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Proteins, nucleic acids, and small molecules form a dense network of
molecular interactions in a cell. Molecules are nodes of this network,
and the interactions between them are edges. The architecture of
molecular networks can reveal important principles of cellular orga-
nization and function, similarly to the way that protein structure tells
us about the function and organization of a protein. Computational
analysis of molecular networks has been primarily concerned with
node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser.
B 268, 1803–1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. &
Barabasi, A. L. (2000) Nature 407, 651–654] or degree correlation
[Maslov, S. & Sneppen, K. (2002) Science 296, 910–913], and hence
focused on single�two-body properties of these networks. Here, by
analyzing the multibody structure of the network of protein–protein
interactions, we discovered molecular modules that are densely
connected within themselves but sparsely connected with the rest of
the network. Comparison with experimental data and functional
annotation of genes showed two types of modules: (i) protein
complexes (splicing machinery, transcription factors, etc.) and (ii)
dynamic functional units (signaling cascades, cell-cycle regulation,
etc.). Discovered modules are highly statistically significant, as is
evident from comparison with random graphs, and are robust to
noise in the data. Our results provide strong support for the network
modularity principle introduced by Hartwell et al. [Hartwell, L. H.,
Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47–C52],
suggesting that found modules constitute the ‘‘building blocks’’ of
molecular networks.

Large-scale experiments and integration of published data (1)
have provided maps of several biological networks such as

metabolic networks (2, 3), protein–protein (4, 5) and protein–
DNA interactions (6, 7), etc. Although incomplete and, perhaps,
inaccurate (8–11), these maps became a focal point of a search
for the general principles that govern the organization of mo-
lecular networks (12–16). Important statistical characteristics of
such networks include power-law distribution (P(k) � k��) (e.g.,
refs. 16 and 17) or a similar distribution of the node degree k (i.e.,
the number of edges of a node); the small-world property (11, 13,
16) (i.e., a high clustering coefficient and a small shortest path
between every pair of nodes); anticorrelation in the node degree
of connected nodes (15) (i.e., highly interacting nodes tend to be
connected to low-interacting ones); and other properties.

These properties become evident when hundreds or thousands of
molecules and their interactions are studied together. Recently
discovered motifs (7, 18) that consist of three to four nodes
constitute the other end of the spectrum. Large-scale characteristics
are usually attributed to massive evolutionary processes that shape
the network (6, 14), whereas many small-scale motifs represent
feedback and feed-forward loops in cellular regulation (18, 19).
However, most important biological processes such as signal trans-
duction, cell-fate regulation, transcription, and translation involve
more than four but much fewer than hundreds of proteins. Most
relevant processes in biological networks correspond to the meso-
scale (5–25 genes�proteins). Meso-scale properties of biological
networks have been mostly elusive because of computational
difficulties in enumerating midsize subnetworks (e.g., a network of
1,000 nodes contains 1 � 1023 possible 10-node sets).

Here, we present an in-depth exploration of molecular net-
works on the meso-scale level. We focused on multibody inter-
actions and searched for sets of proteins having many more
interactions among themselves than with the rest of the network
(clusters). We have developed several algorithms to find such
clusters in an arbitrary network. We analyzed a yeast network of
protein–protein interactions (20) and found �50 known and
previously uncharacterized protein clusters. We analyzed func-
tional annotation of these clusters and found that most of
identified clusters correspond to either of the two types of
cellular modules: protein complexes or functional modules (see
Discussion). Protein complexes are groups of proteins that
interact with each other at the same time and place, forming a
single multimolecular machine. Examples of identified protein
complexes include several large transcription factor complexes,
the anaphase-promoting complex, RNA splicing and polyade-
nylation machinery, protein export and transport complexes, etc.
Functional modules, in contrast, consist of proteins that partic-
ipate in a particular cellular process while binding each other at
a different time and place (different conditions or phases of the
cell cycle, in different cellular compartments, etc). Examples of
identified functional modules include the CDK�cyclin module
responsible for cell-cycle progression, the yeast pheromone
response pathway, MAP signaling cascades, etc. The discovered
complexes and modules have high statistical significance and
consistent functional annotation (when available), and match
very well to experimentally obtained protein complexes (21, 22).
Importantly, by relying on multibody interactions, our method is
robust to false-positive interactions present in the network.

The network of protein interactions (20) was represented as an
undirected graph with proteins as nodes and protein interactions
as undirected edges. The key idea of our analysis was to identify
highly connected subgraphs (clusters) that have more interac-
tions within themselves and fewer with the rest of the graph. A
fully connected subgraph, or clique, that is not a part of any other
clique is an example of such a cluster. In general, we did not
require clusters to be fully connected; instead, the density of
connections in the cluster was measured by the parameter Q �
2m�(n(n � 1)), where n is the number of proteins in the cluster
and m is the number of interactions between them. We devel-
oped algorithms that can identify clusters of sufficiently high Q
in an arbitrary graph. Note that, despite some similarity, the
problem of dense subgraphs is not identical to the problem of
clustering objects in a metric space and cannot be solved by
traditional clustering techniques.

Methods
Identification of Highly Connected Sets. Our first approach was to
identify all fully connected subgraphs (cliques) by complete
enumeration. Because the graph is very sparse, this could be

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: MC, Monte Carlo; MIPS, Munich Information Center for Protein Sequences;
SPC, superparamagnetic clustering.

*To whom correspondence should be addressed. E-mail: leonid@mit.edu.

© 2003 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.2032324100 PNAS � October 14, 2003 � vol. 100 � no. 21 � 12123–12128

BI
O

PH
YS

IC
S



done quickly. In fact, to find cliques of size n one needs to
enumerate only the cliques of size n � 1 (for details, see
Supporting Text, which is published as supporting information on
the PNAS web site, www.pnas.org). We started with n � 3 and
continued until no more cliques were found in the graph. The
largest clique found contains 14 nodes.

The second approach used a clustering technique that works
on points not embedded in a metric space. A powerful algorithm
of this sort is superparamagnetic clustering (SPC) (23). Briefly,
this approach assigns a ‘‘spin’’ to each node in the graph. Each
spin can be in several (more than two) states. Spins belonging to
connected nodes interact and have the lowest energy when they
are in the same state. The system (known as the Potts model) is
subject to equilibration at nonzero temperature, making spins
fluctuate. The concept behind this method is that spins belong-
ing to a highly connected cluster fluctuate in a correlated
fashion. By detecting correlated spins, the algorithm can identify
nodes belonging to a highly connected area of the graph.
Domany and coworkers introduced such a system for clustering
points in an arbitrary space (23) and successfully applied it to a
variety of clustering problems (24, 25). Here, we applied SPC to
identify clusters on a graph.

In the third approach, we formulated the problem of finding
highly connected sets of nodes as an optimization problem:
find a set of n nodes that maximizes the function Q(m, n) �
2m�(n(n � 1)), where m is the number of interactions between
n nodes. The parameter (0 � Q � 1) characterizes the density
of a cluster. For a fully connected set of nodes, Q � 1, and for
a set not connected to each other, Q � 0. The optimization
Monte Carlo (MC) procedure starts with a connected set of n
nodes randomly picked on the graph and proceeds by ‘‘mov-
ing’’ selected nodes along the edges of the graph to maximize
Q. Moves are accepted according to Metropolis criteria. We
also developed an algorithm that minimizes the sum of shortest
distances between selected nodes. Both algorithms are very
efficient and converge fast to identify a highly connected
cluster. Both algorithms require the size of the sought cluster
as an input parameter. Although the rate of convergence of
MC depends on the effective temperature, the algorithm
converges fast at a broad range of temperatures (Fig. 6, which
is published as supporting information on the PNAS web site).
Comparison of MC and SPC algorithms have shown a better
performance of MC for clusters that share common nodes and
for high density graphs, whereas SPC has an advantage
identifying clusters that have very few connections to the rest
of the graph (Fig. 7, which is published as supporting infor-
mation on the PNAS web site).

Found clusters are then subjected to further cleaning, merg-
ing, and selection according to criteria of statistical significance
(see Supporting Text for more details).

Statistical Significance. To estimate statistical significance of a
cluster that has n proteins and m interactions between them, one
would need to calculate the expected number of such clusters E(n,
m) in a comparable random graph (i.e., random graph that satisfies
certain constrains, i.e., fix node degree). Due to combinatorial
explosion of possible subgraphs, direct calculation of E(n, m) in
random graphs is computationally unfeasible for n � 4. We
developed two statistical procedures that estimate expected value
E(n, m) and probability P(n, m) to assess statistical significance of
identified clusters. Although Q is a good measure of the density of
interactions in a cluster, its statistical significance strongly depends
on cluster size, n. A cluster of three proteins with Q � 1 is likely to
be found in a random graph, whereas a set of 10 proteins with Q �
0.26 may be very unlikely in the same random graph. We introduced
two measures of statistical significance that are based on the
probability of finding a cluster in a comparable random graph (15,
18, 26, 27). To compute statistical significance, we first generated

1,000 random graphs in which the number of interactions for each
protein is preserved. Next, for each cluster of n proteins and m
interactions, we computed the P value as the probability of having
more than m connections among the same proteins in the corre-
sponding random graphs. A P value computed this way gives the
likelihood of having m (or more) interactions among a particular
group of proteins, given the number of interactions that each of
these proteins has. Although this probability can be very small, the
number �n of possible comparable clusters of n proteins is huge. To
take this into account we computed E value E � P�n as the
expected number of n protein clusters that have m (or more)
interactions. The number of possible comparable clusters is esti-
mated by

�n � � N
N�d � dc�

� ,

where N is the total number of nodes in the graphs and N(d �
dc) is the number of nodes with degree greater than dc. We set
dc to be the median degree in the cluster of interest. This way,
the E value takes into account both the number of proteins in the
clusters and the number of interactions each of them has.

Needless to say, all E and P values are approximate and their
direct computation is prohibitively computationally expensive.
Finally, by applying our search algorithms to the random graphs,
we also estimated the Pevd value as the probability of finding
any set of n nodes with m or more connections. Because
our algorithms seek to maximize m, the Pevd value obeys the
Fisher–Tippett extreme value distribution (EVD) Pevd(m) �
exp(�exp(��(m � u))). Parameters � and u of this distribution
were obtained by 1,000 MC runs on each of 1,000 random graphs,
generated as described above. We observed simple linear scaling
of ��1 � a1n 	 a2 and u � u1n 	 u2, allowing easy computation
of Pevd for clusters of any size. Hence, by establishing Pevd 

Pcutoff, one can obtain Q(n)cutoff for clusters of any size n, such
that a cluster with Q � Q(n)cutoff is considered to be statistically
significant (see Supporting Text and Fig. 8 for details). For our
analysis of complexes and modules, we selected highly significant
clusters having E 
 0.1, P 
 1 � 10�4, and Pevd 
 1 � 10�4.
Fig. 1B shows the comparison of the number of found complexes
of a given size and Q versus the number of complexes of this size
and Q expected on a random graph.

A similar method used by Milo et al. (18) to identify small
network motifs requires exact enumeration of motifs in random
graphs. Such enumeration is computationally impossible for
larger clusters and modules. Our approach, in contrast, does not
involve such enumeration and hence can be expanded to clusters
of any size.

We also used importance sampling MC to estimate E(n, m).
We sampled a set of n proteins at random and obtained E(m�n)
distribution. To make sampling more efficient, we sampled
proteins with the probability proportional to their degree, i.e.,
probability to pick a protein i: Pi � di��i�1...N di. E(m�n)
estimated by using importance sampling was found to be linear
with log(m) and can be accurately extrapolated to higher m. This
method was used to estimate the number of cliques in the
random graph (Fig. 1 A, blue).

Results
To study the large-scale structure of the protein interaction
network, we first enumerated all cliques of size 3 and larger. The
relative sparsity of the graph (N � 3,992 nodes and M � 6,500
edges) allowed exact enumeration of the cliques. For compari-
son, we constructed 1,000 random graphs of the same size and
degree distribution (see below) and used them to calculate the
expected number of cliques. The graph of protein interactions is
known to be a very special graph with a power-law distribution
of node degrees. To rule out the possibility that such a cliquish
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structure is a result of power-law architecture, we constructed
our random graphs by using the Maslov–Sneppen procedure
(15), which preserves the number of edges of each node. In other
words, the obtained protein clusters are controlled for the
number of interactions that each protein has. Fig. 1 A presents
these results, demonstrating an overwhelming enrichment in
cliques of all sizes in the protein graph as compared with the
random graphs. Comparison of the observed and expected
numbers of cliques also shows that the vast majority of cliques
(97% for n � 4, 99.8% for n � 5, etc.) of size 4 and greater are,
in fact, statistically significant. High density of interactions in the
cliques and their statistical significance show that these cliques
did not emerge by chance, pointing at some biological function
they carry. The enrichment in the number of cliques reveals an
essential modularity in the structure of the network, suggesting
that many of these protein interactions are responsible for the
formation of protein complexes and functional modules. To
further explore this modular structure of the network, we
searched the graph for multiprotein clusters that are not cliques
(i.e., Q 
 1).

The construction of fast algorithms for determining structural
properties of graphs is a classic challenge in discrete mathematics
and theoretical computer science. Such problems are easy to
state and illustrate, but they are often provably difficult in the
sense of being NP-hard (NP-hard problems are those for which
no known algorithms can find a solution in time polynomial in
the problem size, although there are algorithms that can verify a
proposed solution in that time). The problem of finding the
largest clique, or even of approximating its size, is NP-hard (28).
Here, we aimed to find non-fully connected cliques, an even
harder problem. Although the stochastic algorithms that we
developed cannot be guaranteed to find all solutions, they are

efficient when applied to relatively sparse graphs such as a
network of protein interactions.

We used two methods to further explore network modularity
and find highly connected multiprotein clusters: the MC opti-
mization technique and the SPC algorithm as developed by
Domany and coworkers (23, 24). These methods are capable of
finding clusters that are highly connected but not necessarily fully
connected (Q 
 1). Using these techniques, we identified �50
protein clusters of sizes from 4 to 35. Comparable random
graphs, in contrast, contained very few, if any, such clusters. Fig.
1B presents distributions of density Q of the same-sized clusters
found in the random graphs (blue bars) and in the protein
network (red bars). This distribution for random graphs can be
fit well by the Fisher–Tippett (29) extreme value distribution
(EVD) (also known as the Gumbel distribution) (Fig. 1B, blue
line), allowing us to estimate the statistical significance of the
protein clusters (see Methods). Strikingly, clusters in the protein
network have many more interactions than their counterparts in
the random graphs: the probability of finding comparable clus-
ters in random graphs falls below 1 � 10�4 (Pevd 
 1 � 10�4).
These results demonstrate that, aside from numerous cliques, the
protein network contains many significantly dense clusters of
interacting proteins. Fig. 2 shows three highly connected clusters
and the fragment of network surrounding them, illustrating the
difficulty of finding such clusters. These clusters provide addi-
tional strong evidence supporting modular architecture in bio-
logical networks.

What is the biological role of these highly connected clusters?
To answer this question, we analyzed the available functional
annotation of Saccharomyces cerevisiae genes (20, 30). We found
that genes belonging to the same module or complex have a
consistent biological function, obtained from Munich Informa-

Fig. 1. Statistical significance of complexes and modules. (A) Number of complete cliques (Q � 1) as a function of clique size enumerated in the network of
protein interactions (red) and in randomly rewired graphs (blue, averaged �1,000 graphs). Inset shows the same plot in log-normal scale. Note the dramatic
enrichment in the number of cliques in the protein-interaction graph. Most of these cliques are parts of bigger complexes and modules. (B) Distribution of Q
of clusters found by the MC search procedure in the randomly rewired graphs (blue bars). The blue line shows approximation of this distribution by the
Fisher–Tippett extreme value distribution (EVD) with two fitted parameters. Red bars show complexes found in the original network of protein interactions. Sizes
of the subgraphs are n � 8, 10, and 16. Note that real complexes have many more interactions than the tightest complexes found in randomly rewired graphs.
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tion Center for Protein Sequences (MIPS) functional annotation
tables (www.mips.biochem.mpg.de) (20). Fig. 2 presents exam-
ples of discovered complexes, with the proteins colored accord-
ing to their functional classifications. Fig. 3 gives examples of two
functional modules: cell-cycle regulation and the MAP kinase
cascade. Gene annotation allowed us to assign function to the
identified complexes. The majority of identified complexes and
modules belong to the following four functional classes: tran-
scription regulation, cell-cycle�cell-fate control, RNA process-
ing, and protein transport.

The largest fully connected complex has 14 proteins, all of
which are components of the SAGA�TFIID transcription factor.
The 17-member extension of this complex includes some addi-
tional transcription factors. Other transcription complexes found
in the network include the four-member HAP complex of

CCAAT-binding proteins, the seven-member mediator of tran-
scription regulator (MED), and the NOT transcription complex.
The next-to-largest fully connected complex consists of 11
proteins: four are the cell-division control proteins CDC16,
CDC23, CDC26, and CDC27, and the other seven are subunits
of the complex. Together, these 11 proteins constitute the
anaphase-promoting complex, an essential component of cell-
cycle regulation. Another complex involved in cell-cycle regu-
lation is a six-member ubiquitination complex (CDC34, CDC53,
CDC4, MET30, SKP1, and GRR1) known to be scaffolded by
Cdc53p and responsible for the transition into S phase. The
discovered complexes include several RNA-processing ma-
chines: (i) a 12-member complex of several Lsm splicing factors
associated with the mRNA-decapping enzyme DCP1, topoII-
associated factor, and two 40S small ribosomal subunits; (ii) a
14-member complex of CFI�CFII�PFI factors and poly(A)
polymerase; (iii) an rRNA-processing complex (exosome); (iv) a
four-member complex of tRNA-splicing endonuclease subunits;
and (v) a complex of three pre-mRNA splicing factors, bound to
an unknown protein that is homologous to a human breast-tumor
associated autoantigen (see Supporting Text).

Modules have more diverse, although still very consistent,
functional annotation of their genes. It is important to distin-
guish between protein complexes and functional modules, be-
cause they have different biological meanings. A protein com-
plex is a molecular machine that consists of several proteins
(nucleic acids and other molecules) that bind each other at the
same place and time (e.g., transcription factors, histones, poly-
merases, etc.). On the contrary, a functional module (31) consists
of a few proteins (and other molecules) that control or perform
a particular cellular function through interactions between them-
selves. These proteins do not necessarily interact at the same
time and place, or form a macromolecular complex (e.g., sig-
naling pathway, cell-cycle regulation, etc.). In many cases, it is
hard to make this distinction. Because analyzed pairwise protein
interactions do not have temporal and spatial information, our
method successfully discovers both complexes and modules but
does not distinguish between the two.

Fig. 3 presents two identified modules: an eight-member
module of cyclin-dependent kinases, cyclins and their inhibitors
regulating the cell cycle (32) (Fig. 2 A), and pheromone signal
transduction cascade that scaffolds at the STE5 protein (33) (Fig.
2B). Other found modules include a six-member module of
proteins involved in bud emergence and polarity establishment
(34, 35) (CDC24, CDC42, FAR1, STE20, BEM1, and RSR1); a
six-member module of CDCs, septins, and Ser�Thr protein
kinases involved in mitotic control; etc. (a complete list of
complexes and modules with functional annotation is provided
in the Supporting Text).

Comparison of the predicted with the experimentally derived
complexes (20–22) showed very good agreement, in terms of
both the coverage and specificity of our predictions. We com-
pared identified complexes with the complexes found by (i)
tandem-affinity purification (TAP) and mass spectrometry (21),
catalogued in Cellzome (http:��yeast.cellzome.com); (ii) com-
plexes found by high-throughput mass-spectrometric protein
complex identification (HMS-PCI) (22), catalogued in the Bio-
molecular Interaction Network Database (www.bind.ca); and
(iii) other complexes collected from the literature by human
experts, catalogued in the MIPS database (20). First, we found
experimental complexes that are consistent with the studied
network of protein–protein interactions, i.e., that correspond to
dense regions of the network. Only 29 experimental complexes
satisfied the strict criteria of Q � 0.2 and Pevd 
 1 � 10�4, and
69 experimental complexes satisfied the weaker criteria of Q �
0.3 and Pevd 
 0.1. This result came as no surprise, because the
known protein interactions represent a small fraction of the
interactions present in a cell (9, 10).

Fig. 2. Fragment of the protein network. Nodes and interactions in discov-
ered clusters are shown in bold. Nodes are colored by functional categories in
MIPS (20): red, transcription regulation; blue, cell-cycle�cell-fate control;
green, RNA processing; and yellow, protein transport. Complexes shown are
the SAGA�TFIID complex (red), the anaphase-promoting complex (blue), and
the TRAPP complex (yellow).

Fig. 3. Examples of discovered functional modules. (A) A module involved in
cell-cycle regulation. This module consists of cyclins (CLB1-4 and CLN2) and
cyclin-dependentkinases (CKS1andCDC28)andanuclear importprotein (NIP29).
Although they have many interactions, these proteins are not present in the cell
at the same time. (B) Pheromone signal transduction pathway in the network of
protein–protein interactions. This module includes several MAPK (mitogen-
activated protein kinase) and MAPKK (mitogen-activated protein kinase kinase)
kinases, as well as other proteins involved in signal transduction. These proteins
do not form a single complex; rather, they interact in a specific order.
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Next, we compared the experimental with the computationally
derived complexes. For each computationally derived complex,
we found a best-matching experimental complex by minimizing
the probability of a random overlap between the two, using the
following equation:

Poverlap �
�n2

k ��N � n2

n1 � k�
�N

n1
� ,

where N is the total number of nodes in the network, n1 and n2
are the sizes of two complexes, and k is the number of nodes that
they have in common. Fig. 4 presents the overlap k�n1 between
found and experimentally derived complexes. In fact, all 29 of the
strictly consistent experimental complexes and most of the 69
weakly consistent ones were successfully found with 100%
overlap. A few that were missing or only partially recovered are
smaller and sparser (Fig. 4 Inset). We also found that of �50
computationally discovered clusters, �80% matched at least one
experimental complex. We suggest that the rest constitute
previously uncharacterized complexes or modules.

Our study makes four types of predictions: previously unchar-
acterized protein complexes, previously uncharacterized mem-
bers in known complexes, membership of uncharacterized pro-
teins in known complexes, and functional modules. We predict
8 possible previously uncharacterized complexes, 7 functional
modules, 4 uncharacterized proteins in different complexes, and
13 complexes with possible additional membership. For exam-
ple, we found a six-member, highly significant complex with Q �
0.73, P � 1 � 10�17, and Pevd � 1 � 10�5 that is not listed among
any known protein complexes. Only one protein of the six in that
complex has been characterized, as a YIP1 Golgi membrane
protein (36); the others have no annotation, although they share
some homology with membrane proteins. The best example of

previously uncharacterized members in known complexes is a
complex of 13 proteins, 11 of which form the Lsm splicing
complex, along with two 40S small ribosomal subunits that
apparently are new members. These and similar predictions of
previously uncharacterized protein complexes (see Supporting
Text) can be verified by coimmunoprecipitation or similar
techniques.

Discussion
We demonstrated the presence of highly connected clusters of
proteins in a network of protein interactions. These results
strongly support the suggested modular architecture of biological
networks (31). By analyzing the biological function of these
clusters, we distinguished two types of clusters: protein com-
plexes and dynamic functional modules. Both complexes and
modules have more interactions among their members than with
the rest of the network. In a complex, however, these interactions
are realized at the same time, bringing participating proteins
together (perhaps in a different order, and not simultaneously).
In a more generic, dynamic module, interactions are not realized
at the same time or place (e.g., interactions between CDKs and
cyclins in the module of cell-cycle regulation). Dynamic modules
are elusive to experimental purification because they are not
assembled as a complex at any single point in time.

An important advantage of computational analysis is that it
allows detection of such modules by integrating pairwise mo-
lecular interactions that occur at different times and places.
Using computational techniques alone, however, we cannot
discriminate between complexes and modules or between tran-
sient and simultaneous interactions, but instead must target
experimental studies toward potential functional modules. For
example, the predicted membership of the two ribosomal pro-
teins in the Lsm splicing complex can be transient, conditional,
or simultaneous with the rest of the Lsm complex. These
ambiguities need to be resolved experimentally.

Computational strategies like ours necessarily rely on experi-
mental data with their limitations and instrumental errors. An
important (and unfortunate) aspect of high-throughput experimen-
tal data is a high rate of false positives. To investigate the extent to

Fig. 4. Comparison of discovered complexes and modules with complexes
derived experimentally (BIND and Cellzome) and complexes catalogued in
MIPS. Discovered complexes are sorted by the overlap with the best-matching
experimental complex (see Methods and Supporting Text). The overlap is
defined as the number of common proteins divided by the number of proteins
in the best-matching experimental complex. The first 31 complexes match
exactly, and another 11 have overlap above 65%. Inset shows the overlap as
a function of the size of the discovered complex. Note that discovered com-
plexes of all sizes match very well with known experimental complexes.
Discovered complexes that do not match with experimental ones constitute
our predictions (see Discussion for details).

Fig. 5. The fraction of clusters recovered in the randomly perturbed net-
work, as a function of the fraction of altered links. Black curves correspond to
the case when links are randomly rewired; red, randomly removed (true
negatives); and green, randomly added (false positives). The original cluster is
said to be recovered if the perturbed network has a cluster that shares at least
50% of the nodes with the original one. Each perturbation was repeated 10
times. Also see Fig. 9, which is published as supporting information on the
PNAS web site.
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which false positives can derail the search process and affect
identified clusters (18), we randomly reconnected, removed, or
added 10–50% of interactions in the network. We searched for
clusters in the perturbed networks and compared identified clusters
with the original ones. Fig. 5 presents the fraction of original clusters
that have been recovered in the perturbed networks.

Importantly, noise in the form of removal or addition of links
has less deteriorating effect than random rewiring. About 75%
of clusters can still be found when 10% of links are rewired. More
than 80% of clusters sustain addition or removal of 20% of links.
The robustness of discovered clusters to noise in the data arises
from the use of multiple interactions to identify a cluster. Similar
robustness has been demonstrated for smaller motifs (18).

Naturally, our technique fails to identify complexes and
modules for which the number of known interactions within the
cluster is insufficient. We found several dense complexes and
modules that have consistent functional annotation but are not
sufficiently dense to be statistically significant clusters. We
omitted such clusters from further analysis. Similarly, many
cliques of three proteins (total � 1,444) have consistent func-
tional annotation but need to be considered with caution,
because a random graph is expected to have �500 such cliques
(corresponding to the false-positive rate of 38%).

Other techniques to analyze the structure of biological and
social networks have been recently developed. Milo et al. (18)
looked for small (three- to four-member) motifs that are fre-
quent in a directed network. Shenn-Orr et al. (7) identified three
types of structures frequent in the Escherichia coli transcription
network. In contrast to these approaches, we were looking for (i)
bigger clusters (4–20) and (ii) clusters that have many more
interactions within than with the rest of the network. Also, we
were concerned not with the frequency of these clusters in the
network, but rather with the density of interactions in the
clusters. This approach allowed us to uncover large and unique
complexes in the protein interaction network (like the anaphase-
promoting complex). Another technique, developed by Girvan
and Newman (37), attempts to decompose the whole network
into weakly connected components. While being a very prom-
ising approach, it may not be able to find small, highly connected
regions embedded into a highly unstructured network, the
apparent situation in the network of protein interactions. The

approaches of Milo et al., Girvan and Newman, and this study are
highly complementary to each other because they address dif-
ferent questions and study networks at different resolution.

The analyzed network (20) includes interactions obtained by two
types of studies: large-scale proteomic experiments (two-hybrid)
and traditional, hypothesis-driven studies of protein interactions
(i.e., small-scale two-hybrid, coprecipitation, etc.). High-through-
put mass-spectrometric protein complex identification (HMS-PCI)
and tandem-affinity purification (TAP) derived complexes were
not part of the database at the time of downloading. Interestingly,
most of the discovered complexes and modules come from tradi-
tional studies, rather than from large-scale experiments. This
finding indicate significant anthropomorphic bias in the set of
known interactions. It also suggests that although large-scale pro-
teomic studies provide a wealth of protein interaction data, the
scarcity of the data (and its contamination with false positives)
makes such studies less valuable for identification of functional
modules. Our results suggest that integration of large-scale two-
hybrid data with other types of interactions can help to overcome
this limitation. Our computational strategy holds major promise as
a tool for integrating various types of data in the search for novel
functional modules, in that it can handle different types (‘‘colors’’)
of interactions, including genetic (e.g., syn-lethality), protein–DNA,
and localization data. Integration of networks of physical interac-
tions with graphs of evolutionary relationships (38) can help us to
understand the origin of cellular modularity.

We showed that a computational technique can identify
complexes and modules of all sizes, including transient com-
plexes and complexes of low stoichiometry, overcoming the
limitations of experimental purification of protein complexes
(21, 22). Although our technique relies on experimentally de-
rived interactions, the multibody nature of discovered complexes
makes our algorithms robust to the high rate of false positives in
experimental data. Our results suggest several testable biological
hypotheses and reveal an essential meso-scale modularity and
multibody structure of molecular networks.
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