Chapter 3

ANALYTICAL PROPERTIES OF THE WAVE FUNCTION
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In the preceding chapter we showed that the scatte ring of particles in
a potential field is completely described by the phase factors S, (k) =
= exp (2ib; (k).

If we know the exact form of the particle interaction potential, analytical
or numerical solution of the Schroedinger equation will provide complete
information on the system. Had this always been the case, we could leave
with free conscience all the problems of quantum mechanics to electronic
computers, and proceed with matters of more importance. However, the
actual physical reality is far from this ideal state of things. In most cases,
the particle interaction potential is simply not known. Moreover, the actual
interaction between particles is apparently not described by potential forces.

Non-potential interactions are the subject of what is called quantum
field theory. (Simple problems of this kind are considered in Chapter 8.)
This theory, however, unlike quantum mechanics, is not free from internal
difficulties. For example, calculation of certain quantities involves
divergences (infinite, unbounded results). These divergences are apparently
associated with improper description of interaction at very small distances.

Heisenberg /83/ attributed these difficulties to the use of nonobservables,
such as ¢ (r), in the theory; a proper theory should deal only with observables,
which include the functions S, (k) = exp (2i 8; (k) forming the so-called S
matrix (scattering matrix) /84/. The theory of the S-matrix is rapidly
developing in recent years, especially in connection with the description
of strong interactions of elementary particles. Particular attention is
devoted to the construction of S-matrix theory using unitarity and analyticity
properties. (Note that the importance of the analytical properties of the
§ -matrix was first emphasized by Kramers /85/ and Heisenberg /86/.)
Numerous important advances were accomplished in this direction and
various relations between experimental observables were established.

Thus, the considerable progress in the theory of elementary particles is
definitely attributed to ingenious application of the analytical properties

of the S-matrix. Moreover, in case of quasistationary states and in some
other cases, the behavior of a system can be described without introducing
a particular interaction: it suffices to apply only general considerations on
the position of the poles of the scattering amplitude.

The S-matrix formalism is generally regarded as precluding space-
time description of processes. We should stress at this point that recent
results /87, 88/ give actual prescriptions for space-time separation of
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events within the framework of the S-matrix formalism. The applicability
of intensity correlations to the determination of the scattering amplitude
phase was demonstrated in /89 —91/.

We will discuss the analytical properties of functions proceeding from
the following general considerations:

(a) all the energy eigenvalues are real (a Hermitian Hamiltonian);
the wave vector k is thus automatically real for continuum wave functions;

(b) elastic scattering is the only allowed process;

(c) the Hamiltonian is invariant under space inversion (when the space
parity is conserved) and time reversal (when time parity is conserved). :

Assumption (b) is needed so as to ensure that for given energy the radial
Sch. Eq. has only one solution with given [. Conservation of time parity is
equivalent to the requirement of a real Hamiltonian (H* = H); hence it follows
directly that if ¢ is a solution of the Sch. Eq., ¥*is also a solution.

We should note at this point that the space parity definitely changes in
so-called weak interactions, as was conclusively demonstrated in 1957
/92, 93/; recent results also point to nonconservation of time parity /94/.
Strong interactions, however, are believed to this day to conserve space
and time parity. The following theorems are therefore fully applicable to
strong interactions.

We will now consider the general properties of the functions S; (k)
entering the scattering amplitude. *

We have seen that for potentials U (r) which fall off at infinity faster
than 1/r, the Sch. Eq. has two solutions y{f which behave asymptotically as
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(the Coulomb potential case is not considered at this stage).
These functions can be formed into a solution which is regular at the

Kt = @1 (6) 1 (1) — bu (B) g (1), (13.1)

where @ and b are some constants dependent only on k. The function
clearly vanishes for r = 0 if ¢ and b satisfy the relation

O (5

AL (13.2)
a; (k) rl—r,?) x$9 ()
From the definition of S; (k) we have
_a® (13.3)
S (k) =8®"
Let us consider the general invariance properties of the Sch, Eq. First,

since it includes only the square of the wave vector £, the equation is

¢ A more detailed study of the analytical properties of wave functions and S¢ (k) will be found in /95—97/.
**  This solution can be normalized using a k-independent condition, say li_r>n0 r‘('“)x,(r)= 1. In this case,
r

according to Poincaré's theorem /98/, ¥, (r) is an entire function of &2,
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invariant under a change in the sign of £. Thus if k is replaced by - £ in
solution (13.1), the new function will also be a solution of the original
equation. As the solution is single-valued, however, the two solutions ¥
and y-z may differ only by a constant factor., Since the asymptotic expres-

sion for the function y{f) gives the relation

1 (1) = (=1)xG ), (13.4)
we find, changing the sign of £ in (13.1),
) _ b
by(k) — a(—k)"
Expression (13.3) yields the relation
S; (k) = Si* (—k). (13.5)

Still another important formula can be derived if we notice that as the
Sch. Eq. is real, the complex conjugate of any solution, xw (r), is also a
solution of the Sch. Eq. for real k, As the solution is unique, we again
conclude that % and XZ/ may differ only by a constant factor, so that for
real &

ag(k) by (k)

by (k) aj (k)

’

St (k) = (St* (R))*. (13.6)
This expression signifies that the two functions S; (k) and (S7* (k) coincide
over the entire real axis in the complex k plane. According to the funda-
mental theorem of analytical continuation it follows that
St (k) = (Si(k")™ (13.7)
in the entire complex k& plane. The previous expressions establish a one-

to-one correspondence between the §; (k) values in the different quadrants of
the k plane (Figure 8): if the value of S, (k) at the point k,is S,, we have

1
S

vy Sl =85 Spl—kjj = (13.8)

0

Sy (ko) =

It is thus sufficient to have the form of S, (¢) in one of the quadrants so
as to be able to reconstruct the function S; (k) for the entire complex plane.
The above relations indicate thatat points symmetric about the imaginary
axis, S; (k)takes on complex conjugate values. On the imaginary axis,

Si (k) is thus a real function, and the phase 6§, (k) is a pure imaginary number:

8 (i | k]) = — &; (i | k). (18.9)

For points symmetric about the real axis, we have (13.7). Hence follows
the known result: on the real axis |S;(k)|= 1, and the phase §, (k) is real.
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Let us now consider the singularities of S; (k). The regular solution (13.1)
can be considered over the entire complex k plane, provided that x§f are
treated as the analytical continuations
of the corresponding functions for complex
@ k. In particular, the regular solution will
have the same form (13.1) on the imaginary
axis, Let the potential U (r) be such that a
bound state of the particle exists for some
negative energy — E,(or imaginary &, =
-kt 4y = i|k|). This means that the energy E,
corresponds to a solution which is
regular at the origin and falls off to
zero as e = ekl at infinity, Since yu
is the only solution which is regular at

*
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FIGURE 8. . :
the origin, the existence of a bound state
implies that the coefficient a (k) vanishes
for k=ky=i]/ 215, the x{? at this point is regular attheorigin. Similarly,
as for all the £ on the imaginary axis in the lower half plane (k = — i|#])

%) (r) = oo for r— co, ¥ (r)— 0 for r — oo,

the existence of a bound state implies the vanishing of the coefficient b, (k)
at the point £ = —k,. This is a reflection of the previously mentioned
general invariance property of the Sch. Eq. under sign reversal of k.
Returning to (13.3) we come to the conclusion that a bound state corresponds
to a pole of the function §; (k) situated on the imaginary axis in the upper
halfplane at the point & = k,.

In accordance with the previously discussed symmetry properties of
St (k), this pole corresponds to a zero of the function S (k) at the point
k = — ky on the imaginary axis in the lower halfplane. Notice also that
although a bound state corresponds to a pole, the converse is not always
true: not to every pole of S, (k) on the imaginary axis in the upper halfplane
corresponds a bound state. There are so-called ''false' or '"redundant"
poles of §; (k). We will yet return to this problem at a later stage.

It is readily seen that in the upper halfplane S, (k) may have poles only
on the imaginary axis, so that in the lower halfplane the zeros also lie on
the imaginary axis only. Indeed, apart from a common factor, the regular
solution (13.1) can be written either as

X (r) = %5 (r) — St () %59 (r), (13.10)

or as
%) = ST (B) %5 — %8 (13.10")

If S/ (k) had a pole at a point £ = k¢ in the upper halfplane not on the imaginary
axis, the solution (13.10') would contain only the function yx;,, which falls off
exponentially at infinity:

Yt (r) ~ — (— i)leu,r =—(— i)le~(~r Re kotr Im ko)),
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But the function % (r) is by definition regular at the origin, and therefore
at the point &, this solution would satisfy the two boundary conditions (1.7),

Hok? . :
i.e., the complex quantity Tni would be an eigenvalue of the Sch. Eq. This

is impossible, since any physical potential is real and all the energy eigen-
values are real,

The requirement of a real potential is thus responsible for the concen-
tration of the poles of S; (k) on the imaginary axis in the upper halfplane.
In the lower halfplane, however, no restriction is imposed on the position
of the poles, and they may be distributed at random. These conclusions
remain in force even if the interaction forces are not potential. The main
thing is that the Hamiltonian should be Hermitian,

This theorem can be given an alternative, more formal proof. Consider
the time-dependent Sch. Eq. and its conjugate:

2
ih-G- = — g A+ Uy,

h?

e 0Pt
“‘ﬁaT'_ 2m

Ay* 4 Uy,
The first equation is multiplied by {*, the second by ¥, and one is subtracted
from the other. We get

o [ = — 2V (Vi — V).

Integration of this equation over an arbitrary volume V enclosed within
a surface S gives the law of particle number conservation:

%glwdr=<§>ds%<¢'vw—ww‘). (13.11)
S

Let now S (k) have a pole at some point k, = &, + ik,. The wave function
at this point has the form

8¢ 1 ieriryr M hokptainge
e am .

1P=,Lx(f)e—T~,—

Inserting this expression in (13.11), we choose the volume V as the inside
of a sphere of radius r = R, where R is sufficiently large so that on the
surface of the sphere we may use the asymptotic expression for the wave
function, Elementary manipulations give

R
klsz [%(r)|Pdr =— 2’;;2 e-2Rks,

0

Since there is a minus sign in the right-hand side, this equality is satisfied
only if

(a) k = 0, i.e., the pole of S (k) lies on the imaginary axis,

(b) k=0, k<0, i.e., the pole of S (k) lies in the lower halfplane.

This completes the proof of the theorem. '

The only constraint on the position of the poles in the lower halfplane
is that they should occur in pairs symmetrically about the imaginary
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axis.* The zeros of §; (k) in the lower halfplane, however, may lie only along
the imaginary axis, This follows from (13.5).

Poles in the upper halfplane correspond as a rule to bound states of
particles in the field U (r). For poles in the lower halfplane the regular
(at the origin) wave function has the asymptotic form

Yot (1) ~ — (— i)lettr = — (— i)leir Rekar | Im k|,
(13.12)

Y (r) = 00 for r— 00,

i.e., it diverges at infinity.

This wave function thus does not satisfy the boundary condition at
infinity and would seem to be physically meaningless, This is not quite
so, however. In Chapter 5 we will see that to every pole of S; (k) in the
lower halfplane corresponds a so-called quasistationary state of the
particle in the field U (r), i.e., a state which, once formed, will have a
finite lifetime 7.

Let us sum up what we have learned on the topography of the function
Si(k) in the complex plane. This function is analytical in the entire complex
k plane, with the possible exception of isolated singularities and cuts.

In the upper halfplane it may have poles on the imaginary axis only. Some
of these poles correspond to bound states, other are ''false' poles. In

the next section we will give a prescription for identifying the ''false' poles.
S;(k) may have zeros in the upper halfplane and corresponding poles in

the lower halfplane. On the imaginary axis S; (k) is real and on the real
axis its modulus is equal to unity. If the wave vector k is replaced by
energy, we should remember that the % plane is mapped onto a two-sheet

E plane. Bound states correspond to poles on the left semiaxis in the
upper E plane. The poles on the lower sheet of the E plane correspond

to quasistationary states.

In what follows we will require the symmetry properties of scattering
phases. On the real axis the phase 6 is real. By (13.5) we see that
for real &

8y (k) = — &; (— k). (13.13)

Wave functions normalized to § (¢ — k') have the asymptotic expression

2 . !
Xu ~ /) = sin (kr + 8 (k) — 57},
Using this expression, we can readily verify that as the sign of k changes,
the wave functions behave in the following way:
Xty 1 (1) = (— 1)y 1 (r). (13,14)
We have mentioned in the preceding that S; (k) is an analytic function in
the complex k plane. This holds true for any potential and is a consequence

*  For potentials vanishing for # >R there is an infinity of such poles /99—101/; in this case the distribution

of the distant poles is completely determined by the behavior of the potential for r — R, The poles
in case of a rectangular box were treated in detail in /102/,
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of the principle of physical causality.* In other words, the cause must
precede the effect. This is an inevitable prerequisite of any physical theory,
and it is found to have very far-reaching consequences. We will now try
to sketch a rough outline of the formal results emerging from the causality
principle.

We write the expression for the wave function for given energy E at
some distance r = a outside the effective range of the potential:

LEt

(e~'ka — S (E) eita) e .
The first term corresponds to the incoming wave and the second to the
outgoing wave. A spatially localized wave packet is given by
0 LE't

(ae By ewve— g (B evaye™ T, g (B) = S(E) F(E). (13.15)

0

The wave packet describing the incoming waves is clearly
o ipra— CE
@, (a0 :§ dE'f(Eye T,
and the wave packet of the outgoing waves is
¢ ik'u—-[E'I
Doue (@ 1) :SdE’g(E')e T,
0

Since the system is linear and the amplitude of the divergent outgoing
waves is fully determined by the incident wave, we have the following
relation between the two amplitudes:

Doue (a,1) = S H{t—t) Oy (a, t)dt, (13.186)

where H is some transformation kernel.

It is here that the causality principle enters the discussion: the amplitude
of the outgoing wave at the time ¢ can depend on @y, (¢) only if £ > ¢, We
must therefore have

H@t—1t)=0 for ¢ >t (13.17)

Introducing the Fourier component & (») of the operator H,
H(t) = S doe-o h (0), (13.18)
we easily find from (13,15) —(13,18) that
h (E) = o= S (E). (13.19)

*  This idea was first advanced in /103/, but the original proof is not fully rigorous. The rigorous proof
first given by Van Kampen /104/ requires knowledge of comparatively fine theorems of the theory of
analytic functions.
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Inverting (13.18), we get

exta S (F) = + S ¢'E H (1) dx.

—00

In the general case, this expression sheds no light on the properties of
S (E). By the causality principle, however (see (13.17)), we know that
H (v) = 0 for v<_ 0. The integration should therefore start from Zero:

PSR — S "5 H (1) dr. (13.20)
0

In this case the function in the right-hand side is clearly analytical in the
upper E halfplane, where e decays exponentially., In the £ plane this
corresponds to the first quadrant. Thus, using the symmetry properties

of S (k), we find that S (k) is analytic in all the quadrants. The exponential
factor e*a in (13.20) accounts for the phase lead of the wave reflected from
the spherical surface r = a relative to the wave passing through the scatter-
ing center /105/ (the corresponding path length difference is 2a).

For a plane wave scattered at a finite angle 8 we should choose the
shortest path (corresponding to maximum phase lead) through the scattering
sphere which reaches the observer
at an angle 0 (Figure 9). This path

length is less by 2asin2 than the

length of the path through the
scattering center. Therefore, in
the upper E halfplane, it is the

(]
function ¢***" % (£, 0) that is analytic,
and not the scattering amplitude
a f (E, 6). Hence it is clear that the
simplest analytical properties are
characteristic of f(E, 0) (it is analytic
in the upper E halfplane).

The causality principle can be
applied to derive the analyticity
properties of the scattering amplitude
from momentum transfer /106/.

Note that the validity of our assertions on analyticity is independent of the
particular form of the potential for r < a. Moreover, even the assumption
that the wave function inside the interaction range (r < a) satisfies the

Sch. Eq. is unnecessary, In other words, the analyticity of S (E) in the
upper E halfplane is a direct consequence of the causality principle alone,
This problem is discussed in /107, 108/,

FIGURE 9.

§ 14. "FALSE" POLES

We have already mentioned that in the upper halfplane S;(k) may have
so-called "false' poles* on the imaginary axis, which do not correspond to

*  The existence of these poles was first pointed out by Ma /109/ [who called them “redundant”],
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