22),

GAx, 15, 1) = GA(x, %, 1) /dx dEGA(x, %, DV (%, D) GAR, T X, )

or diagrammatically

xt

bt
1

x't! xt x't! xt x't!

with a convention for drawing the diagrams for the advanced propagator that
makes explicit the backwards-in-time propagation.

Exercise 2.6 Derive the perturbation ezpansion from the path integral formalism.

Solution

From eq.(1.23) we obtain

Xt=X
i aF Lx;
I{(X,t;xl’t/) = /DX{ ehft’dtlmx‘ e h dtV(xt:_)

Xy =x'

= /DX' ehft’dt mx' <1 + ‘_/ dt] thyt)

X,/"X'

1 —i\E g
5(7) [ dts [ dtr Vi, ) Vi, 1) + ) -(2.91)

—+

Constider the first-order term. In the discretized form of the path integral we choose
one of the intermediate times as the one dictated by the integration over t;. There
are N1 and N, other internal moments of time, before and after the one singled
out, respectively. The corresponding internal spatial integrations, and the number
of “measure”-factors produces the product of the free propagators Ko(xi,t1;%’,t')
and Ko(x,t;%1,t1), and we obtain for the first-order correction to the propagator

—i gt
Ki(x,t;x,t) = 71 dt, /dxl Ko(x,t;%1,t1) V(X4y, 1) Ko(x1,81; %', 1) . (2.92)
tl
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In the second-order term we choose t; and t, as intermediate times. Since this can
be done in two ways, t1 < ty ort; > ty, giving identical contributions and thereby
canceling the factor 1/2!, we obtain the ezpression in eq.(2.81). Similarly for the
higher order terms, and we reproduce the perturbation series depicted diagrammat-
ically in eq.(2.86).

2.6.1 Momentum Representation

For calculational purposes the momentum representation is often useful. In the
momentum representation we encounter all the same manipulations as we did in
the position representation except that we have p’s instead of x’s, and we have for
the retarded propagator in the momentum representation

. 1oy . LA,
GE(p,t;p,t) = —i0(t —t') < p,tlp’,t' > =—f(t —t') < p[Te‘ﬁft' Hip' >
(2.93)
For the n’th order term in the perturbative expansion of the propagator

GR(p,t;p,t) = > GE(p,t;p,t)) (2.94)

n=0

we have

65,01, 0) = o~ ) B / Hdtm<p,t|T Vi(tn) Vi (o) Vi) P, >

where the interaction picture momentum eigenstates (299)
pr(t)|p,t>= plp,t> (2.96)
has been introduced.®
For the propagator in the absence of the potential V' we have
GR(p,t;p',t') = —if(t 1) <p|e‘%gf’(t't’)|p’> . (2.97)

In order to calculate the propagator to first order, we insert complete sets of
momentum eigenstates and obtain

GE(p,t; P, 1) /dtl N &(p,t; p1yt )<P1,t1|‘71(t1)|P’1,t1> GE(pl,ty; P, )
1! 1

(2.98)
where the interaction with the potential in the momentum representation is spec-
ified by (in three spatial dimensions)

) A (2mh)~3 [dx e~ #*(P=P) V/(x, 1)
<p,tVit)lp’,t> = <plVilp'> = (2.99)
V-1 [, dx emw*(P-P) V(x, 1)

8We suppress the index distinguishing these states from the states in eq.(2.93) defined by the
momentum operator in the Heisenberg picture as it is clear from the context which states are
involved.
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depending on whether we have a particle in a box of volume V (exceeding the
range of the potential), or in infinite space’

(2mh)~3/2enxP
<x,tlp,t> = <x|p> = (2.100)

V—l/ze—;;x'p

and we have in eq.(2.98) introduced the context-dependent notation

Yo e /flo:po. (2.101)

In the momentum representation we therefore have the same first-order diagram
as in the spatial representation

@

GRptip,t) = e— S (2.102)

pt P1t1P} p't

however, with the momentum representation interpretation of the diagram: The
propagator between momentum values p’ and p in the absence of the potential V
we represent diagrammatically by a thin line'

GE(p,t;p,t) = —ib(t— 1) < ple #=)|p >
= o : n (2.103)

and in the momentum representation the cross designates the matrix element

ptp

1 o
x5 = 5 <plUib’> (2.104)

and signifies the momentum change due to the scattering by the potential. Sum-
mation (integration) over all alternative intermediate momenta, and integration
over time is implied according to eq.(2.98).

For the second-order term we similarly obtain from eq.(2.95)

1 fee o0 .
GEp 0 t) = o [ df dt [ GE(ptpat) <palVialph>
A J-oo Voo P1,P},P2:P)

G(I):i(p’mt% plvtl) <p1|th |pll > Gé{(pll)tl; pl7tl) (2105)

9We shall often interchange between the notation for a particle in a finite volume V (with
appropriately imposed boundary conditions), and the continuum notation.

10The propagator is in the absence of the potential V invariant with respect to displacements
in time as H, was assumed time independent, a constraint we could easily relax.
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and diagrammatically
GR t: 1oy — R R R R _
> (P, P, 1) K e e (2.106)

corresponding to propagation according to the Hamiltonian f]p in between the

scattering by the potential where the momentum of the particle is changed.
Repeating the scheme of inserting complete sets of momentum eigenstates we

obtain that the n’th order term consists of n scatterings by the potential and n 41

propagators
R R R R
GE t:p' = . - °

n (P, P 1) K o S (2.107)

and the exact propagator is represented by the infinite set of diagrams
R R R R
GR(p,t;p,t) = =, B R . .
(P, ;P ) pt g T pt  pifip; Pt + Pt Dataphpilip) D't
N R R R R
pt  patsp} prtap, pi1tip) Pt + B (2'108)

The propagator in the momentum representation for a particle in a potential is
therefore by iteration seen to satisfy the diagrammatic equation

and analytically the equation

+ e 3 (2.109)

1 % - -
G¥(p,t;p',t') = G?(p,t;p',t')-i—g/__l/dt Gg (p,t; B, 8) <BIViIB'> G (B, P, ¥)
p,pY =0

(2.110)

In the case where the particle Hamiltonian, ﬂp, represents a free particle, the
zeroth-order propagator is the free propagator, eq.(2.33), and we introduce the

diagrammatic representation for the amplit
state p, eq.(2.35),

Go(p,t,t) = o=, =

ude for free propagation in momentum

—if(t — t') e neR (=) (2.111)




106 CHAPTER 2. DIAGRAMMATIC PERTURBATION THEORY

The first-order correction to the propagator due to the potential, eq.(2.98),
reduces in this case to

L feo - 0 I
G¥(p,t;p,t) = g/ dt GB(p,t,1) <p|Vilp'> GE(p',%, 1) (2.112)

corresponding diagrammatically to

GR(p,t;p,t) = e— R . (2.113)

Similarly we get to second order in the potential

Il

1 0o - foo .
GH(p, ;') o3 [ [t Gip, 1) <plVlp”> GH(B 12,11

<p"|Vi,Ip'> G&(p', 11, 1)

- et . (2.114)

and the momentum representation of the propagator in the potential is obtained
by iterating the following equation

o—lz—o = 0—5—0 + 0—3—9(—,;—0 . (2.115)
P 4

Analytically we have the equation

1 _ A _
GR(p,t;p',t') = Gi(p,t;p,t) + 5/ /dt GE(p,t,1) <p|Vip"> GR(p", ;P 1) -
pll

(2.116)
2.6.2 Propagation in a Static Potential
In the case the system is isolated, the potential is time independent
H=H,+V(%) (2.117)

and the propagator only depends on the time difference. In the momentum repre-
sentation, for example, we then have for the propagator
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G¥p,t;p',t') = G(p,p;it—1t) = <p,tp/,t'>
= <ple#Ap > . (2.118)

We therefore Fourier transform with respect to time!!

17 (i) (!
GR(p, p/, E) = ﬁ /d(t _ tl) eE(E+10)(t—t ) GR(p, t: l:)/, tl) (2'119)
and for the inverse transform we have
1 o0o+10
GR(p,pt 1) = oo [dB e G, pl E) (2.120)
T
—o0+10

We shall call E the energy variable, emphasizing that the above Fourier transfor-
mation is not between property representations.

The invariance with respect to displacements in time is transparently reflected
on a term-by-term basis in the perturbation expansion. In order to be specific
let us assume that the particle is free in the absence of the potential V. The
momentum representation and energy representations are then identical, and the
free propagator in the momentum representation is just an oscillating exponential
function of time, eq.(2.111).}> The time convolutions of propagators in the per-
turbative expansion will then by Fourier transformation with respect to time be
turned into simple products of Fourier-transformed propagators. The propagators
will all have the same energy variable, reflecting the energy conservation in elastic
scattering.

From the first-order term, eq.(2.112), we obtain by Fourier transformation

Gf(p,p,E) = Gf(p,E) <p|VIp'> G§(p', E) (2.121)

as for a static potential we have

<p,tVi®)p,t> = <p|Vlp'> = (2.122)
and we now represent this matrix element by a cross. The Fourier transform with
respect to time of the free propagator, eq.(2.35), is given by
1

G®B) = g5
P

(2.123)

11We observe that the retarded propagator is analytic in the upper half plane. The discussion
of the analytic properties of propagators being deferred to the following section.

121t is of course not essential for exploiting the invariance with respect to displacements in
time, that the particle in the absence of the potential V is assumed otherwise free. The particle
could, for example, be exposed to a time-independent magnetic field. In that case, we would then
jgst have to use the energy-representation specified by the eigenstates of the particle Hamiltonian
H), for which the propagator oscillates in time according to the energy value in question.
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for which we introduce the diagrammatic notation

R
GE(p,E) = - (2.124)

The first-order correction to the propagator is then specified diagrammatically by

, R R
G’{%(p,p , E) = = .y . (2125)

Similarly, by Fourier transforming eq.(2.35) with respect to time, we get for
the second-order term

GR(p,p',E) = Gi(p,E) (Z <p|VIp"> G§(p", E) <p”|le’>) Gp',E)
’ (2.126)

and diagrammatically

R R R
Gip P, E) = 5 St (2.127)

where a summation over all the possible alternative intermediate momentum values
p” is implied.
For the propagator in a static potential

- ’

R
R ’ —
G(p,p, E) = s (2.128)

we then obtain the diagrammatic representation

R R R R
— — &—<—¢ | R R +
p E p’ p E p pE " P'E pE " p"E” p'E
R R R R
+ + . (2.129)

pE p'”E(\ p"E” p'E

where we have introduced the diagrammatic notation

I R R
GE(p,p,E) = G, E) bpp = 5% = 75 o (2.130)

in order to absorb the Kronecker function in the free propagation term.
The full propagator is obtained by iterating the equation
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—, = o, + . (2.131)

which analytically takes the form
GR(p, P, E) = Gilp,p',E) +Go(p, E) Y <plVIp"> GR(p",p', E)

p/l
U nl 1 1 " !’
Gy'(p,p', B) + Gi(p, B)3; V(P — p")GR(P", P, E) (2.132)

p

Il

where we have introduced the Fourier transform of the potential

i

Vip) = V <p|V|o> = /de e FP Y (x) (2.133)

for the case of a particle confined to a volume of size V.

2.7 Analytic Properties of Green’s Functions

For an isolated system, where the Hamiltonian is time independent, we can for any
complex number F with a positive imaginary part, transform the retarded Green’s
operator, eq.(2.24), according to

~ 1 oo i no A
GE = E/_iio(t—t’) erB=t) GR(t 1) | (2.134)

The Fourier transform is obtained as the analytic continuation from the upper half
plane, SmE > 0. According to eq.(2.27) we have for SmFE > 0 the equation

(E-H)GE = I. (2.135)

Analogously we obtain that the advanced Green’s operator is the solution of the
same equation

(E-H)Gp = I (2.136)

for values of the energy variable £ in the lower half-plane, SmFE < 0, and by
analytical continuation to the real axis

~ 1 oo ;i ~
Gt = < /_ deRP G4 (D). (2.137)
We note the Fourier inversion formulas

“ 1 oo (T 20 i N
GR(A)(t) — ____/ (=) dE 6—ﬁEt Gg(A) (2138)

27 J—o (“'_'_) 0
and the hermitian property, eq.(2.26), leads to the relationship
G4 =GR (2.139)



110 CHAPTER 2. DIAGRAMMATIC PERTURBATION THEORY

We introduce the Green’s operator

{ GE for SME > 0

N

Gg = (2.140)

G4 for SME <0

for which we have the spectral representation

A 1 lex>< e
Gg = 5Th " ; Foe (2.141)
where |e) > is the eigenstates of the Hamiltonian
Hlen> = exlen> . (2.142)
The analytic properties of the retarded and advanced Green’s operators leads,
by an application of Cauchy’s theorem, to the spectral representations
_ [~dE__Ap
—2r E—E' %10
where we have introduced the spectral operator, the discontinuity of the Green’s
operator across the real axis

G (2.143)

AE = Z(Gg - Gg) = i(éE.Ho — GE—iO)
= m§(E—-H) = 21 Y |la><ald(E—e) . (2.144)
A

Equivalently, we have the relationship between real and imaginary parts of, say,
position representation matrix elements

0 dB' SmGF(x,x, E'
Re GR(x,x, E) = 73/ i"ﬁ—i_‘;f——) (2.145)

and dE' Re GR(x,x, E'
Sm GR(x, %, E) = —73/ —c;x-’;——) (2.146)

The Kramers-Kronig relations due to the retarded propagator is analytic in the
upper half-plane.
The perturbation expansion of the propagator in a static potential is seen to

be equivalent to the operator expansion for the Green’s operator
R 1 1 1
GE = — = = — = = = =
E-H E-H+V (E-H)1-(E—H)V)

1 1
1‘—(E—[A{Q)_1V E-—I:I()

(14 (E — Ho)™V + (E - H)"'V(E - Ho)™'V + ...) .

N A A A N N

= Go(E) + Go(E)VG(E) + Go(E)YVGo(E)VGo(E) + ... (2.147)
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where

Go(E) = . (2.148)

is the free Green’s operator.
The momentum representation of the retarded (advanced) propagator or Green’s
function in the energy variable can be expressed as the matrix element

G*4(p,p, B) = <p|G5 Ip'> (2.149)

of the retarded (advanced) Green’s operator

) 1 :
GEA = — ——— = (E-H #i0)™" 2.150
B A0 <0 (2.150)

the analytical continuation from the various half-planes of the Green’s operator.
Other representations are obtained similarly, for example,

GEA)(x,x' E) = <x|GEN|x'> . (2.151)
The hermitian property eq.(2.139) gives the relationship
[GE(x,x, E)]* = GA(x',x, E¥) (2.152)

and similarly in other representations.
Employing the resolution of the identity in terms of the eigenstates of b4

1= la><al (2.153)
)
we get the spectral representation in, for example, the position representation

GFA (x,%, E) 21/’* ; 12) (2.154)
r

The Green’s functions thus have singularities at the energy eigenvalues (the energy
spectrum), constituting a branch cut for the continuum part of the spectrum, and
simple poles for the discrete part, the latter corresponding to states which are
normalizable (possible bound states of the system).

Along a branch cut the spectral function measures the discontinuity in the
Green’s operator

A(X, x’, E) = <X|i(éE+,‘o — éE_i0)|XI>

i (G™(x,x', E) — G*(x,%, E))
= —29mGR(x,x,E)

21 ) PA(x)P5(x) 6(E — ) (2.155)
)
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From the expression

A(x,x, E) = 2r Tr(P(x)§(E — H)) =2r 3 x| >P0(E — ) (2.156)
B

we note that the diagonal elements of the spectral function, A(x, x, E), is the local
density of states per unit volume: the unnormalized probability per unit energy
to find the particle at position x with energy E (or vice versa, the probability
density for the particle in energy state E to be found at position x). Employing
the resolution of the identity we have

/dx Ax,x, E) = 2t S 6(E—€) = 27N (E) (2.157)
A

where N (E) is seen to be the number of energy levels per unit energy, and
eq.(2.157) is thus the statement that the relative probability of finding the particle
somewhere in space with energy E is proportional to the number of states available
at that energy.

We also note the completeness relation

/512E A(x,x,E) = §(x —x') (2.158)

T

where the integration (and summation) is over the energy spectrum.

The position and momentum representation matrix elements of any operator
are related by Fourier transformation. For the spectral operator we have (assuming
the system enclosed in a box of volume V)

Ax,x,E) = Z <x|p> A(p,p, E) <p'|x'>

pp’
1 ipx—iplx! /
= _Z enP nP A(pvpaE) (2159)
pp’
and inversely we have -

A(p,p, E) = <plAglp'>= N~ ﬁx fix! e~ kP*H P> A(x, x| E)  (2.160)

where the normalization depends on whether the particle is confined or not, N =
V, (2mh)%.

For the diagonal momentum components of the spectral function we have

A(p,p, E) =2 Tr(P(p)§(E — H)) =27} [<plex>[*6(E —ex)  (2.161)

describing the unnormalized probability for a particle with momentum p to have
energy E (or vice versa). Analogously to the position representation we obtain

S A(p,p,E) = 2r N(E) . (2.162)
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We have the momentum normalization condition

é(p—p')

dE

- Alp,p,E) = (2.163)
o 2T (S

p.p’
depending on whether the particle is confined or not.

Let us finally discuss the analytical properties of the free propagator. Fourier

transforming the free retarded propagator, €q.(2.123), we get (in three spatial
dimensions for the pre-exponential factor to be correct), SmE > 0,

_m erpElx=X|

R "By =
Colbex'B) = o s

pE = V2mE (2.164)
the solution of the spatial representation of the operator equation, eq.(2.136),

2
<E - —FL—AX> Go(x,x, F) = §(x—x') (2.165)

2m
which is analytic in the upper half-plane.

The square root function, VE, has a half line branch cut, which according to
the spectral representation, eq.(2.154), must be chosen along the positive real axis,
the energy spectrum of a free particle, as we choose the lowest energy eigenvalue
to have the value zero. In order for the Green’s function to remain bounded for
infinite separation of its spatial arguments, |x — x| — oo, we must make the
following choice of argument function

VE  for ReE >0
VE = : (2.166)
iy/|E| for ReE <0

rendering the free spectral function of the form

m_sin(gpplx —x)
mh? |x — x/|

Ao(x,x', E) = 0(E) (2.167)

and we can read off the free particle density of states, the number of energy levels
per unit energy per unit volume,'?

o=
1
mV2mE —
21r2h d=3

13This result is of course directly obtained by trivial counting of the momentum states in
a given energy range, because for a free particle constrained to the volume L%, there is one
momentum state per momentum volume (277/L)¢.
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for completeness we have also listed the one- and two-dimensional cases.
The spectral function for a free particle in the momentum representation fol-
lows, for example, from eq.(2.123)

Ao(p, E) = AO(pyp) E) = 2m 5(E - ep) (2169)

and describes that a free particle with momentum p with certainty has energy
E = ¢p, or vice versa.

2.8 Scattering Cross Section

We shall consider the scattering of a particle by a static potential V. At timet =0
we assume the particle to have momentum p’ and are interested in the probability
for finding the particle with momentum p at time ¢.

Let us first consider the Born approximation where we are only interested in
the first-order correction to the propagator. According to eq.(2.98) we have

» i

/ -

GR(p, t;p/,t' = 0) = _&“;“2 /dt—e_%cpu_a
0

(, X Li(ep—e s
<pllp> g e

; (2.170)
h E(ﬁp — €pr)

To lowest order in the potential we thus have that the probability to find the
particke at a later time with momentum p, given initially-that the particle had
momentum p’, is given by

N 1 — cos {(eg — €p
IGT(p,t; P, 0)* = 2 |<p|VIp'>’ e i(e" 7 v) (2.171)
P P’

We are interested in the scattering of the particle into a momentum volume con-
taining many states, and for large times, ¢ >> fi/ep, the wildly oscillating function
in eq.(2.171) is effectively a delta function, and we have

IGE(p,t; P, 0)

27 iy
E S <BIVID > B — )
= ¢ [pp (2.172)
and thereby for the transition probability per unit time
2m 1l |2
Tppr = + [<p|VIp'>|* 6(ep — €pr) (2.173)

i.e., Fermi’s golden rule.
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For the probability per unit time for the particle to be scattered into momentum
states with values in the volume Ap around p we therefore have

Ap dp dp
Fpp/ -3 = L3 /W Fpp/ = A,[?GA dep LsNo(ép)Fpp/
p ep

wh\*
(2T> Ap
2w . Ap
= — Vip'>|* N L} — .
T |<pIV b > No(ep) 1 (2,174
where it is understood that |p’| = |p| as demanded by energy conservation. For

the probability per unit time for the particle to be scattered into a unit solid angle
in the p-direction, I'(p), we thus have

. 1 -
I(P) = SrI<pIVIP'>[*No(ep)L* (2.175)
The probability current density at point x at time ¢ for the given initial state is

j(X,t) %— <GR(X>t;p/7O) vx [GR(xvt;plaO)]*

— [GB(x,4P,0)]" Vx GR(x,;P,0)) . (2.176)

In the absence of the potential, and thereby for the probability current density
outside the range of the potential, we have the probability current density for a
particle in state |[p"> (recall that in eq.(2.174) box normalization is used, and the
result then follows from eq.(1.320))

Jo(x,8) = P |GE(x,t;p',0)|? P i (2.177)
) m 0 » Yy ) m L3
The differential cross section, do/dp is defined as the probability per unit time

for scattering into a unit solid angle in the p-direction per unit incoming flux

b T(b) _ Al<plVIp' > No(ep) I?
b~ o ot d
2
mNp(e 1 (b
= LGT;;;I)—) ﬁ dx e™* (P p)V(X)
v
m 2 N2
= (525) - (2.178)

In a scattering experiment a beam of incoming particles is scattered by a target,
and the number of particles flying off into different directions is counted. The
differential cross section is therefore the quantity of interest, because it describes
the relative flux of particles scattered into a given solid angle, i.e., the probability
for an incoming particle per unit time to be scattered into a unit solid angle.
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As an example we consider the Coulomb potential*

e? e?h?
VC(p) - € p2

Vo (x) (2.179)

~ e x|’

for which in lowest order, the Born approximation, we obtain the cross section

2 2\ 2 4
oo _ ( m2> € B (2.180)
dp ok cp*) [p—pl*

Introducing the angle between the incoming and outgoing momentum directions,
p - P’ = cos b, and noting that

0
p-p = 2(1—0050):4511125 (2.181)

we obtain for the differential cross section

dog ( ¢ )2 L (2.182)

~ N 2 B 4_9—
dp 16meo ) €} sin® 5

We note that the lowest order Born approximation for the Coulomb scattering
cross section equals the classical Rutherford formula, which in fact is identical to
the exact quantum mechanical result since the higher order terms only influence
the phase of the propagator (see for example reference [6]).

For completeness we derive the expression for the differential cross section in
general, i.e., beyond the Born approximation. Consider the Hamiltonian H =
Hy + V, where H, describes a free particle Hy [p> = ep [P >, € = p*/2m, and V
is a time-independent potential. Assuming that H has the same spectrum as Hy,
we can label its eigenstates similarly H [p> = €p |tp >. For an exact eigenstate
we have according to eq.(2.53)

3 t (3 n 2 i ’
eTFP Yy > = AP p> 4 %/dt’ emw (=) [ emiet |y s (2.183)
2 —00
Expanding 1% |bp > on the complete set of momentum eigenstates, we get
l ¢ i ' : ~
o> = Ip> + = [dt' fap! eRO-Ow-ortd) <pf| ]y, > p'>  (2184)
1 —00

where we have introduced a convergence factor. Performing the integration over
time gives the Lippmann-Schwinger equation,

<p'|V]gp> P’

= dp’ . 2.185
99> |p>+/p ep—ep/+iep> ( )

14We adopt the standard SI units.
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In the position representation we obtain

erPx

Vo) = o + Jix! GE(x, X, ) V() () (2.186)

where the free retarded propagator was obtained in eq.(2.164). We are free to
drop the normalization factor since |1, > and |p > have the same normalization,
because the time evolution, eq.(2.53), of course is unitary. Integrating eq.(2.183)
with an envelope function we obtain

1 st iA n o~ i
lhe(t)> = |gg(t)> + E/ﬁit’ e w =) 7 gmRent | (1) > (2.187)
where
l1bg(t) > E/Odepg(ep)e_%&ptll/’p>a _ lee(t)> E/Odepg(fp)e—%eptlp> (2.188)

and the envelope function g is assumed a smooth function peaked at some energy
value. Far in the past the wave packet in eq.(2.187) therefore has free evolution
toward the target potential as described by the first term on the right side of
eq.(2.187), and at later times a scattered wave develops, the second term on the
right side. Instead of performing the wave packet analysis of scattering, we note
that we can calculate the scattering properties from the asymptotic form of the

exact solution to the stationary Schrédinger equation, |x| — oo , as easily obtained
from eq.(2.186):

. cilplix|
bolx) = e+ f(0) T (2.159)
where
£(0) = =g [axe RV () () (2.190)

and we have chosen the z-direction along the direction of the momentum of the
incoming particle, and the scattering angle, 0, is the angle between the incoming
momentum and the direction to the point x. Calculating the probability current
density in the scattered wave relative to the incident wave, we get for the differential
cross section

do
dp

— A0 - | (2.191)

2.9 Inversion and Time-Reversal Symmetry

If we change the sense of positive direction of the coordinate axes of a reference
frame, we get an equivalent description of space in which points in space change
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label according to x — —x.'® The unitary operator relating the two descriptions
obtained by spatial inversion through a point, here chosen as the origin, is specified
by

Up x> = ¥ —x> (2.192)
The inversion or reflection operator is equivalently, up to a phase transformation,
specified by the transformation property of the position operator

Up'xUp = —% (2.193)

or

x0plx> = —xUplx> . (2.194)

We could also define the inversion operator on an arbitrary state, with the phase
choice U} = I, by

<x|Ubjp> = <—x|p> orequivalently Upihp(x) = o(—x). (2.195)

By construction of the complementary operator (using the inversion changed
basis < z;| = <z;| = <z;|U}, we encounter, compared to section 1.4, the change
VY — V = exp{—1dp}), we have for the momentum operator

pUplp> = —pUp|p> orequivalently Up'pUp = —P. (2.196)

This is also immediately verified by exploiting the property the transformation
function <p| —x> = <—p|x>

<p|Ub|y> /dx <p|x><x|ULlp> = /dx <plx><—x[pp>

/zlx <pl—-x><xlp>= ﬂx <—plx><x|p>

<-plp> (2.197)
le.,

Upy(p) = %(-p). (2.198)

Position and momentum vectors change sign under reflection, and are called polar
vectors, whereas angular momentum L = XX P is invariant, Ut = L Up = L, and are
called an axial vector or pseudo-vector. The spin up and down states of an electron
are defined relative to a quantization axis, say the direction of the magnetic field
in the Stern-Gerlach apparatus. Since the magnetic field is described by an axial
vector it is invariant under space inversion, and consequently we have that the spin
is invariant under space inversion

Up'slp = s. (2.199)

15The spatial inversion or reflection through a point interchanges right- and left-handed coor-
dinate systems.
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Since U2 commutes with both the position and momentum operators, % and p, it

is proportional to the identity operator, and since Up is  unitary the proportionality

factor is just a phase factor. With the phase ch01ce UP =] we have that the

reflection or inversion operator is also hermitian, Ut b = Up = Uz! 5 . For U3 L =

the eigenvalues of the reflection operator is 1, and are called the parity.
Using eq.(1.317) we note that

7

dx'dp’ PRSP S IPN
[ it e g

and similarly for momentum states

dX'd / iyl p—ip'.k

and for the above phase choice we have

2 dX'd / LAt
Or = | (47rhl))d er PR (2.202)

For a Hamiltonian invariant under reflection®”
UpHUF' = H (2.203)
we have the properties of the transformation functions

<x, tx,t'> = <-xt|-x,t'> , <p,t|p,t'> = <-p,t|-p,t'> .
(2.204)
Finally we wish to derive the consequences of time-reversal invariance for the
transformation functions. If the potential in the Hamiltonian eq.(1.33) is time in-
dependent, we can immediately infer that if ¥(x,t) is a solution of the Schrodinger
equation, eq.(1.32), so is ¥(x,t) = 1*(x,—t). Comparing the time evolution on
integral form (eq.(1.5) or eq.(1.351)) of 1(x, t) and (x, t), we discover that for the

considered Hamiltonian the transformation function has the following property

<x,txL > = <x, —tx,—t'> (2.205)
which is equivalent to
<x, tx\t'> = <x)tx,t'> . (2.206)
For the transformation function in the momentum representation we then get

<p,tlp,t'> = <-p',t| - p,t'> . (2.207)

16The group of reflections in a point has only two elements, Up and 1.
17In this case Up is a constant of the motion.
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Time reversal interchanges the initial and final states, and reverses the direction
of motion.

The Schrodinger equation is clearly not invariant with respect to time inver-
sion t — —t. However, by in addition subduing the wave function to complex

conjugation we generate the motion-reversed solution'®
Tp(x,t) = ¥*(x,—1). (2.208)

In the position representation we can contemplate a motion picture of the time
evolution of a system, say for simplicity of the probability density distribution
for a particle P(x,t). The time-reversal invariance of a systems dynamics can
then vividly be expressed in the active point of view!® as the statement: the
time evolution of the probability density obtained by watching the picture played
backwards, the motion-reversed state, is a possible solution of the Schrodinger
equation for the system. It is readily shown that for the considered Hamiltonian
this solution is given by P(x,t) = [(x,t)|* = [¢*(x, —t)|* and represents the
time-reversed motion of the probability density. We speak of ¥*(x, —t) as the
time-reversed solution of the original solution, ¥(x, t), of the Schrodinger equation.

In quantum mechanics we thus encounter a symmetry which falls outside the
scheme of being represented by a unitary operator, and more importantly by a
linear operator. This is the possible symmetry connected with the dynamics of
the system, and we now give a general discussion of time-reversal invariance. A
system is said to respect time-reversal symmetry if there exists an operator T for

which (|T¥> = T|b>)
<ylem RG> = <Tapyfe” ¥ T, > (2.209)

Equivalently it is said that the dynamics of a system is time-reversal invariant if
the transition amplitude from state |1;> at time ¢; to state |hs> at time t; equals
the transition amplitude from state |T4;> at time ¢; to state [T;> at time t;.20

In view of the relation eq.(C.6), established in appendix C, applied to the lin-
car operator exp{—iH(t; — t;)/h}, the dynamics of a system is thus time-reversal
invariant if there exists an antiunitary operator T which commutes with the Hamil-
tonian

THT = H. (2.210)

18This is explicitly shown in exercise 4.5 on page 175.

191y reality, reversing the direction of time is not a viable alternative. The passive point of view
corresponds to using backward-running clocks (reversed direction for measuring the progression
of time), in which case the Schrodinger equation reads

L dp@)> -
—in S = ) >

20By proper phase choice of the states in eq.(2.209) the appearance of absolute value signs are
superfluous.
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Let us construct the time-reversal operator for the case of a particle in a time-
independent potential V for which we have the Hamiltonian

A2

yo p_ .
H = o~ + V). (2.211)

We immediately find that in the position representation the antiunitary operation
of complex conjugation?! :

K, b(x) = ¢*(x) , (2.212)

commutes with the Hamiltonian. In view of the wave function being the expansion
coefficients on the position basis (recall eq.(1.132))

> = /dxz/)(x)lx> (2.213)

we have for the complex conjugate operator with respect to the position basis (see
appendix C)

Ko lo> = [ax g (x) x> (2.214)

and because .
<x|K 9> = <x|[K_[y> = (x). (2.215)
we have that for a spinless particle the time-reversal operator is simply the complex
conjugation operator defined with resApect to the position basis, T = ]i’(z). We note
that for a spinless particle we have T2 = I.

Since the time-reversal operator in the position representation is the complex
conjugation operator, we immediately obtain the transformation properties of the
positi.on and momentum operators (T<I)(—ihVX)T(:)1 = thVy) under time-reversal
invariance o

TxT' = % , TpT™' = —p. (2.216)

Transforming to the momentum representation (with the convention eq.(1.320)
for the phase factor) we find that the time-reversed state in the momentum repre-
sentation is given by?*?

Ty(p) = ¢*(-p). (2.217)
The time-reversed state is thus the motion-reversed state.
For the current density we have (see eq.(1.357) on page 68)

<J>; = —-<j>, . (2.218)

For a time-reversal invariant Hamiltonian we obtain for the current density oper-
ator in the Heisenberg picture the relation (we are inverting time with respect to
t=0)

Tix, )Tt = —j(x,—t). (2.219)

21We are discussing the properties of the wave function at the moment in time of inversion.
If we wish to discuss the action of the time-reversal operator at a different time we must also
reverse the direction of time, see eq.(2.208).

22The time-reversal operator in the momentum representation is thus not simply the complex
conjugation operator with respect to the momentum basis, but involves the substitution p — —p.
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Exercise 2.7 Verify the transformation properties eq.(2.216) using the momen-
tum representation.

In particular we note that with the phase choice we have made (see appendix
C) we have

Tlx> = |x> (2.220)
and eq.(2.206) is a special case of eq.(2.209). Similarly, since

Tlp> = T/dx <x|p> |x> = /dx <x|p>* x> = |-p> (2.221)

we recover that eq.(2.207) is a special case of eq.(2.209).

Exercise 2.8 Discuss time-reversal symmetry for a system exposed to an external
magnetic field.

The orbital angular momentum transforms under time reversal according to
€q.(2.216) as o R
TLT' = —-L. (2.222)

Since the magnetic field changes sign under time reversal (the sources generating
the field are supposed to have their motion reversed) we have for the transformation
properties of the spin under time reversal

T8t = —s.. (2.223)

Using the standard basis in the operator spin space (recall exercise 1.9 on page
49) whose matrix representation are the Pauli matrices, we have

K, %K, = -3, K, 8K, = (2.224)

=S, K dy K, @

and for the spin part T., of the time-reversal operator, T=T,K o Ve have

T,%Tt = % , T,pTI = p (2.225)
and
T,8, TV = -4, , T,8,T1 =3, , T,5,TH = —3,. (2.226)

The last set of equalities describes a rotation in spin space through the angle m
around the y-axis, and according to exercise 1.11 we have (up to a phase factor)

T, = enm (2.227)
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For the spin-1/2 case we have the matrix representation
T = ioy. (2.228)

The time-reversal operator for a spin-1/2 particle is seen to satisfy R
(independent of phase convention and choice of representation).

We note that a spin-orbit coupling, § - L, does not break the time-reversal
invariance of a Hamiltonian.

2.10 The Density Matrix

When a particle interacts with an environment which has its own dynamics, i.e.,
its effect upon the particle can not be described by potentials, we need to develop
the diagrammatic technique for the density matrix since statistical averages with
respect to the environment are taken over the distribution function. In this section
we develop the density-matrix formalism for a particle interacting with a potential,
which we shall need for the treatment of a particle moving in a random potential.
The treatment of a quantum environment is given in chapter 6.

We assume, that at time t' the particle is in the state p’ described by the
statistical operator p’ = p(t'). For the statistical operator at time ¢ we have
according to eq.(1.368) ) )

p(t) = Ut p' U, E) . (2.229)

The density matrix in the position representation is

<x|p@t)|x'> = Tr(p(t)x'><x|). (2.230)

p(x,%',t)

The diagonal element p(x,x,t) is the probability density to find the particle at
position x at time ¢

A

p(x,%,) = Tr(p(t) P(x)) = Tr(p(t,)P(x, 1)) = P(x,1) . (2.231)

Here p(t,) is the statistical operator at the reference time ¢,, where the Heisenberg
and Schrodinger pictures are chosen to coincide. We can also express the diagonal
elements of the density matrix in terms of the density operator

P(x,1) = p(x,x,1) = Tr(p()i(x)) = Tr(p(t.)a(x, 1)) = n(x,t) . (2.232)

The diagonal elements of the density matrix exemplify the simplest kind of a
consistent family of histories, referring only to one moment in time. The proposi-
tions in the family are of the form (suppressing the reference to the initial state)
the particle is at position x at time t, and have their associated probability density

p,((xt)) = p(x,%x,t) = P(x,t). (2.233)

We can also consider the two-time history, that the particle is at position x’
at time #', and at position x at the later time ¢, given the state of the particle is
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known to be p at some moment in time in the past. The associated probability of
this history is (choosing the moment in time where the state is p as our reference

time § = ()
po((xt), (x)) = Tr(a(x',t) pa(x, 1) 4(x,1))

= <x | t|a(x, )X, t' > p(x',x', 1)

= |GE(x,t;x, 1)) p(x', X', t')
= P, pyl, ) (2.234)

which of course is expressible as the probability that the particle in state p will be
at position x’ at time #' multiplied by the conditional probability for the particle
to be at position x at time ¢ given it was at position x’ at time ¢'.

Exercise 2.9 Show that for the conditional probability density we have the formula
P(x,t;x, 1) = Tr(é(x —%x(t)) §(x' —%(t'))) (2.235)

where X(t) is the position operator in the Heisenberg picture.

Inserting complete sets of position eigenstates in eq.(2.229), we get the integral
equation determining the time evolution of the density matrix

p(x,x,1) = /dic /dfc’ J(x, %, %, %, 1) p(, %, 1) (2.236)
which is specified in terms of the propagator of the density matrix
J(x,x %, %, 1) = <UL > < x| )% >
= <X X, t><xtxt >
= G, 4%, 1) G(x,t;%,t)
= G, ;% 1) G(x,t;%,t") (2.237)
and the density matrix at time ¢’

p(x,x", 1) = <x|p(t)|x' > = p'(x,%X). (2.238)
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Expressing the density matrix propagator, J, in terms of the retarded and advanced
propagators we have

GR(x,t; %, 1) GAX t';x',t) for t > ¢/
J(x,x' ;%% 1) = (2.239)
GA(x, 1%, 1) GRX, ¢ x/,t) for t <t .

Since
Jx,x, %, x,t) = GR(x,t;x,t) GAX,t;x,t) = |GR(x,t;x 1)
= P(x,t;x,t) (2.240)

the spatial diagonal elements of the density matrix propagator, J(x,x,¢;x’,x','),
have the simple physical interpretation: It is the conditional probability density
for the particle to be found at position x at time ¢, given that it was at position
x' at time t'.23

The probability distribution at time ¢, P(x,t) = p(x,X,t), can not, according
to eq.(2.236), be expressed as a functional of the probability distribution at an
earlier time, as off-diagonal elements of the density matrix are of importance. In
particular we note the failure of the Markovian property in general for primitive

histories

pol(,1)) = p63%,8) # i (), () =[x P, 3, 4) (1)
(2.241)

except for the case where the state p’ corresponds to a state of definite position.
For the simplest of environments, that of an external potential, we have dia-
grammatically for the density matrix (we assume ¢ > t')

R _
X @ X o—e—eX
1 1
t o = ¢ vy (2.242)
x' @ x e—>—o %'
A

and the dictionary for transcribing the diagrams is according to eq.(2.236) as fol-

lows:
A stipulated vertical line represents the density matrix:

X

p(x,x',t) = ¢ (2.243)

x!

----o

23This is also immediately obtained from eq.(2.236) by noting that the state for a particle at
position x’ is described by the statistical operator § = |[x’ >< x'|, and therefore by the density
matrix p(%, %) = <x|(|x' ><x[)|x'> = §(x — x') §(x' — x').
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and we have introduced thick solid lines to represent the particle propagators in
the presence of the potential, for example the advanced propagator is depicted as

—>r—o = GAx,t;x,t) . (2.244)

x't! xt

In accordance with eq.(2.236), spatial integrations over the initial density-matrix
coordinates are implied.

The perturbative expansion and diagrammatic representation of the density-
matrix propagator, and thereby also of the density matrix, is immediately obtained
because we know the perturbative expansion for the retarded propagator (and
thereby also the one for the advanced propagator)

00 n+m n o N m o m
I 6551 = 3 (%) /H dz / I] dte / di / II i
n'=1 m!=1 X mi=1

n,m=0 X = -

GE(X,y t; Xy ) G (Xt X1, tnr ). GR(xq, 1 %, )

G & s %, b ) G (R T Ko o1, 1) G (%1, T3 X/, 1)
V(Zmy ta1)V (X1, tm1)..V (%1, 11)

V (%, )V (Xn-1, tno1)-. V(x1, 41) (2.245)

where we have assumed that the time ¢ is later than #' (for the opposite sequence
the advanced and retarded labels should be interchanged).

Diagrammatically we have for the density matrix for a particle in a potential
the perturbative expansion

X @ xt .—B—, X .M_, ,_11_,

1 1 1 1

t : = : t! + : + :

x! ‘ x't 1 %! 1 1
A A A A

o—«%e«—’ O—<—H—<—X—<—9@ [ *
+ Lt Lt P+
—> X . ® . .
+ Lo+ (2.246)

where we as usual use thin solid lines to represent the free particle propagators;
for example, the advanced free propagator is depicted as

= Gi(xtx,t). (2.247)
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In accordance with the derivation, integration over interaction space-time points
should be performed, and spatial integrations over the initial density matrix coor-
dinates. With the chosen conventions there are no additional factors, so with each
diagram is associated the same trivial factor of +1.

The double line diagrams for the density matrix, with the retarded propagator
exclusively appearing on the upper line, and the advanced propagator exclusively
on the lower line, are generic to quantum dynamics, reflecting the presence of both
U/ and Ut in the time evolution of the density matrix. The diagonal elements
of the density matrix, which are real numbers, are expressed as sums of complex
numbers, but they come in pairs that are each other’s complex conjugates as is
characteristic of quantum mechanical interference.

If the density matrix at some point in time factorizes; i.e., the system is pre-
pared in some pure state ¥, p(x,x’,t') = 1 (x) 1)*(x’), the motion of the particle in
a potential is uniquely determined by the propagator.

For a statistical operator diagonal in the energy representation

p = ple)len><el (2.248)
By

we obtain from eq.(2.156) the relation between the density matrix and the combi-
nation of the energy distribution function and the spectral weight

o dE
5 (B)A(x,x"} E) = <x|p|x'> = p(x,%') . (2.249)

—o0 4T

For the diagonal elements, X' = x, the equation has the interpretation: the proba-

bility of finding the particle at position x is the probability to find the particle at

position X given it has energy F, A(x,x;E), times the probability it has energy F,

p(E), summed over all possible energy values.

Exercise 2.10 Show, by taking the momentum matriz element of the von Neu-
mann equation, eq.(1.869), that the density matriz for a free particle in the mo-
mentum representation satisfies the equation

op(p,p'st) i, Do
— 5 ~ 5 (e—w)epp,t) =0. | (2.250)




