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i d
where the w-integration is limited to the reglon.l/@, < |w| £ kT /h. The average
phaée difference is seen to increase linearly in time:

t
1 Az s = (11.152)
L << b Buime = o

at a rate in accordance with the previous result for the phase-breaking rate,
eq.('ll.“il‘el 4lf:m)ck of effectiveness in destroying phase coherence by {fl‘iceractloilise swll)te}i
small energy transfers is reflected in the compensatl.on at sma hrequ?Icference
tween the two cosine terms appearing in the expression for the phase 1t fer this,
eq.(11.149). In the case of diffusion-enhanced electron—ele‘ctron 1ntterac.t1§ : this
compensation is crucial as there is an abundance.of scatte.:rlnfg eve;n i wrll— Jmal
energy transfer, whereas the compensation was 1mmz.1terxal m}*l etec ro : Ei hon
interaction where the typical energy transfer is determme?l by t e tempe n (.ie-
Whereas the phase-breaking rate for electrqn—phon@ 1nteract1f:}r11 1ts tr}rll;) ) de
pendent, i.e., material dependent, we note the 1nterest}ng featgre tha .Verspal -
breaking rate for diffusion-enhanced electron-electron interaction 1s uni .

two dimensions we can rewrite

LWL (11.153)
To—  2mh* 2

Phase-breaking rates in accordance with eq.(11.145) have beer; extractEeE)dS fl:nmd
numerous magnetoresistance measurements; confer for example re eirergces o e
[59]. We note that at sufficiently low temperatures the e!ectron~e ectron 1 rerac
tion dominates the phase-breaking rate in comparison with the electron-p

interaction.

11.3.3 Temperature Dependence of Resistance
At finite temperature, the quantum correction to the dc conductance of a two-

dimensional system is given by

2Doc” 1/t dQQ ! (11.154)
0G(T) = - hm /o oar DoQ?+1/7,

The phase-breaking rate we have just shown has a power law dependence on the

temperature

L (11.155)

Te
For the temperature dependence of the quantum correction to the conductance 1n
the two-dimensional case we then obtain

I
0G(T) = T omh /de x—!—ﬁ T 2m?h " 27

| Dome (11.156)

Tonth 2

1
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where we assume that the distance the electron diffuses before having inelastic
scattering, the phase coherence length, L, = \/ DoTy, satisfies
<L, <L (11.157)

where L is the size of the sample.
For the first quantum correction to the resistance we then have

SR(T) = —R% §G(T) (11.158)
and obtain thereby the result for the temperature dependence of the resistance
2
- g2 _°© T
SR(T) = —RY, 537 P In T {(11.159)
where 1
Do\ '*

Experimentally, the logarithmic temperature dependence was observed originally
in reference [62]. In the relevant temperature regime of the experiment (T < 1K )
the temperature Tp is large, T < Ty, and it was found that in accordance with
eq.(11.159), the resistance of a thin metallic film as a function of temperature
increases with decreasing temperature. This effect of the temperature is due to the
suppression of localization, thus diminishing the resistance value with increasing
temperature. As the temperature increases, interference from large loops, L >
Ly, is destroyed by interactions. The coherent backscattering that inhibits the
motion of the particle, is thus increasingly suppressed as the temperature increases,
leading to the nonmetallic behavior of the conduction in thin metal films at low
temperatures.

Varying the temperature, however, is not the proper diagnostic tool to uniquely
reveal localization effects as diffusion-enhanced electron-electron interaction gives
rise to similar temperature dependence of the resistance [52]

Exercise 11.1 Find the weak-localization temperature dependence of the resis-
tance in the three-dimensional case.

11.4 Anomalous Magnetoresistance

From an experimental point of view, the disruption of coherence between time-
reversed trajectories by an externally controlled magnetic field is the tool by
which to study the weak-localization effect. Magnetoresistance measurements in
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the weak-localization regime has considerably enhanced the available information
regarding inelastic scattering times (and spin-flip and spin-orbit scattering times
as discussed in section 11.6). The weak-localization effect thus plays an important
diagnostic role in materials science. .

The influence of a magnetic field on the Cooperon was established in section
11.2.1, and we have the Cooperon equation

{~iw = Do{7 - %A(x)}2 F1/r} Culx,x) = % Sx—x). (LL161)

We can now safely study the dc conductivity, i.e., assume that the external electric
field is static, so that its frequency is equal to zero, w = 0, as the Cooperon in an
external magnetic field is no longer infrared divergeﬁk\jhe Cooperon is formally
identical to the imaginary-time Schrédinger Green’s function for a fictitious particle
with mass equal to 1/2D, and charge 2¢ moving in a magnetic field (see exercise
2.2 on page 92). To solve the Cooperon equation for the magnetic field case, we can
thus refer to the equivalent quantum mechanical problem of a particle in an external
homogeneous magnetic field [13]. Considering the case of a homogeneous magnetic
field,® and choosing the z-direction along the magnetic field and representing
the vector potential in the Landau gauge, A = B (-y,0,0), the corresponding
Hamiltonian is

2~ DO N A2 DO ~ A2
H = f(pw+2eBy) + —h—(py + pz> . (11.162)
The problem separates _ ‘
P(z,y) = €= en? x(y) (11.163)
where the function y satisfies the equation
hEDo d*x(y) 1 & ~2< Pz )2 =
—_—— - - = = F 11.164
5 dy? 520; % \Y ” 2B x(v) x(y) ( )

the shifted harmonic oscillator problem where @, is the cyclotron frequency for
the fictitious particle, &, = 4Do|e| B/, so that the energy spectrum Is E=F+
ADoQ? = hie(n+1/2)+hDo@Q% n =0,1,2,...; Q. = 2mn,/ Lz, ny = 0,£1,£2, ...
In the particle in a magnetic field-analog, n is the orbital quantum number and py
the quantum number describing the position of the cyclotron orbit, and describes
here the possible locations of closed loops. The Cooperon in the presence of a
homogeneous magnetic field of strength B thus has the spectral representation

1 mmes rdp, Ynpe (%) ¥ (X)

C ) = — 11.165
o(x, ) % ,;o 21h 4Dgle|BTh™ (n +1/2) + Do7Q2 + 7/7, ( )
where the 1, ,, are the Landau wave functions
1 i ; ‘
Pnp.(X) = enPe? ¢id=? Xn(Y — Ps/2€B) . (11.166)

5

33The case of an inhomogeneous magnetic field is treated in reference [63].
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a:nd Xn(y) is the harmonic oscillator wave function. In accordance with the deri

tion of the Cooperon equation, we can only describe variations on len th scrl‘l,a.
larger than the mean free path. The sum over the orbital-quantum Su b .
should therefore terminate when Dot|e|Bryey ~ b, i.e., at values of th md  of
Mmaz 2 /1%, where lg = (/|| B)Y/? is the magnetic ler’lgth. ¢ order ol

To calculate the Cooperon for equal spatial values, Cy(x,x), we actually d

not need all the information contained in eq.(11.165), since i) ;or li atL'  of
the wave functions in the completeness relation we h : ¥ nometiuation of

ave
* dpy ( D
— = * — z __p*a: _ 2eB o 2B
/—oo27rh Xn Y 26B> Xn <y QEB) = o _Ooch/IXn(y)I2 = _;r_h
and thereby (11.167)
2eB /1 "ma=
C X,‘ = — 1
o(x,%) QWEZ

Qz n=0 4Dol€lB7'h—1(n+1/2)+D07—Q§+7-/7.¢ ’ (11168)

11.4.1 Magnetoresistance in Thin Films

We now consider the magnetoresistance of a film
direction of the magnetic field perpendicular to the
of th'e film i.s smaller than the phase coherence length, a < L, (the thin fil

quasi-two-dimensional criterion), or the usually much weaker r(festriction tha;n' ’t e
smaller than the magnetic length, a < I, only the smallest value of Q. =2n /IL1S
n = .O,il,i2, - contributes to the sum. Since the smallest value iszcg =T(; wz’
obtain, according to eq.(11.13), for the quantum correction to the conduzctivi{y )

of thickness a, choosing the
film.** Provided the thickness

5o(B) e3BDyr "mas 1
m2h*a 4Dole|BTh™ (n +1/2) + /7, (11.169)
ﬁ‘&r}?loying the property of the di-gamma-function ¥ (see for example reference
n—1
Y(z+n) = 1
) P(z) + ;Hn (11.170)
we get for the magnetoconductance
8G.p(B iy
- & -1
ws(B) = T fz(4D0l€lBh Ty) O (11.171)
where
= L 1 1 3 1
fa(z) = ¢<2 + ;) + 1/)(5 + Nmaz + ;) : (11.172)

34 - - -

. The strictly two-dimensional case can also be
ing the two-dimensional electron
heterostructure.

‘ reftlized experimentally, for example by us-
gas accumulating in the inversion layer in a MOSFET or
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The magnetoconductance of a thin film is now obtained by subtrac;u)ing thee ZETO
field conductance. In the limit B — 0, the sum can be estimated to becom

Nmagz 1

—  In(nmesdDole| B '7,) . (11.173)
2 4Dole|BTh™ (n +1/2) + 7/,

n=0

USlIlg the plO[)eI(y 0‘ L] (] (l -ga]ll lla-‘u lCthIl
) - ( )
im n ~ nn F[

we finally arrive at the low-field magnetoconductance of a thin film

62

AGup(B) = 6Gap(B) = 6Gas(B = 0) = 5= f(B/By) S (11179)

where 1

fa(z) = Inz + 9 <%+;> (11.176)

and B, = h/4Dole|T,, the (temperature—dep?ndent) c'haracten}sltl(j, S(izlsii:fs Ctalf
magnetic field for the weak-localization effdectt, gl detegzlggfilzzsgncael Ezgnetoresm_

ing. This scale is indeed small compared to the sca | ma ]
:Z:ll::leg effects By ~ m/|e|r, as B, ~ Bah/ €rT,>> The We§k-loiz;hzat10n lmjvgl?een
toconductance is seen to be sensitive to very small magnetic fie 1s, nj}r}n&lz yN h
the magnetic length becomes comparable to .the phase coherefnce :ng jr Bcan f:é
or equivalently, w.r ~ h/erT,. Since the impurity mean ree time, ,,be n o
much smaller than the phase coherence time Tos the above description car;}n o vahe
over a wide magnetic field range where classical magnetoconductanceb i Eendin
absent. Classical magnetoconductance effects are governed by the' or }11 ! loog
scale, w.T ~ 1, whereas the weak—localizati;)sn quantumhefflgct'i'ertls ll:le }xlzs; V?(I)lr . th}';
of typical area Li encloses a flux quantum.®® We note the limiting

function

5 for k1

falz) = (11.177)
Inz for z>1 .

The magnetoconductance is positive, and seen to have': a qua@ratic uptur}l at }ow
fields, and saturates beyond the characteristic field in a universal fashion, 1i.e.,
b

351 terms of the mass of the electron we have for the mass of the fictitious partl(l:lle K/ 2?% };
mh/epT, and the low magnetic field sensitivity can be viewed as due to the smallness o
fictitious mass in the problem. . )

C36Beyond the low-field limit, w.T < k/epT, the expression for the magne‘:ocor:it;ctt?grci }(::1:) :Loit
i i i ivation i involved, since we must acc
be given in closed form, and its derivation is more inv , ! . o the oroit
i i tz force [65]. When the impurity mean .
bending due to the magnetic field, the Loren _ . ean
become;gs comparable to the phase coherence time 7, we are no longer in the diffusive regime,
and a Boltzmannian description must be introduced [66].
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independent of sample parameters.3” The magnetoresistance is therefore negative,
AR = —AG/G?, which is a distinct sign that the effect is not classical, since we
are considering a macroscopic system.?®

The negative anomalous magnetoresistance can be understood qualitatively
from the simple interference picture of the weak-localization effect. The presence
of the magnetic field breaks the time-reversal Invariance, and upsets the otherwise
identical values of the phase factors in the amplitudes for traversing the time-
reversed weak-localization loops. The quantum interference term for a loop c is
due to the presence of the magnetic field changed according to

—_ 2 te
A A7 — IAﬁB“’)l?eXp{%fdi ~A(i<)} = [AB=I R (11.178)

where ®. is the flux enclosed by the loop ¢. The weak-localization interference
term acquires a random phase depending on the loop size, and the strength of
the magnetic field, decreasing the probability of return, and thereby increasing the
conductivity. The negative contribution from each loop in the impurity field to
the conductance is modulated in accordance with the phase shift prescription for
amplitudes by the oscillatory factor, giving the expression

2
<G(B)>-<G(0) > = ifh <Y |AP=I {1 — cos(2n®, /D) } et/ >

1mp
(11.179)
The summation is over all classical loops in the impurity field returning to within
a distance of the mean free path to a given point, and t. is the duration for travers-
ing the loop ¢, and @, is the flux quantum ®, = 27h/2le|. The sum should be
performed weighted with the probability for the realization of the loop in ques-
tion, as expressed by the brackets. The weight of loops that are longer than the
phase coherence length is suppressed, as their coherence are destroyed by inelastic
scattering. In weak magnetic fields, only the longest loops are influenced by the
phase shift due to the magnetic field. It is evident from eq.(11.179) that the low
field magnetoconductance is positive and quadratic in the field.3® The continuing
monotonic behavior as a function of the magnetic field until saturation is simply a
geometric property of diffusion, viz. that small diffusive loops are prolific. Instead
of verifying this statement, let us turn the argument around and use our physical
understanding of the weak localization effect to learn about the distribution of the
areas of diffusive loops in two dimensions. Rewriting eq.(11.168) we have in two

37Experimental observations of the low field magnetoresistance of thin metallic films are in
remarkable good agreement with the theory. The weak-localization effect is thus of importance
for extracting information about inelastic scattering strengths, which is otherwise hard to come
at. For reviews of the experimental results, see references [58] and [59].

38The classical magnetoresistance of a macroscopic sample calculated on the basis of the Boltz-
mann equation is positive.

39The minimum value of the magnetoresistance is ezactly for zero magnetic field, and the weak

localization effect is thus one of the few effects that can be used as a reference

for zero magnetic
field.
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dimensions B
[ee] Mmaz a7 BD
Co(x,%) = /dt e DN T Dt (11.180)
0 T(DO n=0
For times ¢t > 7T we can let the summation run over all natural numbers and we

can sum the geometric series to obtain

oo e=tm¢ 9 B Dot 1
_ [ mBhet 11.181
CO(X,X) s 47['7‘D0t q)(] sinh ZWgDDQt ( )

The factors independent of the magnetic field are the return probability and the
dephasing factor. Representing the factors depending on the field strength, which
describes the influence of the magnetic field on the quantum interference process,

by its cosine transform

orBDot 1 — /2"5 COS%E £(S) (11.182)
—00 0

®, sinh 2mBDot
o)

and inverting gives

1 1
) ' 11.183
$45) = Dt ot (12) -

We can therefore write for the weak localization contribution to the conductance

2¢2Dor [ et oo BS
- - + d <-—> 11.184
8G(B) e 47rTD0t/oS fu(S) cos { ( )

and we note that f;(S) is normalized, and has the interpretation of the probability
for a diffusive loop of duration ¢ to enclose the area S.
For the average size of a diffusive loop of duration ¢ we have

<S> = /Oif’S'Sft(S) — 4DotIn2 (11.185)

i.e., the typical size of a diffusive loop of duration ¢ is proportional to Dot.
For the fluctuations we have

/_275 S*f,(S) = 8w2(Dot)? (11.186)

il

<§?>,

|
| and we can write
\

T 1
£(S) = . (11.187)
V2 < 82>, cosh?® 2<§2>,

The probability distribution for diffusive loops is thus a steadily decreasing function

of the area.
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11.4.2 Three-Dimensional Sample

In the three-dimensional i on |
i al case we perform the @).-integration in eq.(11.165) and

e e 1 1
do(B) = > an” (—L) (11.188)

—_ 3 t
L0 R R A W oy /n+146
where we have introduced
_ % A
4L2  4Dole|Br, (11.189)

In the IOW magnetlc ﬁeld ll]lllt WeT << h/epT t € su W a[b[)]()x ate e \%
c F h 1 y 1
9 / 3 1m I b gl (S

62 Nmaz+1
tan~!

§o(B) = ———  Jdz —~— tan <—ZB

so that

Ao(B) = é0(B) — é0(B=0)

w3kl vV
B z+9 =0 \Jn+i+4
We should not forget about the upper cutoff. However, the subtraction renders

the above expression well-defined. In the low . o
. magnetic field limit, [
Tmaz 2> 1, we obtain the result 8 imit, lp <1, where

e? maptl tan=l e nmas tan™! (——AE—
2Vz+s 2ly/n+ 146
( —*2—) . (11.191)

2

Ac(B) = égfg(zqemw@,) (11.192)

where

= 1
fg(z)_r;) {2 (\/n+1—|-; - ¢n+i) - ﬁ—ﬁ} (11.193)

To find the asymptotic limit of the function f; for small values, z < 1, we expand
the above expression in n + 1/2 + 1/z and obtain ’ ’

[oe]

fa(z) <n+1+ %)—5/2 : (11.194)

e

n=0

This Riemann zeta-function has the limits (see for instance reference [64] p. 1073)
{ =237 k1

0.605 x> 1.

fa(z) = (11.195)




462 CHAPTER 11. WEAK LOCALIZATION 11.5. AHARONOV-BOHM EFFECT s

where in the limit of large x, the function f3 is seen to approach a constant value where
which has been calculated numerically [67]. ‘
We note that the weak-localization magnetoresistance in three dimensions is 9z = = CoSTZ 1
independent of the relative directions of the magnetic field and the current; ie., = " sinnz fz) , fl») = T —7 (11.199)
the longitudinal and transverse magnetoresistance are identical. Furthermore, we (2 - m) + (f;)
notice that at large magnetic fields the magnetoresistance tends to a universal and we obtain for the flux d
epende .

constant (independent of sample parameters). The low-field square-root depen- P nce of the conductance of a ring
dence of the magnetoconductance cleared up a long-standing mystery in the field o2 sinh 228
of magnetotransport in doped semiconductors. 0G(®) = ——1L Ly

g sp p 7k % cosh % ~ cos % . (11.200)

In the limit B < L, (which can be achieved for an arbitrary large radius by

11.5 Aharonov-Bohm Effect lower:
owering the temperature) we get the result
The most striking manifestation of the quantum interference involved in the weak- ,
localization effect is obtained by confining the motion of the electrons to a thin 5G(®) = _2e R 1
cylindrical shell (or a ring), which is penetrated by a magnetic flux directed along oy L (2;_12)2 — cos z;_@ (11.201)
@ )

the axis of the cylinder. In that case, all closed loops enclose the same flux & =
BrR?, where R is the radius of the cylinder, and the conductivity should oscillate We note that the modulation amplitude can be made arbitrarily large.

as a function of the flux ® threading the cylinder with the period @ /®. This is In the case of a cylinder, the quasi-two-dimensional case, we have for the flux

an example of the Aharonov-Bohm effect in solid state physics.* dependence of the conductance

We now turn to the quantitative description of the weak-localization Aharonov- »

Bohm effect, and must therefore solve the Cooperon equation in cylindrical coor- 5G(®) = 2e? 1 40 i 1

dinates T T rh / z .
Th 27rR-1/z i Q- P L7 (11.202)
10 e, \ & 1 1 :

P ('— TR ) _ PN p 2V e A, ¢) = 5 6(=2) Sle=¥) - We improve the convergence by adding and subtracti
{ ( Rop h 7 92 e TR can then extend the @,-integration t gi nd subtracting the zero-flux result, and
z g n to oo, and obtain (see for example the table

(11.196) of integrals [64] p. 978)
We have chosen a gauge where only the azimuthal component of the vector poten-
tial is nonzero, and we assume that the thickness a of the cylindrical shell satisfies
the criterion B?L?a* < ®2. We can then assume that the vector potential is

constant within the cylindrical shell, and we obtain the solution 2 L, 0 or R n orn®
- _ - Lo _ , ™m
25 {ln ; 2; A0< L ) (l—cos 3 )}

AG(®) = 5G(®) - 6G(® =0)

(11.203)

1 / 6in(z—2')+in(<ﬂ—w/) o

Co(2,7,0,¥") = 57 = - (11.197)
) 2w RL, Dot n,ZQ:z Qr+ (% - _}%%))2 + L3

where Ky is the modified Bessel function, the McDonald function. The flux depen-
dence tends to zero exponentially for R >> L, and in the opposite limit, R < L
> (%)

4

where the restriction to the singular regime requires |n|,® /® < R/l. Assuming (achieved at low tem .
) peratures) th 1 . .
| < R, we can extend the n-summation to £co. infinity since ) the amplitude of the flux modulation will tend to
In the case of a ring, the quasi-one-dimensional case, L, < L, we only have o §,
to keep the @, = 0-term in the Q,-sum. The summation over 7 is readily done by Ko(z) = 2 © orz > 1
the method of residues 0 - | ] (11.204)
) —Ilnz orz 1.
- 1 For a revi f th ; .
= res(g, z) (11.198) view of the experimental confirmation of the weak-localizati
Z 2 )2 4 ( R )2 Z ’ Bohm effect, we refer to reference [70]. ak-localization Aharonov-

n=-—00 (n — % E

40This amazing manifestation of the quantum mechanical superposition principle at the macro-
scopic level was suggested in reference [68]. Here we follow the presentation of reference [69].
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11.6 Magnetic-Impurity and Spin-Orbit
Scattering

pin-orbit scattering off the impurities and
allow for the impurities to accommodate magnetic scattering.#! On general phys-
ical grounds we deduce that magnetic-impurity scattering destroys quantum in-
terference since the electronic path is partially kept track of, due to the flipped
impurity spins revealing the visit of an electron, and quantum interference be-
tween distinguishable trajectories is excluded. Spin-orbit scattering, in contrast
to magnetic-impurity scattering, does not violate time-reversal symmetry, and one
could be inclined to assert that it should have no influence on the weak-localization
quantum interference. However, the coupling between the orbital and spin degrees
of freedom of an electron provided by the spin-orbit scattering leads to highly
nontrivial effects.

To accommodate the additional scatterin
matrix element has to be changed from merely a constant

representation) to the scattering amplitude

In this section we take into account s

g mechanisms, the impurity potential
(in the momentum

faa’(p;pl) = V5aa' + VS Si . 5:aa' — i‘/so (p X pl) . Eaa’ (11205)

where S; and & denote the impurity and electron spin, respectively. Performing
the standard positional impurity averaging, we obtain in the Born approximation

the impurity correlator

Unerippr(0,0) = 1 (VI G S0 + |Vol* S T T

V(P X D) Faw (B X P) - Fosr)

po <—:—*p’ o
= >:E< (11.206)
p' ﬁ<—l:—<pﬁ’
Diagrammatically we have the Cooperon equation
pa p'a po <—:—<-p’a’ po L p'o’
C = * + x C (11.207)
p'B ph p’ﬂ<—1:—<-pﬁ’ p’ﬁ~i‘ ph
(p+p'-p")B"

41We follow the presentation in reference [71). Magnetoresistance in many-valley semiconduc-

tors is discussed in reference [72].
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Due t . . .
inueen(:3 thleborbltal strycture .of the spin-orbit scattering the Cooperon equation will
n eglim;j ! ea c;nphcz;;ced integral equation in the angular variables Hovveverw;n
» Tso, Ts 2> T, Where an electron changes mome in 7
e limit . : ntum many tim i
spin is flipped the integral kernel, the correlator eq.(11.206), can }l,)e ap?rg)iifr.;lr:‘cltj
e

by its average over moment irecti
um directions, the Fermji
the following equation for the Cooperon: ey sutface average. We thus get

Coza’~ 1 ! = 7 TT =
BB (p7 p ) Uaa/;ggl + Uaa";ﬁ,@" C(Q’w) Ca”a’;ﬁ"ﬂf(Q,w) (11208)

where the Fermi surface averaged impurity correlator has the form:

Uaa’;ﬁﬁ’ = u25w:6 1 -1- 2 2\ g
oo+ (s = ) Gaar - Fppr (11.209)
with
2
u; = ni|Vi]* < 8>
. (11.210)
, -
ugo = ni|Viol (p X P') . (11.211)

The bracket denotes an ave m
rage over the assumed random direct; i v
) . ctions of the i
spins, and the bar denotes the Fermi surface average. The insertion is hQ l—: iuﬁf’
b b

qQM)::%NW{1+wnuJ%HQ§ (11.212)
where 7' is the total elastic scattering time

RO NS S
= - p E , Z:27rN0us R ::27rNguzo. (11213)

The form of the insertion  is a si
. a simple consequence of the averaged
the present case being diagonal in the spin degrees of freedom zfnd gir\(/):::%)?cor or

FNEp) = — L
s (E,p) i Sap - (11.214)

We have assumed three-di i i ;
-dimen : .
so that*? sionality with respect to spin-scattering properties

1_1_1_11

e YT TZ 3 E (11.215)
and

1 _1_11

= T 72 3n. (11.216)
where

E_Q N 2
= Mot (11.217)

s

In a sy te whe e the otion of the ectrons are stric y two-dimensior al he spin-orbit
stem T motion h el
I ictl
nSs1 y )
SCatteIlng is seen to be absent for the consider ed scatterlng mechanlsm, since a couplir g 2.0 car
not ﬂlp the spin alOIlg the z-dir ection
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and 5
-_— = 27\'N0u§0 .
Tso

The spin structure of the Cooperon,
impurity correlator, is given by

(11.218)

determined by the spin structure of the

Caa’;ﬁﬁ’ = A(Q,w) Saat (5[35! + B(Q,w) Foat 5ﬂg/ . (11219)
Using the identity
(a:aa“ . &ﬁﬁll)(&allal . Eﬁllﬁl) = 3 5aa’ 5ﬁpl -2 Eaa’ . 5ﬁﬁ/ (11220)

it is straightforward, in the limit T < Tso, Ts, 10 Obtain

3 1
2

1 1
A = — - 2
(@) 27 <_iw+D0Q2+§%+§f—w + Ziw+ DoQ? + 2

) (11.221)

and
1 1 1
_ 1 _ (11222
PQw =% (—iw TDoQ + 5t it D@ l> .

We thus have the following conductivity correction

e’D ! e?D !
Sow) = ~ g Consel @) = Y 2(A(Q,w) +3B(Q.w))
2 3 1
_ _26 Dg / . 2 - - — 2 . ) (11'223)
mhL? Q \~w + DoQ?% + 3 + 35 —iw + DoQ? + =

We notice that the magnetic impurity scattering in accordance with our expecta-

zation effect. In the absence of magnetic scattering,

tion suppresses the weak-locali
e singularity in the

we observe that the spin-orbit scattering will not eliminate th
conductivity, but instead change the sign of the quantum correction (and reduce
the strength by a factor of 2)! This effect is referred to as weak antilocalization,
and has been observed in many substances for which impurities give rise to strong
orbit scattering. The scaling function will thus for the case of spin-orbit scat-
tering cross the axis as in the three-dimensional case, before it at large conductance
approaches zero, i.e., exhibit nonmonotonic behavior.*> We have assumed that the
sample length L is much greater than the spin-orbit length scale, Lo = v/DoTso,
the length scale for randomizing the spin direction due to spin-orbit scattering.
The scaling function thus depends on the symmetry of the scattering potential.

spin-

confirmed by a four-loop renormalization
order terms in the perturbative expansion
consistent theory of

43Guch a nontrivial scaling behavior seems to be
group calculation [73]. Due to the importance of high-
of the scaling function (here the importance of the finite 1/g°-term) a self-
localization for systems with spin-orbit scattering has not been achieved.
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If we decompose the spin states in singlet,

Cy(Q,w) = - _ 1
(Quw) = A(Qw) - 3B(Q,w) = T DT I (11.224)
and triplet, ‘ N
CUQ,w) = - !
(Qu) = A(Q,w) + B(Qw) = (11.225)

—iw+ DoQ2 + 2 4+ A
Ts Tso
we recognize that the singlet part of t i i
o glet part of the Cooperon is unaffected by spin-orbit
The weak an.tilocalization effect; i.e., the appearance of the minus sign is a con-
sequence of the interference being between time-reversed scattering sequences. On

the time-reversed traj i
Jectory the electron experiences the spi i i i
sequence and opposite directions pi rotations in opposite

e = R, e = R i (11.226)
where
H(8HY) noe 8 L. g (e
R(¢,0.9) = [ & cos?  isinfez(-9)
& ¥) (isin %e‘%(w"ﬁ) e-%(qﬁz+¢) cos & (11.227)
2

is ‘ch(;1 uni’calty rotation operator in spin space parametrized by the Euler angles
(recall exercise 1.10 on page 50). For the following example of initial spin state

represented by the spinor
. 1
Y = (0 ) (11.228)

we have for the final spin states for the two interfering alternatives

| — Rll R R
1/10 ( R12 ) ’ 7/’5‘—" ( R%i ) = < —éiz ) (11.229)

where we notice the appearance of i i i
o PP e of a minus sign. For the interference term we then

d)cl/)é' + ¢;¢c = RTIR;I + R;?,R;l + RllRll + R21R12 = Z%C(R?1|R12|2)

0 . 0
= 9 ER 22 i(d+) a2
¢ (COS 2 ° sin 5) (11.230)

The first term in the parentheses averages to zero due to the random phase fact
whereas the second term on the average produces the factor —1 /2 in eq.(11 22?:) %
Th(? m;.xgnetoresistance calculation in the presence of spin-flip andq-s in.- b)t
scatt.erlr%g is parallel to the one already performed in section 11.4, and WiiIJ)h ?cr :
peating it we notice that it corresponds to the substitution DOQZ 7—> 4D [e|g’uh£?-
and we obtain for the magnetoconductivity in the two-dimensional casg o

aoi8) = oz 05+ 3) - G+ %) + 50 G+ 3))
(11.231)




468 CHAPTER 11. WEAK LOCALIZATION

where

B1=BT+BSO+BS P By =

and we have introduced the characteristic elastic magnetic field scales

h h h
_h g o B=m (11.233)
B 4D0‘€|T ’ 4D0‘e‘7-so 4D0l€‘7‘s

%Bso-l—%Bs—}-Bw , Bs=2B;+ B, (11.232)

A sample with spin-orbit scattering will thus show a positive magnetoresistance,
and the extremal value at zero magnetic field will be a minimum.**

11.7 Mesoscopic Fluctuations

In the following we shall show that when the size of a sample becomes compara-
ble to the phase coherence length, L ~ Ly, the individuality of the sample w.lll
be manifest in its transport properties. Such a sample is said to be mesoscopic.
Characteristically the conductance will exhibit sample-specific, noiselike but Te-
produceable, aperiodic oscillations as a function of, say, magnetic field or chemical
potential (i.e., density of electrons). The sample behavior is thus no longer char-
acterized by its average characteristics, such as the average conductance, i.e., the
average impurity concentration. The statistical assumption of phase—incoherer}t
and therefore independent subsystems, allowing for such an average description, 1s
no longer valid when the transport takes place quantum mechanically coherently
throughout the whole sample. As a consequence, a mesoscopic sample does not

possess the property of being self-averaging; i.e., the relative fuctuations in the
conductance do not vanish in a central limit fashion inversely proportional to the
volume in the large-volume limit. To describe the fluctuations from the average
value we need to study the higher moments of the conductance distribution such
as the variance AGapys. We shall first study the fluctuations in the conductance

at zero temperature, and consi

AGaﬁy,y,s = < (Gag— < Gaﬁ >)(G75— < qu >) > .

der the variance
(11.234)

For the conductance fluctuations we have the expression

< GopGos> = (L7 ]dxz dx, fdxl [, < (X2 %) 05(X1,X1) >

(11.235)

The diagrams for the variance of the conductance fluctuations can still be managed

within the standard impurity diagram technique in the weak disorder limit, epT >

k, and a typical conductance fluctuation diagram is depicted in figure 11.4. (here
the box denotes the Diffuson).*® '

nts

antilocalization effect was demonstrated in experime
orbit scattering is absent, were
by increasing the spin-orbit

44 An elegant verification of the weak
by Bergmann [58], where a thin film of magnesium where spin-
covered with an increasing amount of a submonolayer of gold, ther
scattering.

45The diagram is in the position representation,
ignored, but will be explained shortly.

and the momentum labels should presently be
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Figure 11.4 Conductance fluctuation diagram.

rity’l;&:rz(;?strsvj‘gxon (Zlf th.e 'cond.uctance fluctuation diagrams follows from impu-
iy avera prf ’ a;:(())n .uctllvn:y dwgramss Draw two conductivity bubble diagrams
e perturb;; tigvel rs inc udfa the 1mpur1ty scattering. Treating the impurity scat—’
joring pert OSS'bly, we get 1mpur1ty vertices that we, upon averaging them, have
e V;; ria; e vgaés. Smc‘e we subtract the squared average conducta;lce in
orming the varias cs, , , the diagrams for the variance consist only of diagrams
where the © discun uc ar}ce loops are co'nnected by impurity lines. As already
A diagram:s;o:; ?roxeﬂ(lel(;c?hza‘gon, the dominant contributions to such
Cooperon, and here additionally frf)lrrrlatrlele Srilf(fiulszrrlf-wavelength divergence of the
pict'i‘z icg];tgllj:: ltixz COl’ltI’lb}lthD to the variance from the Diffuson diagram de-
B e BL , wde write .the corresponding expression down in the spatial
e COCC('); ance with the usuzlxl Feynman rules for conductivity di-
e et 1;}311 er a h.ypercube of size L. If we assume that the sample
e g the t(; impurity mean fre'e path, L > [, the spatial extension of
the Inegration ver the }tlaxternal, excitation and measuring, vertices can be ex-
e o th}g 51fnce t e propagators ha§ the spatial extension of the mean free
path, We can | thl;e {;)rfetlntroduce the Fourle'r transform for the propagators since
o reference to the | }Iln eness of the S}'/stem is necessary for such local quantities
unthermors ,f S ce the spatial extension c.)f the Diffuson is long range compa,red'
to the mean fre rp:;d, \/Ne_carll set the spatlz.a,l labels of the Diffusons equal to each
mine(,i - ,thle Lrand r'y =r'. All the spatial integrations, except the ones deter-
e n, (;:an‘ then.be performed, leading to the momentum labels
o the Conduftan S as e}:lplcted in figure 11.4. Let us study the fluctuations in
S havcelg S0 t at the .frequency, w, of the external field is zero. The
have elastic scatteiix?gr :rifiu:llleileal:s:z olileeerllaselleted frofm e o snce e oy
: el, sa i
the inner, €. According to the Feynman rules,, WZ o€£)tant?jr()tfeeli)rilf;lfszlr:dd?;gii?;




|

470

CHAPTER 11. WEAK LOCALIZATION

the following analytical expression:

/ d dp'
22\ " 2 9f(e) [, 1) [ 4P
< GopGrs > = L (e u) /f{fo De /_;le e (27rh)3/(27rh)3

47m?

Gf(p’)Gf(p’)Gﬁ(p’)Gﬁ(P’)Gf(p)G?:(p)G?(p)Gﬁ(m

11.236
o p By Jar i’ 1D(e 1€ = I (11.236)
In order to obtain the above expression we have noted that
D(r,r',e —€) = [D(r,r',e— €] (11.237)

ween the retarded and advanced propaga-

tOIS. lit Z€ero temperalure, the Ferml functlons Set the ene]gy Vallables mn tlle

i iffuson fre-
ropagators in the conductance loops to the Fermi energy, and t}.lze]i)eldu];iﬁuson
puelr)lcy to zero. At zero temperature we therefore get for thel cgns1
. M 1\ —
(dlliagra,m the following analytical expression, D(r,r') = D(r,r', ),

2522\ * 1 dp / dp’ y
~ (22 ) == [ o5 PaPyPs P
L ( 4mrm? ) /(27rh)3 (2mh) K

which follows from the relationship bet

< Ga,gG 5 >D

(G (p)GA ()GE. ()G, (9 fafar’ |D(x, X)) (11:238)

i i is is the leadin
It is important to note that the same Diffuson appears tvzlceéi;l;f é?;g}iams COIE
singularity we need to keep srack of. If we try to construc vztm e T
taining, say, three Diffusons, we will observe that they cam;io car %rr the same wore
vector,,and will give a contribution smalle}‘ by the ffactor ! {3 eFtT}.le e o o
integrations at the current vertices can easily be performed by

= [— _ A 3 1.239)
; dp R A 2 = —hphNoT” day (1
Jory /(27rh)3 Pa Py [GeF (p)GcF(p)] 3

and we obtain for the considered Diffuson diagram the expression

*D : |2 11.240
< GogGos >p = L7 (e%;ﬂ Sy 055 /dr ' (D, ). ( )

To calculate the Diffuson integrals we nee"i to
and its attachment to the current leads, since t :
scale cutoff. At the surface where the sample is attache

vanishes

in accordance with the assumption,
returns to the disordered region phase coherently. On the other s

address the finite size of the sample
he Diffuson has no inherent length
d to the leads, the Diffuson

D(r,r') =0 r or r' on lead surfaces (11.241)

that once an electron reaches the lead it never
urfaces the current
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vanishes; i.e., the normal derivative of the Diffuson must vanish (recall eq.(5.200)
and eq.(5.201))

9D(r,r)

= r or r' on lead surfaces with surface normal n . (11.242)
We assume that the leads have the same size as the sample surface.®® Therefore

by solving the diffusion equation for the Diffuson, with the above mixed (von
Neumann and Dirichlet) boundary condition, we obtain the expression

/dr/dr']D(r,r’)IZ _ (Zn: Dlo/;z>2 (11.243)

where n = (ng,n,,n,) is the eigenvalue index in the three-dimensional case

m
o = TMa  Ma =gy, (11.244)

where
ne = 1,2,..., ny,=0,1,2,... (11.245)

and we have assumed that the current leads are along the z-axis. Less than three
dimensions corresponds to neglecting the ny and n,’s. We therefore obtain from
the considered Diffuson diagram the contribution to the conductance fluctuations®’

2\ 2
< GapGos >p = (#) Cd 60y 5.5 (11.246)
where the constant ¢; depends on the sample dimension. The summation in
eq.(11.243) should, in accordance with the validity of the diffusion regime, be
restricted to values satisfying n +n? +nZ < N, where N is of the order of (L/I)2.
However, the sum converges rapidly and the constants ¢, are seen to be of order
unity. The dimensionality criterion is essentially the same as in the theory of weak
localization, as we shall show in the discussion below of the physical origin of the
fluctuation effects. The important thing to notice is that the long-range nature of
the Diffuson provides the L* factor that makes the variance, average of the squared
conductance, independent of sample size (recall eq.(7.142)). The diagram depicted
in figure 11.4 is only one of the two possible pairings of the current vertices, and
we obtain an additional contribution from the diagram where, say, current vertices
v and § are interchanged.
In addition to the contribution from the diagram in figure 11.4 there is the other

possible singular Diffuson contribution to the variance from the diagram depicted
in figure 11.5.

46This “thick lead” assumption is not of importance. Because of the relationship between the
fluctuations in the density of states and the time scale for diffusing out of the sample, the result
will be the same for any kind of lead attachment [74].

4TBecause of these inherent mesoscopic fluctuations, we realize that the conductance discussed
in the scaling theory of localization is the average conductance.
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Figure 11.5 The other possible conductance fluctuation diagram.

I 1S (1 agla ){ (()lll l)lleS € same a (}l]l as the one 11 i ure 11.4 but Wltha;
g I
1 h M
dlﬁerellt pa,lrll’lg Of the Current \/ertlces. Ve nobe tha,t the dlagIaIIl m flgule 11-5

48
allows for only one assignment of current vertlce.s. .
Reversing the direction in one of the loops gng.sﬂcn A
now with the Cooperon appearing instead of ;uheth; B?%u.son
it the same as for
nditions on the Cooperon are . '
i?agnetic field, the Cooperon contributes an e?lualfamokllmte
1 i ductance, we therefore hav
bution to the variance of the con
dzgree of freedom of the electron would quadruple the value)

to similar diagrams, but
Because the boundary
, in the absence of a
For the total contri-
(allowing for the spin
at zero temperature

e\’ §us 645 + O Ons) (11.247)
<Ga5G75 > = (ﬁ) Cd (5a'y 565 + 0as 048 ¥

Th iance of the conductance at zero temperature, a.nd for. the chﬁsen i(}eolrreljc;zl/
: hypere be. is seen to be independent of size and dlmens.10n of the sa,l. P end
Zf : hyi?c(l;il;of:i; sa,nd the conductance fluctuations appear in the metallic regl
egree , . 1 .
descr'ibed z;lbOVe tZ zecilz;ls‘ifjgacl(.mductance, according to eq.(8.74), is_ §r9portxon?}
Sclzr_l(z:e :)1? a";e{aw;gv we find that the relative variance, AG < G > , ;Z p;:}})lzr-
t? o 4'n21d Thi,s result should be contrasted with the be.hav10r L o her
A L fl . tuations, compared to which the quantum 1nterferepce indu
modynan}lcﬂ u(t:uations ;Lre huge, reflecting the absence of sehf—av.eragmg}.l R
mes'(;‘icoglinig;ing role of the lowest eigenvalue in eq.(1.1.243) 1nd1c}?testtheac ;I;rent
. ?‘iuztuations studied in situations with less .inyaswe probesht ar;d b
T::(Ii)écnecessary for’ studying conductance fluctuations, can be enhanc

through the Einstein relat.ion, be
he diagram in figure 11.5~ gives t.‘.he
he two types of fluctuations being

48The contribution from the diagll'am in figure 1%14 cz:nt,
ascribed to fluctuations in the diﬁu‘smn constapt, v; (zretas ;
contribution from the fluctuations in the density of states,

) ) .
However for a nOnCUblC sample, the variance Wlll be geOIIletl'y dependent 6 (
)
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to the universal value. In the case of the conductanc
connection of the disordered region to the leads, whic
Diffuson by the lowest eigenvalue, n, = 1, reflecting
ical boundary conditions at the interface between s
time for quantum interference processes to occur un
the electron to diffuse across the sample, L2/ D,.
observing mesoscopic fluctuations, the way of ob
the destruction of phase coherence necessary for r
In order to understand the origin of the conduc
Jjust as the conductance essentially is given by the
points in a sample, the variance is likewise the P
When we perform the impurity average, certain o
will not be averaged away,
to the case of coherence in

e fluctuations, the necessary
h cut off the singularity in the
the fact that due to the phys-
ample and leads, the maximal
interrupted is the time it takes
When considering other ways of
servation will in turn introduce
endering the fluctuations finite.
tance fluctuations, we note that,
probability for diffusing between
roduct of two such probabilities.
f the quantum interference terms
since certain pairs of paths are coherent. This is similar
volved in the weak-localization effect, but in the present
case of the variance of quite a different nature, For example, the quantum inter-
ference process described by the diagram in figure 11.4 is depicted in figure 11.6,
where the solid line corresponds to the outer conductance loop, and the dashed

line to the inner conductance loop. The wavy portion of the lines corresponds to
the long-range diffusion process.

Figure 11.6 Statistical correlation described by the diagram in figure 11.4.

When one takes the impurity average of the variance, the quantum interference
terms can pair up for each diffusive path in the random potential, but now they
correspond to amplitudes for propagation in different samples. The diagrams for
the variance, therefore, do not describe any physical quantum interference process,
since we are not describing a probability but a product of probabilities. The
variance gives the statistical correlation between amplitudes in different sam

ples.
The interference process corresponding to the diagram in figure 11.5 is lik

ewise
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depicted in figure 11.7.

1 1 1 11.5.
Figure 11.7 Statistical correlation described by the diagram in figure

considered, no impurity average 1s effec-

tively performed as in the macroscopic case. The quantum 1nterfere‘rllcveV ;ne;:;elcré
tile Zoiductance, which for a macroscopic sample? averages to ze1;)os Clo e nepect
the weak-localization effect, are therefore respf)r}s1ble for the 12381 ths ions
i In the weak-disorder regime the conduct1V1.t.y (or equiva . }{ e
g;nlginstein’s relation) is specified by the probability for the particle to prop

between points in space. According to eq.(11.17)

P="Py + 23 IA Al cos(¢c — o) (11.248)

c,c!

When a specific mesoscopic sample is

' ! 249
" A, = lAclewc , P = ﬁS[XC(t)] (11.24 )
. . . fied
here |A.| specifies the probability for the classical Path ¢, and its phase 1ts EE:;I e
: the aétion When the points in space in questions are farther apatr e
Ir?ean free path, the ensemble average of the quantun; 1nt(eirt;erence fe(:;nr in the
i izati be neglected because
ili hes. The weak localization can

p;Obablgt;y}::\f:le:os((ﬁ — ¢o) >imp = 0. However, for the mean square of the

phases c c 3

probability, we encounter < cos?(¢e — der) >imp = 1/2, and obtain
<PP>imy = <P>L, 4+ 22 |Ad |AL] . (11.250)

c,c!

i 25 mp and
m interference there is thus a difference between < P*>imp

D elting e effect is determined by

< P >2 _ resulting in mesoscopic fluctuations. Since th
wmp o, e
the phases of paths, it is nonlocal.
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The result in eq.(11.247) is valid in the metallic regime, where the average con-
'ductance is larger than e2/27%. To go beyond the metallic regime would necessitate
introducing the quantum corrections to diffusion, the first of which is the weak-
localization type, which diagrammatically corresponds to inserting Cooperons in
between Diffusons. Such an analysis is necessary for a study of the fluctuations in
the strongly disordered regime, as performed in reference [44].

The Diffuson and Cooperon in the conductance fluctuation diagrams do not
describe diffusion and return probability, respectively, in a given sample, but
quantum-statistical correlations between motion in different samples, i.e., differ-
ent impurity configurations, as each conductance loop in the figures 11.4 and 11.5
corresponds to different samples. In order to stress this important distinction, we
shall in the following mark with a tilde the Diffusons and Cooperons appearing in
fluctuation diagrams.

We now assess the effects of finite temperature on the conductance fluctuations.
Besides the explicit temperature dependence due to the Fermi functions appearing
in eq.(11.236), the ladder diagrams will be modified by interaction effects. The
presence of the Fermi functions corresponds to an energy average over the thermal
layer near the Fermi surface, and through the energy dependence of the Diffuson

and Cooperon introduces the temperature-dependent length scale Ly = /Doh /kT.
Since the loops in the fluctuation diagrams correspond to different conductivity
measurements, i.e., different samples, interaction lines (due to for example electron-
phonon or electron-electron interaction) are not allowed to connect the loops in a
fluctuation diagram. The diffusion pole of the Diffuson appearing in a fluctuation
diagram is therefore not immune to interaction effects. This was only the case
when the Diffuson describes diffusion within a sample, since then the diffusion pole
is a consequence of particle conservation and therefore unaffected by interaction
effects. The consequence is that, just as in the case for the Cooperon, inelastic
scattering will lead to a cutoff given by the phase-breaking rate 1/7,. In short, the
temperature effects will therefore ensure that up to the length scale of the order
of the phase-coherence length, the conductance fluctuations are determined by the
zero-temperature expression, and beyond this scale the conductance of such phase-
incoherent volumes add as in the classical case.’® A sample is therefore said to be
mesoscopic when its size is in between the microscopic scale, set by the mean free
path, and the macroscopic scale, set by the phase-coherence length, i< L < L,. A
sample is therefore only self-averaging with respect to the impurity scattering for
samples of size larger than the phase-coherence length.®* A sample will therefore
only exhibit the weak-localization effect when its size is much larger than the
phase-coherence length but much smaller than the localization length L, < L < ¢.

An important: way to reveal the conductance fluctuations experimentally is
to measure the magnetoresistance of a given sample. To study the fluctuation
effects in magnetic fields, we must study the dependence of the variance on the

®0For example for a wire we have 9(L) =g(Ly) L/L,.

51The conductance entering the scaling theory of localization is thus assumed averaged over
phase-incoherent volumes.
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. . ‘n
magnetic fields AGqs(B+,B_) , where By is the sum and .B_ tie dlffzrl(la:t(:nce
thegmagnetic fields influencing the outer and inner loops. Since ‘;l e tc}tl)n luctance
loops can correspond to samples placed in different field strentg‘c ts},l eresence "

i i i 1 t be immune to the p
ing in a fluctuation diagram will no . ne b - pr .
poienzl‘zipcegrellgf as in the case when the Diffuson describes diffusion within aeglovfer;
c
:alunfple since I;,)article conservation is, of course, Pnz}ffected.byl ’che pr?siqagnetic
ma,gnet’ic field. According to the low-field prescription for inclusion o
fields, eq.(11.29), we get for the Diffuson

- - = + D ! ! 11.251)
! fod — —_— .
Dq {( 1V eA_(x))z 1/@,} D(x,x") = - §(x —x") (
w p 1 1 ifference in magnetic fields,
here A_ is th 1 tential corresponding to the di . 1agn
B ef_e V_ 1; tAe Vzcn;rws have introduced the phase-breaking rate in view of the

. . . es
above consideration. In the case of the Diffuson, the magnetfl(‘:G }field mtc(l)l;cs(c)itgilzz °
i f the difference of the vec
btract, accounting for the appearance o .
j;l For,the case of the Cooperon, the two phases add, and we obtain

¢ = Llox—x 11.252)
Do {(—ivx—%m(x))uuw} Olex) = —dx=x)
where A is the vector potential corresponding to the sum of the fields, By =
V x Aj.

The magneto-fingerprint of a given sample, i.e:, the depenc.lgllcae oif ersl ;c::li{utco
tance on an external magnetic will show an erratl(f pattern W'I'S no;g el
valley ratio and a correlation field strejngth B.. Thls, however, i
the information we obtain by calculating the variance

— >
ACiapBy,B-) = < [GunlB)= < GuolB) >Grs(Bo)— < Gu(Ba) 21>
1 i = B_)/2, and B; is the field
Where e §he ﬁe]l3d 13,v(SIaBLy, ihlg iI;I/l;r IIZOF};erlariaglljg, :-he rrzzﬁgnetic fields are ﬁxed
in ‘i:}}lle ilgsrs:r?li’lesz;ld v;re are averaging over different impurity ‘conﬁguratlonz,
fcrlllus Zescribing a sijcuation in which the actu.al impurity conﬁg.ura,tllfl)n V;zvzl;alilfg:hé
a hardly controllable endeavor from an expenmenjcal point 0f1v1esf:.h nfa neti; o
magnetoconductance of a given sample, G(B), varies randqm g \11211 b tﬁ;e e With,
the two types of averages — the one with resp.ect to magnetlllc eh nd the one
respect to impurity configuration — are equivalent, an<.i t fe c jra e L258)
magneto-fingerprint can be extfz:icted 1;rom }‘:he CO;;ZI;;IO&, pl;rtl; e1Soi2 = ,q[ Vo], thot
The physical reason for the validity of suc an erg e nthon is: that
changing magnetic field is equivalent to ch.angmg impuri yh piguration is, L1t
since the electronic motion in the sample Is quantum mec am.t. y N
wave function pattern is sensitive to the posmllon of all the impurities in oo the,
j nce of the magnetic field is felt through'out.the sample by
Jelllzzt?:nfge'lgﬁzs‘(eextreme sensitivgity to impurity configuration is also witnessed by

52The validity of the ergodic hypothesis has been substantiated in reference [80].
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the fact that changing the position of one im
is equivalent to shifting all the impurities by
completely different sample [81], [82].

The ergodic hypothesis can be elucidated b
the mean square of the probability for
we encounter the correlation function

purity by an atomic distance, 1/kp,
arbitrary amounts, i.e., to create a

y the following consideration. In
propagating between two points in space

< (cos(e(Br) = u(B1))) ((cos(de(By) — $e(B2))) >im, (11.254)

where (¢.(B) — ¢ (B)) depends on the phases
Le., the flux through the area enclosed by t
magnetic field By changes its value to B,
one half), the phase factor changes by 27 ti

by the trajectories ¢ and ¢ in units of the flux quantum. This change, however,
is equivalent to what happens when changing to a different impurity configuration
for fixed magnetic field, i.e., the quantity we calculate.53
In order to calculate the variance in eq.(11.253) we must solve eq.(11.251) and
eq.(11.252) with the appropriate mixed boundary value conditions in the pres-
ence of magnetic fields, and insert the solutions into contributions like that in
€q.(11.240). However, determination of the characteristic correlations of the ape-
riodic magnetoconductance fluctuations can be done by inspection of eq.(11.251)
and eq.(11.252). The correlation field B. is determined by the sample-to-sample
change in the magnetic field, i.e., B_. According to eq.(11.251) and eq.(11.252),
this field is determined either by the sample size, through the gradient term, or the
phase coherence length. When the phase-coherence length is longer than the sam-
ple size, the correlation field is therefore of order of the flux quantum divided by
the sample area, B, ~ $o/L?, where ¢, is the normal flux quantum ¢, = 27k /e,
since the typical diffusion loops, like those depicted in figures 11.6 and 11.7 en-
close an area of the order of the sample, L?. We note that in magnetic fields
exceeding max{¢y/L?, #o/L%}, the Cooperon no longer contributes to the field
dependence of the conductance fluctuations, because its dependence on magnetic
field is suppressed according to the weak-localization analysis.%
We note that the weak-localization and mesoscopic fluctuation phenomena are
a general feature of wave propagation in a random media, be the wave nature
classical, such as sound and light,*® or of quantum origin such as for the motion
of electrons. The weak-localization effect was in fact originally envisaged for the
multiple scattering of electromagnetic waves [42]. The coherent backscattering
effect has been studied experimentally for light waves (for a review on classical wave
propagation in random media, see reference [84]). For the wealth of interesting

53 Another way of fevealing the mesoscopic fluctuations
density of conduction electron as is feasible in an inversi
for these fluctuations is analogously determined by the t,
traverse the sample according to E, ~ h/Tiray. In the diffusive regime we have Tiray ~ LZ/DO.

4For an account of the experimental discovery of conductance fluctuations, see reference [83].
%5Here we refer to conditions described by Maxwell’s equations.

picked up due to the magnetic field,
he trajectories ¢ and ¢’ When the
(where the correlation function equals
mes the flux through the area enclosed

is to change the Fermi energy (i.e., the
on layer). The typical energy scale F,
ypical time 73,4, it takes an electron to
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88].
cited in for example the references [58], [59], [70], [83], [85], [86], [87], [88]

Appendix A

Path Integrals and Propagators

In classical mechanics only the classical paths are of physical relevance; however,
stating the quantum law of motion involved all paths. The way in which the various
alternative paths contribute to the expression for the propagator was realized by
Dirac [89], who noted that the conditional amplitude for an infinitesimal time step
is related to Lagrange’s function, L, according to

<Xt ALY, 2> oc e AtLx(x=x')/an) (A1)

however, with L expressed in terms of the coordinates at time ¢ and ¢ 4+ A¢. This
gem of Dirac’s was turned into brilliance by Feynman, and provided the intuitive
approach to quantum mechanics as described in section 1.1. We shall here obtain
the path integral expression for Dirac’s transformation function < x, tx',t'>.

Propagating in small steps by inserting complete sets at intermediate times we
have for the propagator

<X,tlxl,tl> = /dX1 /dXz../dXN <X,t‘XN,tN><XN,tNlXN_1,tN_1>

<XN_1,tN_1|XN_2,tN_2> .. <X1,t1,XI, > . (A2)

We are consequently interested in the transfo

rmation function for infinitesimal
times, and from eq.(1.97) we obtain

<Xy ol|Xpo1, by > = <xn|e‘%AtH(t")|xn_1>

= 0(Xn —Xp_1) + zA—fit <xn|ﬁ(tn)[xn_1 > + O(A#%) (A.3)

where At = t, — ¢, ; = (t=t)/(N + 1)), as we have inserted N intermediate
resolutions of the identity.

In the following we shall consider a

particle of mass m in a potential V' for
which we have the Hamiltonian

A2

=5+ V(%,1). (A.4)

IS

H(t)
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