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Construction of genome-scale models of metabolic networks
is an important problem in systems biology. Most of the
studies of metabolic networks have focused of steady state
flows in the native and mutated networks. However, to un-
derstand cellular adaptation and development, regulation of
metabolism have to be taken into account. The approach of
system biology would be to consider metabolism in a broad
genomic context.
Here we undertake and in-depth exploration of E.coli metabolism
by considering the metabolic network together with the net-
work of gene regulation and co-regulation. E.coli has been
selected for this study because, (1) it has a very well mapped
metabolic network [2, 4], and (2) numerous close organ-
isms have been sequenced allowing accurate prediction of
co-regulation from chromosomal location and co-inheritance
[6, 3]. We integrated metabolic network with the genomi-
cally predicted gene co-regulation. Co-regulation can also be
deduced from expression profiling, such data are not avail-
able for E.coli in large amounts and may not be as accurate
as genomic prediction that are based of dozens of complete
bacterial genomes.
We first map the network on a graph in which vertices repre-
sent reactions and two types of edges: one that connect reac-
tions sharing a metabolite (neighbors on the metabolic net-
work), and the another that connect pairs of reactions that
are catalyzed by co-regulated enzymes [6, 8] (co-regulated
reactions). Our goals were to explore regulation of known
pathways, reveal co-regulated pathways and modules, and
understand principles of regulation of metabolism.
To achieve these goals we analyzed the metabolic network on
three scales. Macroscale analysis focuses on general proper-
ties of the network such as the correlation between pathway
distance and enzyme co-regulation. Mesoscale analysis fo-
cuses on regulation within and between known metabolic
pathways, as well as search for clusters of coregulated reac-
tions with short metabolic distance, novel coregulated mod-
ules. The key idea is that a metabolic module or pathway
has many edges of both types (see above) between its en-

zymes and hence constitutes a highly-connected subgraph of
interrelated and co-regulated metabolic reactions. Finally,
microscale analysis focuses on co-regulated motifs of few en-
zymes that have a particular architecture of chemical reac-
tions.
We use novel algorithms to search for highly-connected sub-
graphs in biological networks. These techniques combine
exact enumeration of cliques, similar to that applied in [7],
Super-paramagnetic Clustering — an algorithm developed
by Domany and coworkers to cluster objects in a non-metric
space of an arbitrary dimension [1], and novel Monte-Carlo
optimization technique similar to that described in [7] to
identify a highly-connected subgraphs in an arbitrary net-
work.
We obtained the following main results.
(i) On macroscale, our analysis found that reactions short
pathway distance apart are more likely to be catalyzed by
the same enzymes or by co-regulated enzymes. In fact,
neighboring reactions are 13 time more likely to be co-regulated
than expected at random. Tendency to be co-regulated de-
cays rapidly with no significant abundance of co-regulated
reactions separated by more than 3 intermediate reactions
(Figure 1).
Another important result concerns enzymes that catalyze
the same reaction (as either isoenzymes, or as co-enzymes).
86% of pairs of enzymes that catalyze the same reaction
are co-regulated, as many of them are subunits of large
enzymatic complexes. This result strongly supports “the
balance hypothesis” which suggests that imbalance in the
concentration of proteins that constitute a single complex is
deleterious [5]
(ii) On mesoscale level, we found that most of co-regulation
occurs between the enzymes that are involved in the same
known metabolic pathway. This finding is very much in
line with biochemical intuition about metabolism regula-
tion. However, we also find that several cases when a single
metabolic pathways splits into two or more sub-pathways
with strong co-regulation within, but not between them.
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Figure 1: Probability that two reactions are
catalyzed by coregulated enzymes as a function
metabolic distance.
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Figure 2: Coregulated clusters in Branched Chain
Amino Acid biosynthesis.

This result shows that in many cases a cell does not regulate
the whole metabolic pathway as a single entity, rather as a
set of smaller sub-pathways. The one interesting example of
this sort is biosynthesis of branched chain amino acids: Ile,
Leu, and Val (Figure 2). Each of the three pathways that
syntheze a precursor is stringly co-regulated. Surprisingly,
the last step in the amino acid synthesis, is not co-regulated
with the rest of the pathway. Instead, last steps for the Ile,
Leu and Val biosynthesis are co-regulated with each other,
suggesting somewhat different mode of regulation.
We also found several cases when two distinct biochemical
pathways are strongly co-regulated. For example, Branched
Chain Amino Acid Biosynthesis, Aromatic Amino Acids,
Histidine Biosynthesis, and Threonine and Lysine Biosyn-
thesis form a hypercluster of coregulated pathways. The
number of links (pairs of coregulated enzymes) between any
pair of these pathways is at least 6 to 10 times larger than
would be expected if enzymes were coregulated at random.
Using our search algorithms we identified several non-overlapping

metabolic modules. Some of them are parts of known path-
ways, while other consist of several groups of reactions from
various pathways. The reactions within these modules are
highly interconnected on the graph in terms of production
of identical metabolites and high coregulation between their
enzymes. So our definition of a pathways and cell’s regula-
tory view of pathways may be quite different.
(iii) Finally, the microscale analysis focuses on motifs of 2-3
reactions in an attempt to find “architectures” of such motifs
that are frequently co-regulated.
One interesting example concerns two irreversible reactions
producing or utilizing a common metabolite. Such two re-
actions require the existence of a third reaction to serve as
a sink or a source for this metabolite. Our results indicate
that if the two irreversible reactions are co-regulated, there
is a very high probability that either of them is co-regulated
with all source or sink reactions which respectively produce
or utilize the common metabolite.
In summary, we showed that regulation of cellular metabolism
have several very distinct features. While some of these fea-
tures are very intuitive, others are less intuintive. These
features suggest new problems for biochemists aiming to un-
derstand regulation of metabolism.
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