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ABSTRACT Two methods were proposed re-
cently to derive energy parameters from known
native protein conformations and corresponding
sets of decoys. One is based on finding, by means of a
perceptron learning scheme, energy parameters
such that the native conformations have lower ener-
gies than the decoys. The second method maximizes
the difference between the native energy and the
average energy of the decoys, measured in terms of
the width of the decoys’ energy distribution (Z-
score). Whereas the perceptron method is sensitive
mainly to “outlier” (i.e., extremal) decoys, the Z-
score optimization is governed by the high density
regions in decoy-space. We compare the two meth-
ods by deriving contact energies for two very differ-
ent sets of decoys: the first obtained for model
lattice proteins and the second by threading. We
find that the potentials derived by the two methods
are of similar quality and fairly closely related. This
finding indicates that standard, naturally occurring
sets of decoys are distributed in a way that yields
robust energy parameters (that are quite insensi-
tive to the particular method used to derive them).
The main practical implication of this finding is that
it is not necessary to fine-tune the potential search
method to the particular set of decoys used. Proteins
2000;41:192–201. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

To perform protein folding one assigns an energy E to a
protein sequence in a given conformation. One of the
simplest approximations to the true energy is the pairwise
contact approximation

Etrue~a, S! . Epair~a, S, w! 5 O
i , j

N

Sij w~ai, aj!, (1)

where we denoted by a the sequence of amino acids, by S
the conformation (represented by its contact map,1 and by
w the set of energy parameters. If there is a contact
between residues i and j, then Sij 5 1 and the parameter
w(ai, aj), which represents the energy gained by bringing
amino acids ai and aj in contact, is added to the energy.

Given a set of proteins whose native structure is known,
experimentally or otherwise, the set w must stabilize
these structures against all the possible alternatives.

Optimization of the stability can be realized using
different methods.2–9 In this work, we compare two re-
cently proposed approaches to this problem, the one by
Mirny and Shakhnovich (MS)10 and that of Vendruscolo
and Domany (VD).1

The purpose of the present study is to compare the
merits and possible shortcomings of the two methods,
when applied to realistic situations and data, involving
either real or artificial model proteins.

In the Z score method, one determines the energy
parameters by optimizing the gap between the native state
and the average energy of alternative conformations,
measured in units of standard deviations of the energy
distribution. Imagine that a set of parameters with a very
low Z-score has been found. If the number of decoys is
large, the Z-score will not be affected by a small number of
“outlier” configurations. If we now add a few conformations
whose energy is below that of the native structure, this will
not affect in a significant way the average energy and,
hence, the Z-score. Therefore, for this new set of decoys the
parameters that optimize the Z-score do not assign the
lowest energy to the native state. We can easily create
such a situation; it is not clear at all, however, whether
such a mishap will or will not occur for a routinely obtained
set of decoys.

The perceptron method is aimed at enforcing the condi-
tion

E0 , Em (2)

for one or more proteins. Here E0 is the energy of the
native state and Em (m 5 1, . . .P) are the energies of P
alternative conformations. This is a necessary condition
for any energy function to be used for protein folding by
energy minimization. When there exists a set of contact
energy parameters w for which (2) holds for all m, we say
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that the problem is learnable. For a learnable problem,
however, the solution is not unique: there is a region
(called “version space”) in energy parameter space, whose
points satisfy the P inequalities (2). One can identify a
subset of conformations that are of low energy for at least
some of the points in version space. The result obtained by
perceptron learning is sensitive only to such a (possibly
very small) subset of conformations. Using a different set
of conformations, even generated in the same way may, in
principle, change the solution considerably.

Hence the perceptron solution may be influenced very
strongly by a few low-energy “outlier” conformations.
Therefore, it is possible to create a situation in which the
energy parameters obtained by perceptron learning do
satisfy (2) and stabilize the native fold but, at the same
time, yield a relatively high value for the Z-score. Again we
wish to find out whether for realistic decoys such a
situation will or will not actually occur.

OPTIMIZATION METHODS
Z-Score Method

MS presented a method to derive a potential based on
the optimization of the Z-score. The Z-score is defined by

Z 5
E0 2 ^E&

s
(3)

where E0 is the energy of the native state, and ^E& and s
are, respectively, the mean and the standard deviation of
the energy distribution.

The procedure that they used to recover the true poten-
tial worked by optimizing the Z-score simultaneously for
all the sequences as a function of the energy parameters w.
Using a Monte Carlo in parameter space they minimized
the harmonic mean of the Z-scores

^Z&harm 5
M

O
m 5 1

M

1/Zm

(4)

The procedure that they used to recover the true poten-
tial worked by optimizing the mean harmonic Z-score
simultaneously for all proteins in the database as a
function of the energy parameters w. The reason for
taking the harmonic mean of Z-scores as a function to
optimize is that the harmonic mean is most sensitive to
“outliers,” i.e., it is a good approximation to obtain min-
(maxmZm). Physically it means that the optimization of the
harmonic mean is likely to exclude the situation when few
proteins are “over-optimized” while for most other proteins
the derived potential is not satisfactory at all. More
detailed discussion of this point is given in Mirny and
Shakhnovich.10

Computation of the Z-Score

The mean and the standard deviation of the energy
distribution of decoys are given by

^E& 5 O
i , j

N

^Sij&w~ai, aj! (5)

s2~E! 5 O
i , j

N O
k , l

N

cov~Sij, Skl!w~ai, aj!w~ak, al!, (6)

where ^Sij& is the frequency of a contact between residues i
and j in the decoys and cov(Sij, Skl) 5 ^Sij Skl& 2 ^Sij&^Skl&
is covariance of contacts between i, j and k, l. For a given
set of decoys, one can easily compute ^Sij& and cov(Sij, Skl).
Importantly, the Z-score method allows derivation of a
potential using no explicit decoys. Assuming a certain form
of the distribution of contacts in the decoys ^Sij& and their
correlations cov(Sij, Skl) one can compute the Z-score and
optimize a potential against these implicit decoys.

However, when the Z-score method is compared with the
perceptron learning (see below) a set of actual decoys is
always present. In this case both ^Sij& and cov(Sij, Skl) are
computed explicitly using these decoys.

Optimization of Potential

A potential w is obtained by minimization of the Z-
scores simultaneously for all proteins in a database. As
explained above, this is achieved by using a harmonic
mean of individual Z-scores as a function to be minimized

^Z&harm 5
M

O
m 5 1

M

1/Zm

(7)

At each step of the Monte Carlo procedure, an element of
w is chosen at random and a small random number e [
[20.1, 0.1] is added to it. This change is accepted or
rejected according to the associated change in ^Z&harm and
the Metropolis criterion with algorithmic temperature T.11

At low temperature T, the procedure rapidly converges to
the low values of ^Z&harm.

To assess the quality of obtained potential wopt one
needs to compare the energy of the native conformation
E0(wopt) with the energy of each decoy Em(wopt). If the
actual decoys are present the procedure is straightfor-
ward. When potential is obtained using implicit decoys
(see above), one cannot check whether E0 , Em for all m.
However, it is possible to estimate whether E0 is below EC,
the bottom of the continuum part of the decoy’s energy
spectrum. Assuming the Gaussian energy distribution of
the decoys one gets

EC 5 ^E& 2 sÎ 2 ln M,

where M is the estimated number of decoys. The value of M
depends on the procedure used to generate decoys: lattice
or off-lattice folding, threading, and so on. Then the
quality of a potential is given by the E0 /EC ratio. If
E0 /EC , 1, the native conformation is above the bottom of
the continuum spectrum and there are lots of decoys with
Em , E0. This is a strong indication that the problem is
unlearnable (see below). On the contrary, E0 /EC . 1
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indicates that the native conformation is below in energy
than a vast majority of decoys. However, even in this case
some decoys can have the energy below E0.

Perceptron Method

VD used a perceptron learning technique to find energy
parameters w for which the set of inequalities (2) is
satisfied. The perceptron learning technique they used
either converges to a solution w* of the inequalities (2), or
provides a proof for non-existence of such a solution.

For any conformation, the condition Eq. (2) can be
expressed as

w z xm . 0 (8)

To see this, just note that for any map Sm the energy (1) is a
linear function of the 210 contact energies that can appear
and it can be written as

Epair~a, Sm, w! 5 O
c 5 1

210

Nc~Sm!wc (9)

Here the index c 5 1, 2, . . . 210 labels the different
contacts that can appear and Nc(Sm) is the total number of
contacts of type c that actually appear in map Sm. The
difference between the energy of this map and the native
SN is, therefore,

DEm 5 O
c 5 1

210

xc
mwc 5 w z xm (10)

where we used the notation

xc
m 5 Nc~Sm! 2 Nc~S0! (11)

and S0 is the native map.
Each candidate map Sm is represented by a vector xm

and, hence, the question raised above regarding stabiliza-
tion of a sequence a becomes

Can one find a vector w such that condition (8)

holds for all xm?

If such a w exists, it can be found by perceptron learning.
A perceptron is the simplest neural network.12 It is

aimed to solve the following task. Given P patterns (also
called input vectors, examples) xm, find a vector w of
weights, such that the condition

hm 5 w z xm . 0 (12)

is satisfied for every example from a training set of P
patterns, xm, m 5 1, . . . , P. If such a w exists for the
training set, the problem is learnable; if not, it is unlearn-
able. We assume that the vector of “weights” w is normal-
ized,

w z w 5 1 (13)

The vector w is “learned” in the course of a training
session. The P patterns are presented cyclically; after

presentation of pattern m, the weights w are updated
according to the following learning rule:

w9 5 H w 1 hxm

uw 1 hxmu
if w z xm , 0

w otherwise
(14)

This procedure is called learning since when the present w
misses the correct “answer” hm . 0, for example, m, all
weights are modified in a manner that reduces the error.
No matter what initial guess for the w one takes, a
convergence theorem guarantees that if a solution w
exists, it will be found in a finite number of training
steps.12,13

For learnable problems there is a continuous set of
solutions, among which one can find the optimal one, the
perceptron of maximal stability.8,14,15 This solution maxi-
mizes the smallest gap between the native energy and the
respective first excited state of the M proteins in the
learning set. In the algorithm, the condition (12) is re-
placed by

hm 5 w z xm . c (15)

where c is a positive number that should be made as large
as possible. At each time step, the “worst” example xn is
identified, namely the one such that

hn 5 w z xn 5 min
m

w z xm (16)

Such an example is used to update the weights according
again to the rule (14). The field hn(t) keeps changing at
each time step t; the procedure is iterated until it levels off
to its asymptote.

COMPARISON OF THE METHODS USING
LATTICE PROTEINS

Lattice proteins constitute a simplified paradigm that
represents many aspects of the real problem quite faith-
fully. Because of their relative simplicity, they were used
to test a wide variety of ideas on proteins, ranging from
sequence design, folding dynamics, calculation of free-
energy landscapes, and many more. They form a well-
controlled theoretical construct about which many basic
questions can be asked, without the need to involve the
added complexity of real polypeptide chains.

In particular, short fully compact lattice proteins were
used by MS to test the Z-score methodology; hence, it is
natural to use the same set as a testing ground for the
perceptron method and for comparing it to the results
obtained by Z-score. The database of M 5 200 proteins
used by MS was set up as follows. They randomly chose
200 conformations on a 3 3 3 3 3 cube. Using the potential
of Miyazawa and Jernigan (MJ)16 (hereafter referred to as
the “true” potential), they designed for each conformation
a sequence that minimized the Z-score as a function of the
sequence composition. The design method is standard
Monte-Carlo optimization in sequence space.17,18 A ver-
sion of the method that directly optimizes the Z-score,
without the requirement of constant amino acid composi-
tion was used. In the second part of their study, they used
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the 200 sequences and structures in the database to
optimize the Z-score as a function of w. In this way, they
found a solution wZL. The 200 structures used in this
study were the same as in earlier work by Mirny and
Shakhnovich10 and the procedure of parameter derivation
and its relation to “true” input parameters are described in
detail.10

We use here 198 of the 200 MS conformations and the
corresponding optimal sequences.

For each of the 198 proteins, all the 103,346 conforma-
tions on the cube were considered as decoys, yielding P 5
198 z 103345 < 20 z 106 inequalities. This is a very large
number of examples to learn; fortunately, as we shall see,
the structure of the problem facilitates our task consider-
ably. Only a few of the 20 z 106 examples xm are relevant to
the learning procedure.

As our first attempt to derive energy parameters, we
used the standard perceptron learning rule.13 The proce-
dure is the following. We initialized the vector w of
parameters by drawing 210 random numbers uniformly
distributed in the interval [21, 1]. In this way, at the start
P/2 examples are on average violating the P inequalities
Eq. (12). Then we ran cyclically through the P inequalities,
updating the vector w each time a violation of an inequal-
ity was found. We derived three different solutions w1, w2,
and w3, each one obtained by starting from a different
point in parameter space. Given the low complexity of this
particular learning problem, the solutions w1 and w3 were
found after only 1 sweep through the P examples during
which 8 updates of w were performed and the solution w2

was found after two sweeps, which involved 11 and 1
updates, respectively. We observe that in this context “low
complexity” has the specific meaning that to change the
sign of P/2 , 107 inequalities only about 10 updates are
typically necessary. We found that the correlation coeffi-
cients between the solutions

ra,b 5 wa z wb (17)

were quite small; respectively, r1,2 5 0.65, r1,3 5 0.60, and
r2,3 5 0.57. This information is important since it mea-
sures the size of version space, i.e., that part of the
parameter space whose points are solutions of Eqs. (2). A
random initial guess for w lies outside version space and it
“diffuses” towards it during the learning process. As soon
as w enters version space, the learning process defined
above stops. Hence our three solutions, which were gener-
ated starting from three uncorrelated random initial
guesses, represent three typical vectors close to the bound-
ary of version space; the angle between a pair of such
vectors is about 53°.

As our second learning attempt we found the perceptron
wPL of maximal stability. This solution is near the centre
of version space. From the previous attempt, we under-
stood that only a very few examples are relevant for the
learning process. Giving such insight, we followed a more
economic procedure than the previous one that required to
sweep each time through all the P examples, the vast
majority of which did not contribute to the learning. For
each sequence, we generated 100 “important” low-energy

examples. One way to do this is, as before, to start from an
initial random choice for the parameters w and to sweep
once through the P examples, updating w. By using the
updated w for each sequence, we identified the 100 ex-
amples of lowest energy. Then a second random set of
parameters w was drawn and, again, the 100 examples of
lowest energy were identified in the same way. Typically a
few tens of structures are common to these two sets of 100.
By taking 100 low-energy structures determined by either
of the potentials, we are including the lowest 10 or so
structures of any other reasonable pairwise potential
function. In this way, we reduced the size of the learning
task to ND 5 19,800 examples. Once these “hard” ex-
amples were learned, we turned back to the full set of 20 z
106 examples to ascertain that the solution obtained
indeed satisfies the entire set of inequalities.

In Figure 1 we demonstrate that only less than Phard ;
100 examples participated in the learning process. The
figure shows the number of updates for each example that
were necessary to converge to the optimal solution, sorted
in decreasing order. In practice, around one half of the
sequences did not contribute at all to the total Phard and
the remaining ones contributed one or very few examples.
We found that the overlaps of wPL with the three non-
optimal solutions are rP,1 5 0.74, rP,2 5 0.71, and rP,3 5
0.66, corresponding to a smaller angle (about 45°). For
wPL, the minimal gap between a native map and the
lowest decoy above it is minmw z xm 5 cPL 5 0.45.

Next we investigated the influence of the database size
on the derived potential. To this effect, we obtained new
solutions wPM using only a subset of M proteins in the
database. For example, for M 5 99 proteins the correla-
tion with the full solution wPL is rPL,PM 5 0.89 and the
stability cPM 5 0.54. The set wPM is still a solution of the
whole database of 198 proteins. However, the stability in
the whole database is reduced to cPM

198 5 0.035, as shown in
Figure 2. The stability as a function of M apparently

Fig. 1. Number of updates that were necessary for each example
(identified in the figure by an “index”) to converge to the solution of
maximal stability. Only less than 100 examples participated to the learning
process.
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asymptotes to a non-zero value. This fact might be re-
garded as a measure of the degree of design to which the
proteins in the database have been subjected.

There are two questions that can be asked to compare
the two methods of extraction of potentials

Which is the best method to recover the true potential
knowing only the sequences and their ground states?

A possible answer is given by the correlation coefficient
between the true potential and the derived one. The
Z-score method gave r 5 0.84 and the perceptron method
r 5 0.69. The correlation between wPL and wZL is r 5 0.79.

Which is the method that gives a “better” potential?

We considered four different measures of performance to
answer to this question.

1. The Z-score measures the gap between the ground state
and the average energy of a given sequence on a set of
decoys. The perceptron method measures the gap be-
tween the ground state and the first excited state. Thus,
the previous question can be rephrased as
How does ^Z&harm of wP compare with ^Z&harm of wZL?

In the case of wPL, we obtained ^Z&harm 5 26.44, and for
wZL we obtained ^Z&harm 5 26.93.

2. Another way to formulate the same question is
How does the stability cZL of wZL compare with the
stability cPL of wPL?

We found cZL 5 0.05 and cPL 5 0.45.
3. Beyond the Z-score and the gap to the first excited

state, a third way to quantify the stability is to look at
the correlation between the overlap Q and the differ-
ence in energy with the ground state DE. The overlap
Q is defined as

Q 5
Np

Nc
(18)

where Np is the number of contacts present both in the
native contact map and in the contact map of the decoy and
Nc is the number of contacts in the native contact map
(contacts along the three main diagonals are not counted).
A good potential should provide low energy to conforma-
tions close to the native state and high energy to those very
different from it. As shown in Figure 3, wZL and wPL

provide approximately the same correlation. The Z-score
method reduces the width of the distribution of the energy
of the decoys, as shown in Figure 4. The perceptron, on the
other hand, for large Q, pushes up the bottom of the
energies, enlarging the gap to the ground state.

4. A fourth way to assess which is the “quality” of the
recovered potential is to check whether the ground
state obtained using it is, indeed, the correct ground
state. For each of the 198 designed sequences, the
corresponding compact structures were the ground
states of the “true” MJ potential. The energy parame-
ters obtained by the perceptron method depend on
the particular set of decoys that were used. In the
lattice case discussed above, we have used only
maximally compact decoys. Performing a Monte Carlo
energy minimization on the entire space of conforma-
tions, using the derived energy parameters wPL, we
found that for 6 of the 198 sequences there were
non-maximally compact conformations, whose en-
ergy was lower than the “true” ground state. Using
the Z-score derived energy parameters, the same test
gave 8 mistakes.

Finally, we observe that the database was obtained by
minimizing the Z-score in the space of sequences at fixed
conformation. The recovery of the parameter set was
carried out by again minimizing the Z-score in the space of
parameters. This procedure can introduce a bias, which
complicates the comparison with the perceptron method to
derive the energy parameter set.

THREADING

We present here the results of an experiment of gapless
threading, using the two methods. We considered a test set
of 100 PDB proteins, for which decoys were derived by
threading each sequence of every protein through the
structure of all the longer ones. We used two sets of energy
parameters; one, wPT, obtained by perceptron learning
and the second, wZT, obtained by Z-score optimization.
The set wPT was obtained by learning the solution of
maximal stability for an independent set of 123 proteins
and 836,020 decoys.15 The set wZT was obtained in MS.
For both potentials an all atoms definition of contacts was
used with a threshold Rc 5 4.5 Å. The correlation between
wPT and wZT is r 5 0.61.

Testing the two methods on 100 proteins (that do not
appear in the set that was used to derive the contact
energies) gave results of similar quality (see Table I). The
perceptron solution misclassified less decoys; the Z-score
solution, on the other hand, assigned larger Z-score to the

Fig. 2. Stability cPM as a function of the number M of proteins in the
database (squares). The lower curve is the stability cPM

198 in complete set of
198 proteins. We also show the stability for a single protein averaged over
all the M proteins in the set (curve with error-bars).
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native states, as expected. The distribution of the overlap
Q and of the energy DE are given for the two methods and
for all the 100 proteins in Figure 5.

For both methods we considered the correlation between
Q and DE (see Fig. 6). In Figure 6 we compare two cases.
The first is the protein 1mol, which was classified correctly
against 11,191 decoys by both methods; it has 94 residues.
The second case is the protein 1isu, of 62 residues, which
both methods failed to classify correctly. Of the 14,016
decoys that were produced, the perceptron assigned lower
than native energy to 138 decoys and the Z-score to 208.
For the vast majority of the studied proteins (95%) we
found a reasonably good correlation between Q and DE
(see in Fig. 6a,b) in that the single map with high Q (e.g.,
the native one) has lower energy than the low-Q decoys.
We must add, however, the following note of caution. It is
possible that this observed correlation is present only
because gapless threading fails to generate challenging
and high-Q decoys. Within the present calculations, we are
allowed to use only the pairwise contact approximation to

some much more complicated “true” contact-map poten-
tial. One cannot rule out the possibility that this is such a
poor approximation to the true potential, that had we
generated better high-Q decoys, the observed correlation
would have disappeared. The case of lattice proteins
cannot guide us to resolve this question. For lattice
proteins, the “true potential” that produced the native
folds was a pairwise contact potential, whereas the native
structures of the threading experiment were stabilized by
the (presumably much more complicated) “true” potential
that governs protein folding under physiological condi-
tions.

We also looked for some relationship between Q and DE
of the low-energy decoys. For each protein, we measured
the quantity

a 5 min
k

arctan
DEk / uEk

0u
1 2 Qk

(19)

Fig. 3. Contour plot of the energy difference DE between decoys and native state and the overlap Q with the
native state (a) using the set of true energy parameters, (b) using the set wZL of energy parameters, (c) using
the set wPL of energy parameters. Contour levels are spaced logarithmically.
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where k runs over all the decoys generated for such
particular protein and Ek

0 is the energy of the native state
of proteins k. For the cases shown in Figure 6, these
minimal values are reached at the decoy of minimal
energy. The distribution of the angles a is shown in Figure
7. For both methods, we get fairly similar distributions,
with a large peak on the positive side corresponding to
successful classifications and a broad tail on the negative
side corresponding to misclassified folds.

Figure 8 shows potentials obtained by the two methods
for real proteins. There are several important features
shared by both potentials. (1) Cysteine, hydrophobic resi-
dues, and aromatic residues except proline (C, M, F, I, L, V,
W, Y, H) attract each other. (2) Most of the polar residues
are repelling from each other and from the hydrophobic
ones. (3) Interactions between charged residues (D, E, K,
R) are much weaker than between hydrophobic ones.
Although most of the charged interactions have the right
sign, they are hardly noticeable among other interactions
of polar residues.

These properties are easy to understand since hydropho-
bic/aromatic residues tend to cluster in the protein core
while polar ones are spread on the protein surface. Hence,
contacts between hydrophobic/aromatic residues are found
much more frequently than between polar ones. Cysteines
frequently form stabilizing disulphide bonds and are usu-
ally located in the protein core. It is also clear why both
potentials have weak electrostatic interactions. Salt bridges
formed by pairs of oppositely charged residues although
contributing to the stability of some proteins21 are known
to be rare and less important than hydrophobic interac-
tions.22

Focusing on differences between the two potentials we
notice that (1) wZT (Fig. 8B) has all interaction energies
distributed much more evenly among residues. In contrast
wPT has very diverse interactions, especially those be-
tween polar residues. We suggest two possible explanation
for the smoothness of interactions in wZT vs. diversity in
wPT. First, it is known that potentials obtained by optimi-

zation of Z-scores (or similar functions) tend to underesti-
mate repulsive interactions10,23 and, hence, have smoother
polar-polar interactions. Secondly, wPT was obtained by
discriminating the native fold from explicit decoys. The
learning procedure focused on a few low-energy decoys
must have learned certain features specific for these
decoys and, thus, produced diverse pattern of polar-polar
interactions. In summary, interactions between amino
acids provided by both potentials agree well with physical
and chemical properties of these amino acids and with
known features of native proteins.

DISCUSSION

In this paper, we presented a detailed comparison of two
methods to derive energy parameters from a known pro-
tein structure, the Z-score optimization10 and the per-
ceptron learning.1 First, we chose an exactly solvable
model: lattice 27-mers where sequences were designed to
fold to their respective “native” conformations with certain
“true” potentials. Our analysis showed that both methods
recovered the potentials that were sufficiently close to
“true” ones. Besides that, the maximum stability per-
ceptron was able to find the potential with largest energy
gap between the ground state and “first” excited state
while the potentials derived using the Z-score optimiza-
tion provided slightly lower Z-scores for the native struc-
tures of lattice proteins. This is as expected. It can be seen
in Figure 3 that the large gap provided by the strongest
perceptron is between the native state and the “first
excited” that is structurally very similar to the native,
having high overlap with the native state at Q < 0.8.

Which method may be better suited for practical applica-
tions? Each one has its strengths and weaknesses. The
major strengths of the Z-score method are the possibility to
use implicit decoys and and relative computational simplic-
ity. The weakness is that it does not guarantee that the
native state is lowest in energy with derived parameters,
i.e., there are no “outliers” that feature lower energy than
the native state. The strengths and weaknesses of the
perceptron method are complementary to that of the
Z-score method. The computational efficiency is at issue
here especially since the perceptron method requires ex-
plicit decoys whose number can be great. In this regard,
the observation that in practice the perceptron method
used only a tiny fraction of all 103,346 lattice conforma-
tions is remarkable and telling. It certainly requires a
deeper analysis that will be presented elsewhere.

TABLE I. Results of the Gapless Threading Fold
Recognition Experiment†

Potential
Misclassified

proteins
Misclassified

decoys Z-score

VD 5 192 27.20
MS 7 1,261 28.44
†We used 100 proteins and 698,898 decoys. We report the number of
proteins misclassified by the two methods, respectively, and the
corresponding total number of which violated the conditions of Eq. (2).

Fig. 4. Histogram of the energy differences between the decoys and
the native states, for the true energy parameters and as obtained by the
two methods.
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Fig. 5. a: Histogram of the energy differences between the decoys and the native states, as obtained by the
two methods for all 100 proteins tested. b: Histogram of the overlap Q with the native state for the set of decoys
used in the threading test.

Fig. 6. Scatter plot of the energy difference DE between decoys and
native state and the overlap Q with the native state (a) using the set wZT
of energy parameters for protein 1mol, correctly classified by the Z-score
method, (b) using the set wPT of energy parameters for protein 1mol,

correctly classified by the perceptron method, (c) using the set wZT of
energy parameters for protein 1isu, incorrectly classified by the Z-score
method, (d) using the set wPT of energy parameters for protein 1isu,
incorrectly classified by the perceptron method.



Energy parameters for lattice proteins, for which the
contact potential is the true potential, can be derived by
both methods with no remarkable differences.

Further, we tested both methods on a gapless threading
applications. Two potentials were used. One, generic, was
derived earlier by MS to minimize the Z-score of native
proteins against implicit decoys.10 VD derived the other
potential used here by perceptron learning of 836,020
decoys, obtained by gapless threading for 123 proteins,
(using the all atoms definition of contact and a threshold of
4.5 Å).15 The 100 proteins that were used in our calcula-
tions reported here, to test the performance of both poten-
tials, were not included in the training set for perceptron
learning, nor in the set of the Z-score-based derivation in
Mirny and Shakhnovich.10 Both potentials performed well
in gapless threading tests, providing recognition of the

native state in roughly 95% of all presented proteins.
Importantly, most of the proteins whose native states were
not recognized by either of the methods were “special” in
the sense that they are stabilized by certain “extraneous”
factors such as metal ions, quaternary interactions, and so
on (see also Bastolla et al.9).

In this paper, we provided the analysis of two methods of
derivation of potentials for protein structure predictions
using most rigorous tests on lattice proteins and gapless
threading. Both methods performed approximately with
equal efficiency alleviating the major concerns that Z-score
may not be able to provide potentials that discriminate
against a few special lowest energy decoys and that the
perceptron method may fail to deliver low Z-scores to
native structures. Such cross-validation is important for
application of either of the potential derivation methods to
real protein structure prediction problems. Which method
is preferable? The answer depends on the specific applica-
tion. When explicit decoys are problematic to obtain, the
Z-score method, that does not require them, can be used.
On the other hand, in cases when explicit decoys are
available the perceptron learning may provide a reliable
set of potentials provided that the problem is “learn-
able.”1,19 Our study of the gapless threading application
indicates that the learnability of the problem, for the
perceptron, may depend on the inclusion of a small num-
ber of “outliers” in the training set, i.e., proteins that are
stabilized by extraneous factors such as quaternary inter-
actions or large number of disulfides. This is consistent
with the situation in the Z-score optimization methods
where addition of such proteins into the training set also
rendered the problem unsolvable in a sense that no
convergence to any potential was obtained. These findings
teach us an important lesson, that the choice of the
training set is crucial so that proteins in the training set
should be stabilized by the same physical factors as those
proteins whose structure is being determined using the
derived potentials. Since such physical factors are not

Fig. 7. Histogram of the angle a. The perceptron and the Z-score
provide similar distributions.

Fig. 8. Comparison of the two sets of pairwise contact energy parameters wPT (A) and wZT (B).
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known a priori for a new protein, high Z-score, or low
maximal stability with the perceptron-derived potentials,
may be an indication that such a situation is encountered.

We used gapless threading to test the methods of
potential derivation. The advantage of this approach is in
its extreme simplicity. However, we should note that
gapless threading is not a very practical tool for real-life
structure prediction application because actual native
structure of the query sequence is never in the set of
conformation scanned by threading simulation. An actual
threading calculation aims to select analogs of the native
state of the query sequence in the ensemble of structures
scanned. Gapless threading is generally not capable to
select or recognize analogs (Mirny and Shakhnovich, un-
published data). To this end, a more advanced threading
technique should be used that allows gaps and insertions
in sequence and structure.20 This comes, however, at a
price of increasing the number of decoys. The need to
discriminate against a larger number of decoys requires
better discriminating potentials and/or more detailed mod-
els of proteins. In future work, it will be interesting to
explore combinations of perceptron learning for discrimi-
nating against the most difficult lowest energy decoys with
the Z-score optimization to discriminate against a mass of
“average” decoys. Such simultaneous optimization may be
a way to address these very challenging problems of
protein structure prediction.
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