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the transition process, the resulting expression being averaged over the various
realizations. Within a factor of the order of unity we have

o(w) « ezwzpz(EF)fldrlzrd_ldr,

where d, is the matrix element of the coordinate between the states localized
in wells separated by a distance r, and d is the dimensionality of the space.
For the lower limit in this integral we can take the quantity R, determined by
the condition w > I(R ), with I(r) the overlap integral between these states
(it is here that we use the fact of repulsion of levels with close energies, that is,
the fact that the resonance wells are far apart). Assuming that each of these
states falls off exponentially, that is, E lies deep in the discrete spectrum, we
can take the dependence of I on position in the form I,exp(—r/I), where [ is
the localization radius of the states, which means that R, « /In(1,/w). For
this reason the upper limit in the integral may be taken as R, + [. At the same
time the matrix element of the coordinate between states collectivized at the
resonance wells is of the order of |d,| & r. The result is the following formula
(see Mott and Davis, 1979):

I d+1
o(w) = ezpz(EF)ld”wz(ln—O) . (4.25)
w

In conclusion we will find the relation between f(E, E’) of (4.24) and the
correlation functions of statistical physics. To this end we introduce the
current operator

j(r) = p(r)p + DA (r)

(note that we use the system of units where # = 2m = 1) and consider the
current—current correlation function*

K(r,t) = <<j“(r, 1j%(0,0)) ),  1>0. (4.26)

The spectral density corresponding to this correlator is in essence f(E, E + ),
which by way of the Kubo—Gieenwood formula gives the active conductivity,
that is, the linear response function for current versus external electric field. As

for the quantity similar to (4.17), it can be used (more exactly, in terms of its.

zeroth Fourier component in the coordinate at a frequency w + i0) to express,
by way of (1.32), the total conductance of a system (ie., including the
reactance).

*Functions similar to (4.17) and (4.26) appear also in a natural way in studies of superconductors
with paramagnetic impurities (De Gennes, 1966). The reason is that because of the large
correlation length, we. are able to use the self-consistent-field method in the theory of supercon-
ductivity.

2 THE DENSITY OF STATES IN
ONE-DIMENSIONAL SYSTEMS

This chapter is devoted entirely to one-dimensional models of disordered
systems. Here, just as in other branches of theoretical physics, one can
advance considerably in investigating one-dimensional versions of real three-
dimensional problems. We will not dwell on the merits and shortcomings of
one-dimensional models, but refer the reader to a comprehensive discussion of
these problems given by Lieb and Mattis (1966). Here we wish to call attention
exclusively to the basic reason why one-dimensional disordered systems in the
one-body approximation frequently allow for an exact solution. The fact that
the space is one-dimensional makes it possible to write closed dynamical
equations (i.e., equations valid for every realization of the random potential)
for the quantities that determine the spectral properties of the system. The
structure of the equations is always such that on the assumption of a weak
correlation of the random parameters it is possible to use the equations to
obtain nonrandom equations (of the Fokker—Planck or Smoluchowski type)
for the probability densities of the corresponding quantities. [The line of
reasoning usually employed in its simplest form is similar to the Langevin
approach to Brownian motion; e.g., see Isihara (1971), and Rytov (1976).]
Sometimes these equations can be solved in closed form. When that is
impossible, we can study the dynamics of the system (i.e., the properties of the
appropriate stochastic equations) on characteristic parts of the spectrum and
thus predict the structure of the equations for the probability distributions.
From this we can develop approximate methods for finding the solutions of
the equations.
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As still another reason for our interest in one-dimensional models we cite
the following from Dyson (1967):

However, my personal reason for working on one-dimensional problems is
merely that they are fun. A man grows stale if he works all the time on the
insoluble, and a trip to the beautiful world of one dimension will refresh his
imagination better than a dose of LSD. If Hans Bethe in his youth had not
wasted his time solving the one-dimensional Heisenberg model of an antiferro-
magnet, I doubt whether he would have created the theory of energy production
in stars any sooner.

Let us briefly enumerate the problems considered below. In Section 5 a
method for obtaining the density of states is described in the simplest case of a
one-dimensional discrete model. The method essentially goes back. to Dyson
(1953) (see also Lieb and Mattis, 1966) and is based on calculating the
diagonal elements of the Green function outside the spectrum and then
analytically continuing them onto the spectrum. Examples of the utilization of
this method are given in the same section. The formalism developed in Section
6 takes account of the relationship, which is characteristic of the one-dimen-
sional case, between the spectrum and the zeros of the solutions of the
corresponding equations; it allows the density of states to be found directly,
bypassing the analytic-continuation procedure. In the same section we give the
exact solution of the problem of finding the density of states for the model of
random rectangular barriers and investigate in detail the case of point scatterers
in (1.7) with u(x) = x8(x). Section 7 is devoted to the methods of direct
examination of the asymptotic behavior of the density of states in the
neighborhood of the genuine boundaries of the spectrum. These methods are
based on the oscillatory properties of the wave functions. The last section in
this chapter, Section 8, deals with the problem of finding the density of states
in the two-band model of a one-dimensional disordered system. The problem
is reduced to investigating a system of equations of the Dirac type, with either
the magnitude of the gap or the potential being random.

5 CALCULATING THE TRACE OF THE GREEN FUNCTION

5.1 The Formalism

Our basic object, as noted in the introduction above, is a Schrodinger equation
with a random potential. However, we will begin our discussion with the
discrete analog of the Schrddinger equation, just as the first works on dis-
ordered systems did. The discrete equation describes the one-dimensional
motion of a particle in the tight-binding approximation or the harmonic
vibrations of a one-dimensional chain, on the assumption that only the
interaction of the nearest neighbors is retained. Thus the random operator we

CALCULATING THE TRACE OF THE GREEN FUNCTION 51

are considering here has the form
H =Y UljYjl+ LH i), (5.1)
j i

where i, j =0, +1, +2,...,

) I{j’ ] > 09
Hj'j_I - IIj_l'j N }Ij-p j<0,

and U, and H; are mutually independent random variables. We do not
mention the boundary condition for H, because according to (3.7) it is
sufficient to consider a random operator without boundary conditions to
calculate the density of states [i.e., we consider the operator defined by (5.1)
for all j’s).

A remark is in order. Since we are considering the discrete case, we cannot
directly apply the proof of self-averaging of the specific extensive quantities
given in Chapter 1. But if we assume that only the diagonal elements U; are
random quantities, we can build the respective proofs along the same line of
reasoning as in Chapter 1 if we employ instead of the Wiener integral its
discrete analog, the integral along the trajectory of the so-called Poisson
process [see Dynkin, 1965, where a general method of constructing such
integrals is described]. But if we wish to know only the density of states, we
can resort to another method, namely, employ theorems first proved by
Lederman (Born and Huang, 1954), which state that when m elements of an
Nth-order matrix vary, the number of eigenvalues of this matrix in a specified
interval changes by no more than m. This proposition enables us to prove the
self-averaging of the number of states L4"(E) [and hence p(E)] for any
operator (5.1) with an interaction that decreases fairly rapidly with increasing
distance and on whose every diagonal the quantities are random sequences
satisfying the conditions of spatial homogeneity and disappearance of correla-
tions [e.g., see Slivnyak (1966) and Pastur (1971b, 1973), where this procedure
was applied to the Schrodinger equation]. Finally, in the last and very general
case the self-averaging of many functions such as the density of states, the
spectral function, and the function f(E,, E,) determining the conductivity can
be established by proving this fact for all the moments of the respective
function. Since these moments are integrals of the respective functions multi-
plied by integral powers of the energy, we can express them explicitly in terms
of the matrix elements of the operator by way of formulas similar to (3.6) and
(3.9) and hence can analyze them in detail (Pastur and Figotin, 1978a).

An operator (5.1) in which the U, and H; on the principal and secondary
diagonals are identically distributed independent random variables obviously
satisfies the above-stated conditions (Pastur and Figotin, 1978a). From (1.36)
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and (3.7) it follows that

p(E) = - 1m(Gyo(E - 10)), (52)

where Gy (E) = (E — I:I)go1 is the diagonal matrix element of the Green
function of the operator (5.1), and N and L = Na is the number of sites and
the length of the system. We will describe a method for finding (G, ( E)) in
the region of negative values of E that are large in absolute value, a region
where the spectrum of H is absent. [This method was first developed by Dyson
(1953).] Since (G, (E)) is analytic in this region, it is uniquely defined for all
complex values of E, which means it is also defined on the spectrum. Hence,
to calculate p(E) it is sufficient (at least in principle) to find (Gy(E)) for
values of E lying to the left of the spectrum.
Let us define the self-energy =,(E) by the relationship

Gow(E) = [E— Uy — Zo(E)] . (5.3)

Using the expansion of G(E) in a perturbation series in H,;, that is,

81" z Himlelmz Tt Hmn—lf
G,=—L+—"L+ Z )3 . (54
e/ lej n=2m,..., m,_q € emlemz Tt emn-l J
we obtain for i = j = 0 (e; = E — U)
H, H,, ---H,
GOO(E) =] 11 4 Z Z Omy =" mym, n-10 )
n=2m,..., m,_; em1emz T €

Each term in the double sum can be depicted as a closed polygon (loop) with
n segments and with vertices at points 0, m;, m,,..., m,_;,0, with the factor
H, .. . /€, in the sum corresponding to the segment from vertex m; to
vertex m;, ;. We say that a loop is elementary if point 0 stands only as the
initial and final vertex. We can then write

GOO(E) = 861

0
1+ Y M, - wzpn),
n=1p]... Pn

where p is a subscript that numbers the elementary loops, and I,
contribution of the pth loop. The last expression can easily be written as

Goo(E) = (eo - eo§§m,,)_l,
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whence
i ’ HOmlelmz T Hm,,_IO
(E)= Y Y — (5:5)
n=2my,...,m,_, my~my m,_y

where the prime on the summation sign means that in every sum over m the
term with m = 0 is absent. From this restriction and the type of interaction
(H;; # 0 only when |i — j| = 1) it follows that m,_, = m,, in view of which

H,

HOmlel H0m1 Hm,,_zml my
S(E)- L~y Yy :

my#0 my n=3 m,..., my,_, eml em,,_zeml

We can also write this expression in the following form:

2,(E)= ) H,,G9H,,=H*G" + H}GY, _,,

m#0

where Gi(})) is defined by a series (5.4) that is the same as for G,;, the only
difference being that in the expression for G,(f) none of the summation indices
equals zero. If we write the same expression for G{} and once again use the
specific form of the interaction, we see that the summation is carried out only
over positive values of m, that is, m > 1. This means that G{°) coincides with
the 11 element of the Green function GO of the operator deﬁned by (5.1) with
i, j = 1 and represented, unlike A, by a semiinfinite Jacobi matrix.

Let us now consider the operator H™ defined by (5.1) with i, j > m and
introduce its Green function G, For &m (G""))mm we have the following

identity:
-1
gn=(E—=U,~ H}18ns1) > (5.6)

which can easily be proved by way of formulas similar to (5.3)-(5.5) or by
direct calculation of the appropriate matrix elements of G Proceeding in
the same way with G© _; and introducing some obvious notation, we obtain

-1
GOO(E) = (E -0 - H1281 - H—z-lg—l) - (5-7)

Thus, by starting from the general equations (5.4) and (5.5) of perturbation
theory, which are valid in a space with any dimensionality and an interaction
of any radius, and employing the specific form of the interaction and the fact
that the problem is one-dimensional, we have arrived at a reasonably simple
result, whereas in the non-one-dimensional case we would have arrived at a
chain of recurrence formulas of ever growing complexity, each of which would
contain an infinite number of recurrent terms, instead of the compact equa-

" tions (5.6) and (5.7).
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From (5.6) it follows that the u ., = H% g, are independent of Uj, and of
each other and are distributed identically. If we denote the probability
densities of u and U by P(u) and Q(U), from (5.7) we find that

(Goo(E)) = I;(l:)z(fllg_( Z) dudu’ dU. (55)

But according to (5.6) the random quantities u,, = H?g,, satisfy the recur-
rence formula

H2

u = —————
m >
E - Um—um+1

(5.9)

which shows that u,,,,; depends neither on U,, nor on H,,, since it is defined
by the relationship derived from (5.9) by substituting m + 1 for m. Since the
distribution functions of U,, and H,, do not depend on m, the same is true of
u, forall m = +1, £2,... . Therefore, if we see the probabilities of the left-
and right-hand sides of (5.9) equal, we arrive at the equation

P(u) = f Kg(u, w)P(«') du, (5.10)

where
h
K (u, u') = u‘zfQ(E —u - ;)R(h)hdh,

and R(h) is the probability density of the random quantity H?2. Equations
(5.9) and (5.10) were first found by Dyson (1953) by averaging and a detailed
analysis of the terms in the series (5.4), which defines G(E).

Note that Eq. (5.10) for P(u) is not, strictly speaking, well defined, since
this function may prove to be highly irregular. For example, it may have
delta-like singularities on a dense set of points (Lieb and Mattis, 1966;
Schmidt, 1957). But if we integrate Eq. (5.10) with a smooth function f(u), we
arrive at an equation that is well defined: (

, ff(u)P(u) du = ff(E%)P(u)Q(U)R(h) dudUdh.

The irregular behavior of P(u) may generally cause the appearance of similar
singularities in the density of states. This, however, does not lead to singulari-
ties in physical quantities, since the latter are usually expressed in terms of
integrals of p(E) with smooth functions. [Note that the functions with which
p(E) are integrated may also be not very smooth. Specifically, the number of
states

E (o)
W(E) = [" p(E)dE' = [~ 0(E - E")p(E') dE',
— 00 — 00
where @(E) is the Heaviside function, can be shown to be a continuous
function of E if the conditions of spatial homogeneity and disappearance of
correlations are fulfilled.] Moreover, these irregularities occur only when the

CALCULATING THE TRACE OF THE GREEN FUNCTION 55

random parameters in the problem take on none but discrete values, that is,
when their probability densities have delta-like peaks and vanish for an
arbitrary small broadening of these peaks.

By using Egs. (5.2), (5.8), and (5.10) we can solve the problem of finding the
density of states p(E) (at least in principle). To this end, according to the
above reasoning, we must solve the integral equation (5.10) for the density of
states P(u), which depends on E as on a parameter, compute {Gy(E)) by
(5.8), analytically continue the function obtained into the neighborhood of the
spectrum, and, finally, employ (5.2).

The right-hand side of (5.8), which defines (Gy,(E)), depends bilinearly on
P(u). Similar bilinear formulas for the density of states and a number of other
quantities that characterize one-dimensional disordered systems will often be
used below (see Sections 11-13). We can also arrive at a formula for (G, (E))
in which P(u) enters linearly. To this end we take a long but finite chain
whose Hamiltonian H,, is defined by (5.1) with i, j=1,..., N and zero
boundary conditions. In accordance with (3.6) and (1.36) we have

p(E) = 7 Im lim (Na) 'TrG®™(E - i0)
N-— o0

N
(wa)—;lllei_r)an'l Y GM(E - i0),

m=0

where G = (E — Hy) L. As above, we will assume that E lies outside the
spectrum. For such E we have, by virtue of (3.6), the following formula:

(Goo(E)) = Jim N"HYTrG™M(E)),

or
(Ge(E)) = lim N'1i<Trln(E— fiy))
00 N—> o dE
lim N7! d InD
B Ngnoo dE<n N>’
where D, = det(E — A v) is the determinant of the following Nth-order
 matrix:
E-U -H 0
-H, / E-U, —H,
0 -H, E-U
E-H,= '

'”HN 2 E - UN——l _HN 1

E-Uy, —Hy, 0
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Let us denote the determinant derived from D, by deleting out the last
N — m rows and columns by D,,. Expanding D,, ., in the elements of the last
row, we arrive at the recurrence formula

D, =(E- Um+l)D — H2D,

m~m—1-

This implies that the (") (E) defined as

2
(N) — HmDm 1
Um
D

m
satisfy, in turn, the recurrence formula

H,
E-U,—-ul"(E)’

U (E) = m=1,...,N—1, u{"(E)=0,

(5.11)

and depend only on U,,...,U,, HZ,..., H2, with the explicit form of the
dependence on U,, and H? 1ndlcated by this formula.
In terms of the u{™ the determinant Dy, has the form

= TTIE- U, - uy(E)],

m=1

whence
(GOO(E)> = 7F Jim N! Z (n[E - U, - uM(E)]). (5.12)

Comparing (5.11) with (5.9), we see that in the limit as N — oo the u{") can
be identified with the u,,. Hence, in view of the independence of u,,_; and
U,, it follows from (5.12) that

<G00(E)> = %fp(u)Q(U)ln(E — U - u) dUdu. (5.13)

Substltutmg this equation into (5.2), we see that instead of (Goy(E)) = ((E —
)5 ) we can consider the function

Q(E) = lim N"'(Indet(E - f1,))

N—>oo

fP(u)Q(U)ln(E — U—u)dUdu. (5.14)

The number of states (or the integrated density of states) A"(E) =
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JE .p(E’) dE’ can be expressed in terms of the analytic continuation of Q(E)
in the same manner as p(E) is expressed in terms of the continuation of

(Goo(E)):
N (E) = (7a) 'ImQ(E - i0). (5.15)

It may seem that in deriving Egs. (5.8) and (5.13) we used not only the fact
that the problem is one-dimensional and the type of interaction (nearest-
neighbor interaction) but also the fact that the problem is discrete. This last
fact, however, in contrast to the first two conditions, is not really essential, so
that the scheme expounded above can be carried over to the continuous case,
that is, to the one-dimensional Schrodinger equation with a random potential.
We will not dwell on this, but merely note a special case where the analogy
with the discrete problem is most complete. Namely, we consider the one-
dimensional Schrodinger equation in which the potential U(x) has the form
(1.7) with u(x) = kod(x), ko > 0. In other words, let us consider the operator
H, defined by the equation :

—y" + Ux)y=Ey, Ulx)= KOZ 8(x — x,), (5.16)

and the boundary conditions $(L) = ¢(— L) = 0, assuming, as previously,
that E = —g? lies outside the spectrum of A .- Employing the specific form of
U(x), we can easily show that

. d 2
(G(0,0; E)) = Jlim (2L)'1(TrGg°> + d—Elndet(I - kOGg’))). (5.17)

Here G is an N-by-N matrix, with N the number of scatterers in the
interval (— L, L) and

(69), = 69 B).

Thus the problem is again reduced to calculating a determinant. In the
given case it is the determinant Dy of order N with elements D;; of the form

D,=1+X, D, =Diys,;= A]_[n,+j, l<i<i+k<N,
where
Ko

A= m=exp(=qy), %=X X

If we denote by D, the determinant derived from D5 by retaining only the
first m rows and columns, then we arrive, as before, at a recurrence formula,
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which in terms of the ™) = D, /D, ,, has the form

H(y)
U(y,,) — uS(E)’

which is similar to (5.9). Here H(y,)=mn,! and U(y,)=1-A+ (1 +
M)n,% The uN(E) depend on y,,..., y,, with the explicit form of the
dependence on y,, given by (5.18). The sought-for determinant D5 can be
simply expressed in terms of the u{" thus:

uM(E) = (5.18)

1+A

N~ [N-1
I—Im=1

ul™, (5.19)

As a result we obtain the following equation for (G(0,0; E)) from (5.17):

1

1 d
(G(0,0; E)) = "% }-EfP(u)ln udu,

where the probability density P(u) of u satisfies, according to (5.18), the
following equation:

() - [P0 u - 5525

in which f(y) is the probability density of the distance between two neighbor-
ing scatterers, and 7 = 2L/N the mean distance between them.

) du’ dy, (5.20)

5.2 The Dyson Model

Following Dyson (1953), we start with a particular case where the diagonal

elements U, in (5.1) are zero while the off-diagonal elements H; (the resonance
integrals) are uncorrelated random quantities distributed according to the
same law (the so-called I'-distribution)

n" H?
hn—l —nh = i .
T(n) e ", (5.21)

The average value of H?/H¢ corresponding to this probability density tends
to unity as n — oo, while its root-mean-square is equal to n~'/2 For this
reason the number n can be taken as the measure of disorder in the system. In
the limit as n — oo we arrive at a completely ordered system in which all H;
are equal to H,,. ,

The distribution (5.21) has no physical model that is at all realistic. We
mention it only because of its simplicity and the possibility of obtaining a

P,(h) =
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closed expression for the density of states. The limiting form of the expression
(5.11) with N — oo is in the present case

HZ
U, = ———. (5.22)
E - Up_1

The random quantities H,, corresponding to distribution (5.21) can assume
any values, which means that the spectrum of the system in question occupies
the entire energy axis. Since in the formulas derived in Section 5.1 the energy
E cannot belong to the spectrum, we must assume that it is complex-valued. It
is convenient to put E purely imaginary, or E = i{, and introduce the variable

¢, = —u,/E instead of u,. As a result, instead of (5.22) we have
Ah
=—, =1,2,..., 5.23
=1ve o ™ (5.23)
where A = {72H? and h,, = H?/HZ. Instead of (5.14) we have
Q(ig) =tnig + [ In(1 + £) P(¢) d, (5.24)
0

where P(£) is the stationary probability density of £, for which we have the
following equation similar to (5.20):

p©) - [7( S5 rer

[this equation follows from (5.23)]. Direct verification shows that when P, is
given by (5.21), the solution of the above equation is given by the function

. n né
P(&) = M7 (ME 1+ ) o - .
where M, ()) is a normalization constant:

M0 = [T+ ) e - ) e

Now instead of (5.24) we have

L,(N)
M)’

n

Qi) =mi¢ +
with

L,(\)= /Owﬁ”'l(l +¢) "In(1 + §)exp(— ’%) dt.
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On the other hand, the definition (5.14) of the function Q(E) implies that

Q(E) = j(;ooln(E2—E’2)p(E’) dE,

since p(E) in the system we are considering here (U, = 0) i is an even function
of energy. [This follows from the relation DH D' =-H v» where D is a
diagonal matrix with elements d, =TT} _,(— H ). It also means that the
off-diagonal elements H,, can always be taken positive.] This formula is similar
to the original one, except that for the energy variable we must take E2. For
this reason, the analytic continuation of (5. 15) in E? into the range of negative
values yields

. E
N(E) = f p(E’) dE’
0
instead of the integrated density of states

H(E) = [* p(E) aE',

— 00

which, however, is sufficient for calculating p(E) in view of the evenness of
the latter.

Performing analytic continuation of M,(A) and L,(A) into the range of
negative values of A [following Dyson (1953); see also Smith (1970)] and using
(5.15), we arrive at an explicit expression for 4 (E), which in the simplest case
with n = 1 assumes the form

G} + Gye™® + (n2/6)e 2

a#(E) = [G12+ (C—Ine)e ] + w2

where e7! = E2/HZ, C is Euler’s constant, and

oo (—s)msm’ ; —s) (s2+1,)

G1= 9

me1 = m! m!

m m
=Xph t,=Xp?
p=1 p=1

This formula implies, in particular, that #°(E) for small E has the form

2

- 7 -
N(E) = aln‘ze, - E-0,

according to which the density of states for small E, that is, in the middle of
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E1l i
n’ Ho

This singularity is caused by the fact that each of the quantities H,,
distributed according to the law (5.21) can assume arbitrarily small values. To
better understand this statement let us take the simple case where the H,, can
assume zero values with a nonzero probab111ty c¢. Then the initial matrix H
splits into independent blocks of random sizes, and in the middle of the band
there appears a singularity c(2a) ™! 8(E), since each odd-order block will have
a level at zero (all the blocks, as noted earlier, have spectra that are symmetric
with respect to zero).

As for the singularities in the density of states that in an ordered system
were at the band edges [p(E) = (27aH,) (1 — E2/4H})™'/? if all H,, are
equal to H,), they all disappear in the disordered case. The behavior of p(E)
at small disorder (n —» o) was analyzed in detail by Smith, 1970, who
established the way in which these singularities smear out, as well as the
asymptotic behavior of p(E) as n — oo in the entire energy range (see also
Section 5.3).

If the Fermi level occurs in the mlddle of the band and the density of states
has singularities at this point, the result is singularities in thermodynamic
quantities. For instance, the zero-field magnetic susceptibility of a disordered
system with 7' — 0 acquires the form

the band, has a singularity:

-1

, E-0O. (5.25)

2

p(E) = Ta

w p(Eg+ 2Tx)
x(T) ~ f_oo cosh®x

Hence at E = 0 and T — 0 we have (Bulaevskii ef al., 1972)

Y
x(T)~ T 'ln (Ho)

A similar singularity appears in the X—Y model, which (see Lieb and Mattis,

. 1966) is equivalent to a gas of free fermions with energies that are eigenvalues

of the matrix H ~ considered; this matrix plays the role of the exchange-
integral matrix in the X-Y model. The model was used by Bulaevskii et al.
(1972), to describe ‘the magnetic properties of linear chains of high-conductiv-
ity complexes of TCNQ.

The thermodynamic properties of disordered X-Y chains were also studied
by Smith (1970), who showed that such systems have no phase transitions in
the field at T = 0, in contrast to ordered systems.
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Boundary and in the Nelghborhood of the Edge of the Initial Spectrum
in the Model of Point Scatterers

We start by evaluating the asymptotic behavior of the density of states in the
model (1.7) with u(x) = ko0(x), ko > 0 (repulsive point scatterers), near the
genuine boundary of the spectrum E, = 0, that is, for ¢ < k,. To allow for
this condition, we rewrite (5.18) in such a way that it allows for the explicit
dependence on y;:

u;\(E) = %[1 —exp(—2¢qy;)| + [1 + exp(—2qy;)]

—exp(—2qy;)u;_,(E). (5.26)

Since the first term on the right-hand side contains the large parameter «,/gq,
we can expect that the u; determined by this relationship will be small. But if
we want this to be true, we must require that k7 > 1 [since k,/q enters (5.26)
together with the factor 1 — exp(—2g¢y;)], which means that the scatterer
concentration ¢ = (k,7) ! must be low (small disorder). Then in (5.26) we can
retain only the first term, and hence the u;(E) are expressed in this approxi-
mation in terms of the distance y; between neighboring scatterers:

uy (E) = %[1 - exp(—2qyj)].

So from (5.19) we obtain

1 1
G(0,0;E)) = — — + —

1] = 0
_E,Elfo ¥f (y)exp(—2qny) dy,

where () is the probability density of the distances y between neighboring
scatterers. This expressxon can be continued onto the spectrum by substituting
ix for g, with k2 = E > 0. After simple transformations we obtain

[>0]
p(E) = Z ( ) (5.27)
which is valid for an arbitrary distribution f(»)-with a first moment.

Two regions can be singled out in the applicability range k < «,, of (5.27)
(the concentration is low: ky7 > 1), namely k < 77! and 77! < k < k. If
the function f(y) falls off no more slowly than the exponential function, then
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in the first region (k < 7~!) the main contribution to the density of states is
provided by the first term on the right-hand side of (5.27) and

p(E) =

(%) E <72 (5.28)
Here the density of states becomes exponentially small as k — 0, because of
the fluctuation nature of the states near the boundary E, = 0. We will return
to this question in Section 7 and in Chapter 4. But if f(y) drops off like a
power function, f(y) « 7~}7/y)% a> 2, we must take into account all
terms, which yields

o(5) = 5e(Z) -, (529)

v

with ¢(x) the Riemann zeta function. In the second region (77! < k < k),
summation in (5.27) can be replaced by integration. Proceeding with this and
allowing for the fact that [§°yf(y) dy = 7, we find that

p(E) = 2mx)™, F?<E<«}. (5.30)

In the region where k = 7~! the two formulas (5.28) and (5.30) can be
matched, which yields p « 7.

In the special case of the Poisson distribution f(y) = 7~ 'exp(—y/7), (5.27)
directly yields (Bychkov and Dykhne, 1966a)

2mc? exp(—27rc/\/g)- B E
——p( )= e/ [1 exp(—217c/\/e_)]2’ T kg (31

[ 8]

In the limiting cases we have

2ac? ( 2mc ) )
—expl——5 |, &e<Kc’,
K &3/2 1/2
709(5) ~ . € (5.32)
2—1—/2, C2 < ex].
mE

Thus, a small disorder.(c < 1) leads to a situation in which the density of
states p(e) (the solid'curve in Figure 2) differs from the density of states p,(&)
of the ideal system (the dashed curve) only in a narrow neighborhood Ae = ¢?
of the true fluctuation boundary of the spectrum.

Mints, 1966, arrived at results that practically coincide with (5.32). They
were obtained in the tight-binding approximation (5.1) with off-diagonal
disorder, when U; =0 and the h; = H? are independent and distributed
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similarly with a probability density P(%),0 < h < h, < co. Mints also consid-
ered one case of interdependent H;, which actually formed a Markov chain.

For the model with attractive scatterers (x, < 0) the boundary of the
spectrum is at —oo, but for low concentrations ¢ = (Jk,|F)"! < 1 it is
possible to examine the behavior of the density of states in the neighborhood
of the boundary of the initial spectrum E = 0. In this case the recurrence
formula (5.26) takes the form

K
uyl=— 5%[1 - exp(2iqyj)] +[1+ exp(2igy;)| — exp(2igy,) u;_y, (5.33)

with g in the first quadrant of the complex g-plane. Real values of q
correspond to positive energies, and purely imaginary values of g to negative
energies. As in the case above, for |g| << |kg|, |Ko|7 > 1, we can neglect the
third term in (5.33). As a result the recurrence formulas are recoupled and we
have

K
uj'1 = u_l(yj) = — ﬁ[l - exp(2iqyj)] + [1 + exp(2iqyj)].

(The second term, however, must be taken into account, since it is this term
that leads to a nonzero density of states in the region E < 0.)
In this approximation, . -

(E 1 R 1 1 I 1d /o ) ) d
= — -4+ — _— R .
p(E) = - PR quqfo f(y)nu(y) dy
Continuing this equation analytically onto the spectrum (Img — +0 or
Re g — +0) and evaluating the integral on the right-hand side, we arrive at

7
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the following expression (Gredeskul and Trifonov, 1976) for the density of
states in the energy range |¢| << 1:

R e <0,

|"0|P(E) . 2me\ 7!
—_— 2 -1 _ _ 1-— _
) 2¢*|tan” " Ve T+. 77( exp 7 )

37e s e> 0.
e2cg3/? [1 - exp(— ———-)]

In the case of extremely low concentrations (|ln ¢| > 1) this result proves to
be especially simple (Figure 3):

42 £<0, g <1,
3¢
S 0 < e < c?/In’,
Ikl (E) 2@c c?
— T = 2.-3/2 2
=\ 2mc e “exp| — , T <e<ct,
2 - Ve In’c
1 2
e cr<xex 1.
Ve
P
PmaxNC—l-__
L
|
[
I
[
!
|
[
|
|
|
1
I
|
|
|
1
/ [
/ [
: |
p~c? I
b
: |
0] ¢ ¢2 1

In2¢

Figure 3
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Thus, the main difference between the density of states in the region |¢] << 1
in the system of attractive scatterers and that in the system of repulsive
scatterers lies in the presence of a flat section p(E) = 8c2/3|k,| to the left of
the point &, = ¢2/In’%. This has a simple physical explanation. Indeed, a
delta-like one-dimensional well always contains exactly one level, while two
such wells that are infinitesimally close constitute a single delta-like well of a
greater intensity but still containing only one level. This means that a system
of paired levels generated by two delta-like scatterers merges with the initial
continuous spectrum as the distance between the scatterers decreases and
produces a tail in the density of states with an amplitude proportional to c2.
As we will show in Section 28, in the three-dimensional case similar arguments
make it possible to observe the behavior of the density of states in a broad
energy range, or practically in the entire interval from the local level to the
initial continuous spectrum.

6 A METHOD FOR CALCULATING THE INTEGRAL DENSITY OF
STATES BASED ON THE PHASE FORMALISM

6.1 The General Formulas for the Number of States

The starting point of the method of calculating the density of states discussed
in the preceding section was Eq. (1.36), which expresses p(E) in terms of the
Green function and is valid in a space of any dimensionality and for an
arbitrary interaction. The special features of the problem (the fact that it is
one-dimensional and only the nearest neighbors are included in the interac-
tion) were manifested only in calculating (Gy(E)). However, in the one-
dimensional case there exists a considerably closer link between p(E) and the
solutions of the equation that defines the random operator considered. For a
continuous model this interrelationship can be formulated as follows: The
number of states with an energy not exceeding E in a system that occupies the
interval (0, L) can at the most be greater by unity than the number of zeros on
(0, L) possessed by the solution of the corresponding Schrodinger equation
with a given logarithmic derivative at one of the ends. This theorem [known as
the node-counting theorem; see Courant and Hilbert (1953), and Mandel’shtam
(1972)] enables finding a number of relationships for the density of states in
the one-dimensional case that are simpler than those discussed above. (The
connection between the spectrum of the dynamical equation and the zeros of
the solution of this equation was first used by Schmidt (1957) for the range of
problems examined here.) It.also appears that the relationships remain valid
even when the node-counting theorem, in the form stated here, may become
invalid, for instance, when the number of states differs from the number of
zeros by a quantity that is energy-dependent and grows more slowly than L as
L — oo. For this reason we will derive the abovementioned relations without
resolving to the node-counting theorem. Instead we base our proof on the

A METHOD FOR CALCULATING THE INTEGRAL DENSITY OF STATES 67

basic properties of the Schrodinger equation, properties that enable proving
similar relationships in other situations, such as in discrete cases and for the
one-dimensional Dirac equation (see Sections 7 and 8).

Let A7, (E,, E,) be the number of states of the Schrédinger equation

~" + U(x)y=Ey, O0<x<L, (6.1)

with energies lying in the interval (E,, E,), E; < E,. Then
E
N (Ey, E,) = /EZPL(E') dE’.
1

Next we introduce the phase a(x) of the wave function thus:
¥'(x)
Y(x) "

To find a(x) unambiguously we must require that it be a continuous function
of x [we assume that U(x) has no delta-like singularities; the required
modifications in case it does have such singularities are given below]. From
(6.1) we find that a(x), which we call the nonreduced phase, satisfies the
equation

cota(x) =

o« =®,(U,a), @,(U,a)=cos’a+ [E— U(x)]sin’e, (6.2)

and the initial condition a(0) = a,, with cot ag = (¥'/¥),_¢, 0 < ay < 7. If
we differentiate Eq. (6.2) with respect to E and integrate the resulting linear
equation, we find that

da X >
— = [ sin’a(y) {exp(—f [U(¢) — E + 1]sin2a(?) dt)} dy.
JE 0 v
Thus
ad
__a(x, E) > 0.
dE

This relationship indicates that the phase is a monotonic function of the
energy; it is the main relationship in the formalism that we are developing
here. Indeed, it immediately implies that the number per unit length,
N (E,, E,), of eigenvalues of the Schrédinger equation in (0, L) with the
boundary conditions cot a(0) = cot a, and cot a(L) = cot a; coincides with
the number of values’of E that belong to the interval (E;, E,) and for which
a(L, E) = a; + mm, where m is an integer; this number is equal to

(B Ey) = L1 a(L, E,) —a(L, E;)
£, £7) = ,

L

with [x] the integer part of x. Passing to the limit as L — oo and allowing for
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the fact that the number of states is a self-averaged quantity (see Section 3),
we arrive at the following relation:

W (B By) = lim (nL) " (a(L, By) - o(L, E)).  (63)

Integrating Eq. (6.2) with respect to x from 0 to L and substituting the

expression for a(L, E) into (6.3), we can rewrite this relation in the following |

form:
N (Ey, Ey) = 77 (@ (U, @) — (@ (U, a)>st), (6.4)

where on the right-hand side we have averages over the joint stationary
distribution of the random potential U(x) and phase a(x) reduced to the
interval (0, 7).

Now let us take the function Pg(x, a) = (8, (a(x, E) — a)), where §,(a)
=3Y* __0(a — nm)isa w-periodic delta function. The function Pg(x, a) is
the probability density for the distribution of the reduced phase a. By means
of (6.2) we can find that

AP(x, a) ) da(x, E)
B R CICCRIRE ey
ad
= — 5;<8ﬂ(a(x, E) - a)®,(U,a)),
or
Pg(x,a¢) Jg(x,a)
o + FPu— 0, (6.5)
where |
Je(x, @) = (8,(a(x, E) — a)@(U(x), a(x, E))) (6.6)

is the probability flux, while (6.5) is simply a continuity equation, which
expresses the probability conservation law, that is, the fact that the normaliza-
tion of Pr(x, a) remains constant in time, or

f”PE(x, o) da = 1.
0

As x = oo, the flux Jg(x, @) tends to its limiting value J;, which depends
neither on x [in view of the spatial homogeneity] nor on « [in view of (6.5)]:

Jp= lim 77 ["Tp(x, o) da = 77 (@(U, @),
A |

X—>00

Combining this expression for J; with (6.4) enables us to express A (E,, E,)
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directly in terms of the “stationary” probability flux J:

N(Ey, E,) = Je, = JE (6.7)

If we combine this with (6.6) and the fact that J; = lim, _,  J(x, a) for any
value of a, we find that

N (Ey, Ey) = (@, (U,0)) - (2(U,0))_. (6.8)

Here in order to calculate the averages we must know the stationary distribu-
tions of U and « only at a = 0.

We have assumed that the potential has no delta-like singularities. But, as
one can easily see by passing to the limit of narrow-peaked but smooth
potentials, the above formulas (6.3) and (6.4) for #"(E,, E,) remain valid
when U(x) does have such singularities [e.g., for potentials of the type (1.7)
with u(x) = k,8(x)]. However, the reader must bear in mind that now a(x)
undergoes jumps where the delta functions are concentrated. The magnitudes
of such jumps are determined by Eq. (6.2) and the requirement that the values
of the phase to the left and to the right of such points lie on one branch of the
cotangent [in one interval (mw,(m + 1)7)].

Thus, the formulas (6.3) and (6.4) are universal and valid for any random
potential. They show that to calculate A"(E,, E,) and hence p(E) we must
know the joint probability distribution of the potential and reduced phase or
the probability distribution of the nonreduced phase when x — co. These
functions in many cases satisfy certain integral equations (of the Smoluchow-
ski type) or differential equations (of the Fokker—Planck type), equations that
describe the probabilistic evolution of U(x) and a(x, E) and can be derived
on the basis of (6.2) with allowance for the probabilistic properties of the
random potential. Therefore the form of these equations is not universal [e.g.,
see Eqgs. (6.14), (6.33), (6.55), (6.69) and (6.90)], so that the methods by which
they are derived and investigated are specific for particular cases or for groups
of similar cases. These questions are discussed in sections of this chapter that
follow.

The universal formulas (6.3) and (6.4) may sometimes be awkward in
concrete calculations, since the first contains explicitly the operation
of taking the limit and the second requires calculating the integral
J®(U, @) Pg(U, @) dUda in addition to knowing the stationary probability
density P, (U, a) of U(x) and a(x, E) when calculating A4"(E;, E,). However,
if one has additional information about the random potential, simpler expres-
sions for #(E,, E,) ¢an be obtained. For instance, if we know that U(x) has
no delta-like singularities, then using (6.8) and (6.2) (in the latter a = 0)
instead of (6.4) yields

N (Ey, E,) = Pg,(0) = Pp(0), (6.9)

where P;(a) is the stationary probability density of the reduced phase only.
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This result is remarkable because it enables finding the number of states
directly from Pg(a), that is, without any additional operations.

In many interesting cases (see Sections 6.2, 6.4, 6.8, and 8) we will also use
(6.7) to find the number of states. This formula is especially convenient when
one is able to find an explicit expression for the probability density flux
Jg(x, @) or when the stationary flux J(E) enters explicitly into the equations
of the problem. If, in addition, instead of the reduced phase a we use another
variable f(a), substitution of this variable into Eq. (6.5) shows that the J(E)
in (6.7) is defined thus:

J(E) = tim Jy(x, £(a)sign 1), (6.10)

where Jz(x, f(a)) is the probability density flux of f(a).

6.2 The White-Noise Potential

We start from the simplest case, where U(x) in (6.1) represents white noise
(Halperin, 1965), that is, is given by a delta-correlated random function with a
Zero mean:

U=0, (U(x)U(x"))=2D8(x— x').
The generating functional of this potential has the form (2.6) with
B(x) = 2D8(x), (6.11)

while the potential, in accordance with the results of Section 2.2, possesses the
properties of spatial homogeneity and the disappearance of correlations at
infinity.

Let us introduce a new dynamical variable

’

Y
= = —, 6.12
z=cota v ( )

which according to (6.1) satisfies the equation
2= —(z22+ E) + U(x). (6.13)

For the probability density P(x,z) of z at point x we can write the
Fokker—Planck equation [the derivation of this equation for a situation that is
more general than (6.11) will be described in Section 10; see also Klyatskin
(1975)] )

P 9 E‘P Dap
— = (z2+ E)P + - | (6.14)
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which is a particular case of the continuity equation (6.5) with a flux density

Je(x,z) = —=(z*+ E) DaP
e(x,z) = z Py

Sending x to infinity and bearing in mind that z’(«) is negative, we arrive [in
accordance with (6.10)] at the following formula:

dpP
J(E)=(z*+E)P+D—, (6.15)

where P(z) is the stationary probability density of z and satisfies Eq. (6.14)
with a zero left-hand side. The solution of this equation can readily be found:

t3

DP(z) — 4 £) a,  (6.16)

23 Ez\ .z
7E) 733D f_we"p
with J(E) found from the normalization of P(z) to unity, or

J-Y(E) =D f_"; dxf_xw dexp[®(y) — ®(x)],  (6.17)

t
3D D

x3 Ex
(I)(x) = ? + 557—3'

The first to obtain this result were Frish and Lloyd, 1960, who proceeded from
the potential (5.16) to white noise by way of the limiting process k, — 0,
7 — 0, k27! ~ 1. Halperin, 1965, discussed the calculation of not only the
number of states but also the spectral density (1.30) and conductivity (1.32)
for the white-noise potential.

Equation (6.17) can be rewritten as

00 x3 Ex
JTYE) =D [ x-1/2exp(——
0

12 - m) dx, (618)

from which we find that

1 g2 4 |EP7? D
J(E)z'ﬂ |E|* “exp —g D 1+0|—E'|3—/2 R

E<0, |E|> D¥® (6.19)

=)

E>0, E> D¥3 (6.20)

D
J(E) = 'rr‘lEl/z(l +—=—=+0
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According to (6.17), J(E) tends to zero as E — — oo, and therefore J(E) =
N'(E), where /' (E)=AN'(E, —o0) is the number of states with energies
from — oo to E per unit length in an infinite system.

Note that if in Eq. (6.15) we go over to Fourier transforms, we can arrive at
an expression for the number of states A"(E) that differs from (6.18)
(Halperin, 1965):

E E \]
N(E) = D1/37r‘1[Ai2(— 02/3) + Biz(— Dw” ., (621)

where Ai(x) and Bi(x) are the linearly independent solutions of the Airy
differential equation

y'—=xy=0.

6.3 Spectrum Properties in the Vicinity of the Mean Value of the
Potential

If the peaks in the random potential are high and the correlation radius small,
then at an energy close to the mean value of the potential the latter will closely
resemble white noise. For this reason the model discussed in Section 6.2 may
provide, in accordance with the general reasoning concerning approximate
models discussed in Section 1.1, a fairly good description of the spectrum
properties in the vicinity of the mean value of the potential. In this case the
number of states

'/V(Ev Ez) = J(Ez) - J(El)

with energies in the vicinity of the mean value of the potential can be obtained
from (6.18). Here we present arguments that will enable us to see what
properties the potential must have (the magnitude of fluctuations and the
correlation radius) so that it can be replaced by white noise, and in what
energy range such a replacement is possible. Moreover, later we will see that
for potentials satisfying the conditions that we will now formulate, the
white-noise model correctly describes, in the vicinity of the mean value of the
potential, not only the behavior of the density of states, but also the rate of
decay for the wave function’s envelope, the conductivity, the localization of
the wave function (Chapter 3), and the transmission coefficient of a plane
monochromatic wave (Chapter 7). h .

As shown earlier, the density of states is determined completely by the
probability distribution of the phase a of the wave function or any function of
a, say z. Therefore we must only establish in what conditions the probabilistic
properties of z(x) determined from Eq. (6:13) with an arbitrary U(x) are close
to those of z(x) corresponding to white noise, that is, to a delta-correlated
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Gaussian random function. Since the latter has a distribution symmetric with
respect to the mean value, it is natural to isolate this value from the start:

Ux)=U+v(x), U=(U()), (v(x))=0.

Now we must assume that v(x) varies in the parameter range considered
here much faster than the wave function Y (x), since we are looking for a
delta-correlated random function. But this is possible only at low enough
energies, that is, when the characteristic distances over which y(x) varies (the
de Broglie wavelength and the bound-state radius) are much larger than the
potential’s correlation radius. Since these distances decrease as the absolute
value of the energy grows, it is clear that a delta-correlated potential is a good
approximation of the initial potential when the energy is close to the mean
value of the potential. If we denote the correlation radius of v(x) by r,, which
is the distance over which the correlation function

B,(x) = (v(x)v(0)) (6.22)

decreases appreciably, then the corresponding energy region can be de-
termined by the following inequality:

|E - U|<r; 2 (6.23)

To establish the parameter that determines the order of magnitude of the
potential fluctuations that provide the main contribution to the spectrum in
this energy region, we note that

2D = f_°° B,(x) dx (6.24)

remains finite when we go over to white noise. Since a Gaussian random
function is determined entirely by its correlation function, which in the case of
white noise has the form B(x) = 2D4(x) [see (6.11)] and contains only one
parameter D, this parameter is the only dimensional parameter of the prob-
lem. This means that the fluctuations are of the order of D% and hence it is
natural to change variables in Eq. (6.13)* in the following manner:

DVix =1,  DVi=¢.
As a result we arrive at the equation
{=-¢2—(E-U)D*+ D (D). (6.25)

*In nonlinear mechanics the variable ¢ is often called the slow time; see Mitropol’skii (1971) and
Stratonovich (1961).




