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Abstract

In Part I of the thesis, a general physical framework describing the kinetics of protein-
DNA interaction is developed. Recognition and binding of specific sites on DNA by
proteins is central for many cellular functions such as transcription, replication, and
recombination. In the process of recognition, a protein rapidly searches for its specific
site on a long DNA molecule and then strongly binds this site. Earlier studies have
suggested that rapid search involves sliding of the protein along the DNA. I treat slid-
ing as a one–dimensional diffusion in a sequence–dependent rough energy landscape.
I demonstrate that, despite the landscape’s roughness, rapid search can be achieved
if one–dimensional sliding is accompanied by three–dimensional diffusion. I estimate
the range of the specific and nonspecific DNA-binding energy required for rapid search
and suggest experiments that can test the proposed mechanism. It appears that real-
istic energy functions cannot provide both rapid search and strong binding of a rigid
protein. To reconcile these two fundamental requirements, a search-and-fold mech-
anism is proposed that involves the coupling of protein binding and partial protein
folding. In this regard, I propose an effective energy landscape that incorporates
longitudinal (sliding) and transversal (folding) dynamics. I also study the influence
of finite correlation length in the binding potential profile on the one–dimensional
diffusion. The proposed mechanism has several important biological implications for
search in the presence of other proteins and nucleosomes, simultaneous search by
several proteins, etc.

In Part II, I analyze the behavior of random walks in presence of smooth man-
ifolds. First, I treat a random walk (or gaussian polymer) confined to a half-space
using a field–theoretic approach. Using path integrals, I derive basic scaling relations
and the probability distribution function for arbitrary coupling strength between the
polymer and the manifold. Next, I consider self–avoiding polymers attached to the
tip of an impenetrable probe. The scaling exponents γ1 and γ2, characterizing the
number of configurations for the attachment of the polymer by one end, or at its
midpoint, are shown to vary continuously with the tip’s angle. These apex exponents
are calculated analytically by ε–expansion and compared to numerical simulations in

2



three dimensions. I find that when the polymer can move through the attachment
point, it typically slides to one end; the apex exponents quantify the entropic barrier
to threading the eye of the probe.

Thesis Supervisor: Leonid A. Mirny
Title: Assistant Professor
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Biophysics of Protein-DNA

Interaction
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The complex transcription machinery of cells is primarily regulated by a set of

proteins, transcription factors (TFs), that bind DNA at specific sites [1, 2]. Every TF

can have from one to several dozens of specific sites on the DNA. Upon binding to a

specific site, the TF forms a stable protein-DNA complex that can either activate or

repress transcription of nearby genes, depending on the actual control mechanism [3].

Fast and reliable regulation of gene expression requires (1) fast (∼1-10 sec) search

and recognition of the specific site (referred to as the target or cognate site below) out

of 106 - 109 possible sites on the DNA, and (2) stability of the protein-DNA complex

(Kd = 10−15 − 10−8 M). In spite of its apparent simplicity, such a mechanism is not

understood in depth, either qualitatively or quantitatively. Here we focus on the

simpler case of bacterial TFs recognizing their cognate sites on the naked DNA.

Currently, there are vast amounts of experimental data available, including the

structures of protein-DNA complexes at atomic resolution in crystals and in solution

[4, 5, 6, 7, 8], binding constants for dozens of native and hundreds of mutated pro-

teins [9, 10], calorimetry measurements [11], and novel single-molecule experiments

[12]. These experimental data are the most significant contribution to our present

understanding of protein-DNA interaction since the early work of von Hippel, Berg

et al. In a series of pioneering articles [13, 14, 15, 16], they created a conceptual ba-

sis for describing both the kinetics and thermodynamics of protein-DNA interaction,

which became a starting point for practically every subsequent theoretical work on

the subject.

We start by reviewing the history of the problem and describing the paradox of

the “faster than diffusion” association rate. Next, we present the classical model

of protein-DNA “sliding” and explain how this model can resolve the paradox. We

outline the problem that the sliding mechanism faces if the energetics of protein-

DNA interactions are taken into account. Next, we introduce our novel quantitative

formalism and undertake an in-depth exploration of possible mechanisms of protein-

DNA interaction. We conclude by discussing biological implications of our model and

propose a number of experiments to check our key findings.
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Chapter 1

Kinetics of protein-DNA

interaction: the search speed –

stability paradox

1.1 Introduction: “Faster than diffusion” search

The problem of how a protein finds its target site on DNA has a long history. In

1970, Riggs et. al. [17, 18] measured the association rate of LacI repressor and its

operator on DNA as ∼ 1010 M−1s−1. This astonishingly high rate (as compared to

other biological binding rates) was shown to be much higher than the maximal rate

achievable by three-dimensional (3D) diffusion. In fact, if a protein binds its site by

3D diffusion, it has to hit the right site on the DNA within b = 0.34 nm. (A shift

by 0.34 nm would result in binding a site that is different from the native one by

1bp. Such a site can be very different, e.g. GCGCAATT vs. CGCAATTC). Using

the Debye-Smoluchowski equation for the maximal rate of a bimolecular reaction (see

e. g. [19, 20, 21]), with a protein diffusion coefficient of D3d ∼ 10−7cm2/s [22] we get

kDS = 4πD3Db ∼ 108 M−1s−1 (1.1)
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This value for the association rate, relevant for in vitro measurements, corresponds

to target location in vivo on a time scale of a few seconds, when each cell contains up

to several tens of TF molecules.

To resolve the discrepancy between the experimentally measured rate of 1010

M−1s−1 and the maximal rate of 108 M−1s−1 allowed by diffusion, Riggs et al., Richter

et al. [19] and later Winter, Berg and von Hippel [13, 15] suggested that the dimen-

sionality of the problem changes during the search process. They concluded that while

searching for its target site, the protein periodically scans the DNA by “sliding” along

it.

If a protein performs both 3D and 1D diffusion, then the total search process can

be considered as a 3D search followed by binding DNA and a round of 1D diffusion.

Upon dissociation from the DNA, the protein continues 3D diffusion until it binds

DNA in a different place, and so on. Some experimental evidence supports this search

mechanism. These include affinity of the DNA-binding proteins for any fragment of

DNA (non-specific binding), single molecule experiments where 1D diffusion has been

observed and visualized, and numerous other experiments where the rate of specific

binding to the target site has been significantly increased by lengthening non-specific

DNA surrounding the site [23]. What are the benefits and the mechanism of 1D

diffusion and what limits the search rate? In this chapter, we present a rather general

albeit simple way to quantitatively address this question.

1.2 The Model

1.2.1 Search time

In our model, the search process consists of N rounds of 1D search (each takes time

of τ1d,i, i = 1..N) separated by rounds of 3D diffusion (τ3d,i). The total search time ts

is the sum of the times of individual search rounds:

ts =
N∑

i=1

(τ1d,i + τ3d,i) . (1.2)
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The total number N of such rounds occurring before the target site is eventually

found is very large, so it is natural to introduce probability distributions for the

essentially random entities in the problem. The first simplification that can be made

is to replace τ3d,i by its average τ̄3d. As we discuss below, this approximation is valid

when the distribution of 3D diffusion times inside the DNA nucleoid is sufficiently

narrow. Each round of 1D diffusion scans a region of n sites (where n is drawn from

some distribution p(n)). The time τ1d(n) it takes to scan n sites can be obtained from

the exact form of the 1D diffusion law. If, on average, n̄ sites are scanned in each

round, then the average number of such rounds required to find the site on DNA of

length M is N = M/n̄. Using average values, we get a total search time of

ts (n̄,M) =
M

n̄
[τ1d (n̄) + τ̄3d] , (1.3)

From (1.3) it is clear that in general, ts (n̄,M) is large for both very small and very

large values of n̄. In fact if n̄ is small, very few sites are scanned in each round of 1D

search and a large number of such rounds (alternating with rounds of 3D diffusion)

are required to find the site. On the contrary, if n̄ is large, lots of time is spent

scanning a single stretch of DNA, making the search very redundant and inefficient.

An optimal value n̄opt should exist that provides little redundancy of 1D diffusion and

a sufficiently small number of such rounds. For a given diffusion law τ1d(n), function

ts (n̄,M) can be minimized producing n̄opt, the optimal length of DNA to be scanned

between the association and the dissociation events 1.

1.2.2 Protein-DNA energetics

While diffusing along DNA, a TF experiences the binding potential U(~s) at every site

~s it encounters. The energy of protein-DNA interactions is usually divided into two

parts, specific and non-specific [16, 24]

Ui = U(~s = si, ..si+l−1) + Ens, (1.4)

1Naturally, we assume here that τ1d (n̄) grows with n̄ at least as O(n̄1+α), with α > 0.
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where ~s describes a DNA sequence of length l. As its name suggests, the non-specific

binding energy Ens arises from interactions that do not depend on the DNA sequence

that the TF is bound to, e. g. interactions with the phosphate backbone. The

specific part of the interaction energy exhibits a very strong dependence on the actual

nucleotide sequence. Here and below we use the term “energy” to refer to the change

in the free energy related to binding, ∆Gb. This free energy includes the entropic

loss of translational and rotational degrees of freedom of the protein and amino acids’

side-chains, the entropic cost of water and ion extrusion from the DNA interface, the

hydrophobic effect, etc.

The energy of specific protein-DNA interactions can be approximated by a weight

matrix (also known as Position-Specific Scoring Matrix (PSSM), or “profile”) where

each nucleotide contributes independently to the binding energy [16]:

U(~s = si, ..si+l−1) =

l∑

j=1

ε(j, sj), (1.5)

where sj is a base-pair in position j of the site and ε(j, x) is the contribution of

base-pair x in position j. Most of the known weight matrices of TFs ε(j, sj) give

rise to uncorrelated energies of overlapping neighboring sites, obtained by one base

pair shift [24]. Figure 1-1 presents distributions of the sequence specific binding

energy f(U) obtained for different bacterial transcription factors at all possible sites

in the corresponding genome. The weight matrices for these transcription factors

have been derived using a set of known binding sites and a standard approximation

[16, 25]. Notice that, for a sufficiently long site, the distribution of the binding energy

of random sites (or genomic DNA) can be closely approximated (see Fig. 1-1) by a

Gaussian distribution with a certain mean 〈U〉 and variance σ2:

f(Ui) =
1√

2πσ2
exp

[
−(Ui − 〈U〉)2

2σ2

]
. (1.6)

Binding energies calculated for bacterial TFs support this assumption. Other physical

factors such as local DNA flexibility [26] can create a correlated energy landscape,
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which provides a different mode of diffusion that we describe in Chapter 3.
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Figure 1-1: Spectrum of binding energy for three different transcription factors and
the Gaussian approximation (solid line).

The whole DNA molecule can thus be mapped onto one-dimensional array of sites

{~si}, each corresponding to a certain binding sequence comprising bases from the i-th

to the (i+ l− 1)-th, l being the length of the motif (see Fig. 1-2). At each site, there

is a probability pi of hopping to site i+ 1 and a probability qi of hopping to site i− 1.

These probabilities depend on the specific binding energies Ui and Ui±1 at the i-th

site and at the adjacent sites, respectively, and are proportional to the corresponding

transition rates, ωi,i+1 and ωi,i−1. For the latter, it is most natural to assume the

regular activated transport form

ωi,i±1 = ν ×





e−β(Ui±1−Ui) if Ui±1 > Ui

1.0 otherwise
, (1.7)

where ν is the effective attempt frequency, β ≡ (kBT )−1, kB is the Boltzmann constant

and T is the ambient temperature. The problem is thus related to a one-dimensional
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random walk with position-dependent hopping probabilities

pi =
ωi,i+1

ωi,i+1 + ωi,i−1

, qi = 1− pi. (1.8)
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Figure 1-2: The Model Potential.

1.3 Diffusion in a sequence-dependent energy land-

scape

As has been shown in several papers in the last two decades, the properties of 1D

random walks can vary dramatically depending on the actual choice of probabilities

{pi} (for a review, see e.g. [27]). Here we employ the mean first-passage time (MFPT)

formalism [28] to derive the diffusion law τ1d (n̄) for protein sliding along the DNA

given the sequence-dependent binding energy in Eq. (1.7).

The calculation consists of two steps, first, we describe the random walk along

the DNA in terms of the number of steps. Next, we calculate the mean time between

successive steps in a random energetic landscape which provides the time-scale for
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the problem. Such a decoupling, strictly speaking, does not hold when the number of

steps is small, i.e. when the number of visited sites is small and the random quantities

are not averaged properly. However, since we are dealing with large numbers of steps

(∼ 105−106) this approach is valid, which is also confirmed by numerical simulations.

1.3.1 The MFPT.

To derive the diffusion law, we calculate the mean first passage time (MFPT) from

site #0 to site #L, defined as the mean number of steps the particle is to make in

order to reach the site #L for the first time. The derivation here follows the one in

Ref. [28].

Let Pi,j (n) denote the probability to start at site #i and reach the site #j in

exactly n steps. Then, for example,

Pi,i+1 (n) = piTi (n− 1) , (1.9)

where Ti (n) is defined as the probability of returning to the i-th site after n steps

without stepping to the right of it. Now, all the paths contributing to Ti (n− 1)

should start with the step to the left and then reach the site #i in n − 2 steps, not

necessarily for the first time. Thus, the probability Ti (n− 1) can be written as

Ti (n− 1) = qi
∑

m,l

Pi−1,i (m)Ti (l) δm+l,n−2. (1.10)

We now introduce generating functions

P̃i,j (z) =

∞∑

n=0

zn Pi,j (n) , T̃i (z) =

∞∑

n=0

zn Ti (n) . (1.11)

One can easily show (see e. g. [29]) that

P̃0,L (z) =
L−1∏

i=0

P̃i,i+1 (z) . (1.12)
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Knowing P̃i,i+1 (z), one calculates the MFPT straightforwardly as

t̄0,L =

∑
n nP0,L (n)∑
n P0,L (n)

=

[
d

dz
ln P̃0,L (z)

]

z=1

=
L−1∑

i=0

[
d

dz
ln P̃i,i+1 (z)

]

z=1

. (1.13)

Using (1.9) and (1.10), we obtain the following recursion relation for P̃i,i+1 (z):

P̃i,i+1 (z) =
zpi

1− zqiP̃i−1,i (z)
. (1.14)

To solve for t̄0,L, we must introduce boundary conditions. Let p0 = 1, q0 = 0, which

is equivalent to introducing a reflecting wall at i = 0. This boundary condition

clearly influences the solution for short times and distances. However, as numerical

simulations and general considerations suggest, its influence relaxes quite fast, so that

for longer times, the result is clearly independent of the boundary. The benefit of

setting p0 = 1 becomes clear when we observe that

P̃0,1 (1) = 1 ⇒ ∀ i P̃i,i+1 (1) = 1. (1.15)

Hence,

t̄0,L =

L−1∑

i=0

P̃ ′i,i+1 (1) . (1.16)

The recursion relation for P ′i,i+1 (1) is readily obtained from (1.14) :

P̃ ′i,i+1 (1) =
1

pi
+
qi
pi
P̃ ′i−1,i (1) = 1 + αi

[
1 + P̃ ′i−1,i (1)

]
, (1.17)

with αi ≡ qi/pi. Thus, the expression for t̄0,L is obtained in closed form

t̄0,L = L +
L−1∑

k=0

αk +
L−2∑

k=0

L−1∑

i=k+1

(1 + αk)
i∏

j=k+1

αj. (1.18)

This solution expression gives the MFPT in terms of a given realization of disorder
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producing a certain set of probabilities {pi}, whereas we are interested in the behavior

averaged over all realizations of disorder. The cumulative products in (1.18) reduce to

the two form eβ(Ui−Uj), which after being averaged over uncorrelated Gaussian disorder

produce a factor of eβ
2σ2

. After the summations are carried out, the expression for

MFPT becomes for L� 1

〈t̄0,L〉 ' L2eβ
2σ2

. (1.19)

Thus, the diffusion law appears to be the classical one, with a renormalized diffusion

coefficient.

1.3.2 The time constant.

Consider a particle at site #i. The particle will eventually escape to one of the

neighboring sites #(i± 1), the escape rate being

ri = ωi,i+1 + ωi,i−1. (1.20)

To calculate the characteristic diffusion time constant 〈τ〉, this rate should be averaged

over all configurations of disorder {Ui}. To obtain an analytic expression for the 〈τ〉,
we assume the form

ωi,i±1 = νe−β(Ui±1−Ui) (1.21)

for both Ui±1 > Ui and Ui±1 < Ui , as opposed to the form (1.7). Numerics show

that this approximation introduces an up to ∼ 15% error for small values of βσ and

is practically exact for βσ > 2. Thus,

ri =
1

2τ0

(
e−β(Ui+1−Ui) + e−β(Ui−1−Ui)) , (1.22)

where τ0 = 1/(2ν). The mean time between the successive steps can be calculated

therefore as the average over all possible configurations of Ui, Ui±1 of the reciprocal
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of the escape rate, i. e.

〈τ〉 =

〈
1

ri

〉
= 2τ0

∫ ∞

−∞
dUidUi+1dUi−1

f (Ui) f (Ui+1) f (Ui−1)

e−β(Ui+1−Ui) + e−β(Ui−1−Ui) . (1.23)

Assuming as above Gaussian energy statistics, this integral is evaluated as follows

〈τ〉 =
τ0 e

β2σ2/2

π

∫ ∞

−∞
dxdy

e−(x2+y2)/2

e−βσx + e−βσy
. (1.24)

After the change of variables

s =
1√
2

(x + y), t =
1√
2

(x− y), (1.25)

the integral factorizes leading to

〈τ〉 =
τ0 e

β2σ2/2

2π

∫ ∞

−∞
ds e−s

2/2+βσs/
√

2

∫ ∞

−∞
dt

e−t
2/2

cosh(βσt/
√

2)

=
τ0 e

3β2σ2/4

√
2π

∫ ∞

−∞
dt e−t

2/2−ln[cosh(βσt/
√

2)] (1.26)

=
τ0 e

3β2σ2/4

√
2π

∫ ∞

−∞
dt e−t

2(1+β2σ2/2+...)/2 ' τ0 e
3β2σ2/4

[
1 + β2σ2/2

]−1/2

Now, multiplying (1.19) by 〈τ〉, we obtain the diffusion coefficient as

D1d (σ) ' 1

2τ0

(
1 +

β2σ2

2

)1/2

e−7β2σ2/4. (1.27)

Hence, rapid diffusion of a protein along the DNA is possible only if the roughness of

the binding energy landscape is small compared to kBT (βσ < 1.5). This requirement

imposes strong constraints on the allowed energy of specific binding interactions.

1.4 Optimal time of 3D/1D search

When 1D scanning is combined with 3D diffusion, what is the optimal time a protein

has to spend in each of the two regimes? To answer this question we compute the
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optimal number of sites the protein has to scan by 1D diffusion in order to get the

fastest overall search. Results of this section are rather general and are not limited

to the particular scenario of slow 1D diffusion on a rough landscape discussed above.

Each time the protein binds DNA, it performs a round of 1D diffusion. If the

round lasts τ1d then on average the protein scans [30]

n̄ =
√

16D1dτ1d/π bps. (1.28)

By plugging this relation into Eq. (1.3) for search time ts, and minimizing ts with

respect to n̄, we get the optimal total search time and the optimal number of sites to

be scanned in each round:

topt
s = ts(n̄opt) =

M

2

√
πτ̄3d

D1d
n̄opt =

√
16

π
D1dτ̄3d (1.29)

This analysis brings us to the following conclusions.

First, and most importantly, we obtain that in the optimal regime of search

τ1d(n̄opt) = τ3d, (1.30)

i.e. the protein spends equal amounts of time diffusing along non-specific DNA and

diffusing in the solution. This result is very general, and is true irrespective of the

values of diffusion coefficients D1d or D3d, or size of the genome M . In fact, it follows

directly from the diffusion law n̄ ∼ √τ1d. More importantly, this central result can be

verified experimentally by either single-molecule techniques or by traditional methods.

Also note that the optimal length of DNA scanned in a single round of 1D diffusion

n̄opt does not depend on M , i.e. it is the same irrespective of the size of the genomes

to be searched for a specific site.

Second, the optimal 1D/3D combination reached at τ1d = τ3d leads to a significant

speed up of the search process. In fact, an optimal 1D/3D search is n̄opt times faster

than a search by 3D diffusion alone, and M/n̄opt times faster than a search by 1D

diffusion alone. For example, if the protein operates in the optimal 1D/3D regime
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and scans n̄opt = 100 bp during each round of DNA binding, then the experimentally

measured rate of binding to the specific site can be 100 times greater than the rate

achievable by 3D diffusion alone.

Third, we can estimate n̄opt, the maximal number of sites a protein can scan in

each round of 1D search. If we set D1d to its maximum, i.e. D1d ∼ D3d and estimate

τ̄3d as a characteristic time of diffusion through a DNA globule of size lm

τ̄3d ∼ l2m/D3d, (1.31)

with lm ∼ 0.1µm, we get

n̄max
opt ∼ 500 bp. (1.32)

For a smaller 1D diffusion coefficient, e. g. D1d ∼ D3d/100, we get n̄max
opt ∼ 50bp.

Again, single molecule experiments can provide estimates of these quantities for dif-

ferent conditions of diffusion.

Finally, we obtain estimates of the shortest possible total search time. If M ≈
106 bp and 1D diffusion is at its fastest rate, i. e. D1d ∼ D3d = 10−7cm2/s, then using

Eq. (1.29) we get

topts ∼
M

2

√
2πτ̄3dτ0 ∼ 5 sec, (1.33)

where, given the inter-base distance a0 = 0.34nm, we estimate τ0 ∼ a2
0/D1d ∼ 10−8

sec.

One can also estimate the search time using in vitro experimentally measured

binding rates in water kwater
on ≈ 1010M−1s−1 [17, 18]. The diffusion coefficient of a

protein molecule in water can be estimated as [31]

D ' kBT

3πηd
, (1.34)

where d is the diameter of the molecule and η is the water viscosity. Setting η ∼
10−2 g/(sec · cm) and d ∼ 10 nm, we obtain at room temperature

D ∼ 102 µm2/sec. (1.35)
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Diffusion coefficient measurements for GFP in E. coli [22] produce values of about

1 − 10 µm2/sec. This difference in diffusion coefficients may account for more than

order of magnitude difference in the theoretically calculated and measured target lo-

cation times. Thus, the estimated in vivo binding rate is kcytoplasm
on ≈ 108−109M−1s−1.

From this we obtain the time it takes for one protein to bind one site in a cell of 1µm3

volume (i.e. [TF]≈ 10−9M) as

texps =
(
kcytoplasm
on [TF]

)−1 ∼ 1− 10 sec. (1.36)

One can see a good agreement between our theoretical estimates and experimentally

measured binding rates.

As we mentioned above, there are usually several TF molecules searching in par-

allel for the target site. Naturally, in this case, the search is sped up proportionally

to the number of molecules.

1.5 Non-specific binding

While the diffusion of the TF molecules along DNA is controlled by the specific bind-

ing energy, the dissociation of the TF from the DNA depends on the total binding

energy, i.e. on the non-specific and specific binding. Moreover, since the dissocia-

tion events are much less frequent than the hopping between neighboring base-pairs

(roughly by a factor of τ̄3d/ 〈τ〉), the non-specific energy Ens makes a correspondingly

larger contribution to the total binding energy.

For a TF at rest bound to some DNA site i, the dissociation rate rdiss
i would be

given by the Arrhenius-type relation,

rdiss
i =

1

τ0
e−β(Ens−Ui). (1.37)

Given the specific Ui and the non-specific Ens energy, one can calculate the average
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time τ1d a protein spends before dissociating from the DNA

τ1d =

〈
1

rdiss
i

〉
= τ0e

βEns+β2σ2/2. (1.38)

Next we recall that, in the optimal regime, τ1d = τ̄3d. Thus, to ensure optimal

performance, τ1d should be replaced by τ̄3d in Eq. (1.38):

Ens = kBT

[
ln

(
τ3d

τ0

)
− 1

2

(
σ

kBT

)2
]
. (1.39)

Since for a given value of σ, the non-specific binding controls the dissociation rate,

the search time will deviate from the optimum if Ens moves from this predetermined

value. In Fig. 1-3a, we use Eqs. (1.3) and (1.28) to plot the search time as a function

of the non-specific binding energy for different values of σ.

We now define the tolerance factor ζ as the ratio between the maximal acceptable

value of the search time ts and the minimal time ts0. Experimental data suggest

ζ ≤ 5, but we for the moment allow for much larger values of ζ ∼ 10− 100 (this can

be done when, for instance, there are many protein molecules searching in parallel).

As we can see from Fig. 1-3a, for each value of σ, there is a range of possible values of

Ens such that the resulting search time is within the region of tolerance. This range

is easily calculated producing the values of non-specific energy between

E±ns (σ, ζ) =
2

β
ln

[√
D1d(σ)τ̄3d

D1d(0)τ0

(
ζ ±

√
ζ2 − D1d(0)

D1d(σ)

)]
− σ2β

2
(1.40)

Specifying ζ, we can define our parameter space, i. e. the values of specific and

non-specific energy producing a total search time within the region of tolerance. In

Fig. 1-3b, we consider three values of ζ. The most relaxed requirement ζ = 100

provides a search time ts ≤ 500 sec. If 100 proteins are searching for a single site,

then the first one will find it after ∼ 5 sec, leading however to a fairly low binding rate

of kon ≈ 1/500 sec · 109 M−1 = 2 · 106 M−1s−1 (compared to experimentally measured

1010 M−1s−1 in water). Importantly, in order to comply with even this most relaxed
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Figure 1-3: (a) Dependence of the search time on the non-specific binding energy. (b)
The parameter space. The dashed line corresponds to optimal parameters σ and Ens

connected by Eq. (1.39).

search time requirement, the characteristic strength of specific interaction must be

smaller than ∼ 2.3 kBT .

These results bring us to a very important conclusion that a protein cannot find

its site in biologically relevant time if the roughness of the specific binding landscape

is greater than ∼ 2 kBT . Although an optimal 1D/3D combination can speed up

the search, it cannot overcome the slowdown of 1D diffusion. Only fairly smooth

landscapes (σ ∼ 1kBT ) can be effectively navigated by proteins.

1.6 Speed versus stability

While rapid search requires fairly smooth landscapes (σ ∼ 1kBT ), stability of the

protein-DNA complex, in turn, requires a low energy of the target site (Umin < 15 kBT

for a genome of 106 bp).

In Fig. 1-4a, we present the equilibrium probability Pb of binding the strongest

target site with energy Umin = U0 [24] as a function of σ/kBT . In equilibrium, Pb

equals the fraction of time the protein spends at the target site:

Pb =
exp [−βU0]∑M
i=0 exp [−βUi]

. (1.41)
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Since the target site is not separated from the rest of the distribution by a significant

energy gap, Pb is comparable to 1 (which is the natural requirement for a good

regulatory site) only at σ much greater than kBT .

In fact, it is not hard to estimate analytically the (σ/kBT ) ratio for a genome

of length M such that the probability of binding to the lowest site is comparable to

the probability of binding to the rest of the genome, i.e. their contributions to the

partition function are of the same order of magnitude. The partition sum for the

Gaussian energy level statistics is

Ω =
M√
2πσ2

∫ ∞

−∞
e−βU−U

2/(2σ2)dU = Meβ
2σ2/2 ∼

∼ exp [−βUmin] ∼ exp
(
βσ
√

2 lnM
)

(1.42)

so that for M = 106

σ ∼ kBT
√

2 lnM ' 5 kBT. (1.43)

Strictly speaking, for a large though finite set of energy levels, the integration limits

are cut off at ±σ
√

2 lnM so that for βσ �
√

lnM the partition function is dominated

by the lower edge of the distribution. The estimate for βσ gives therefore the crossover

value between the regime of multiple-site contribution to Ω and the regime with single-

site domination2.

Figure 1-4b shows the optimal search time at the corresponding values of σ/kBT .

High roughness of σ >> kBT required for stability of the protein-DNA complex leads

to astronomically large search times. In contrast, a protein can effectively search the

target site at σ smaller than 1− 2kBT .

From the above analysis, an obvious conflict arises: the same energy landscape

cannot allow for both rapid translocation and high stability of states formed at sites

with the lowest energy. This conflict is similar to the speed-stability paradox of

protein folding formulated by Gutin et al. [33]: rapid search in conformation space

requires a smooth energy landscape, but then the native state is unstable. In protein

2In the Random Energy Model [32], the analog of this effect is thermodynamical freezing.
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folding, this conflict is resolved by the presence of a large energy gap between the

native state and the rest of the conformations [34, 35].
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Figure 1-4: (a) Stability on the protein-DNA complex on the cognate site measured
as the fraction of time in the bound state at equilibrium. (b) Optimal search time
as a function of the binding profile roughness, for the range of parameters 10−4sec ≤
τ3d ≤ 10−2sec, 10−10sec ≤ τ0 ≤ 10−6sec.

As evident from Fig. 1-1, no such energy gap separates cognate sites from the bulk

of other (random) sites. In fact, the energy function in the form of (1.5) cannot, in

principle, provide a significant energy gap.

Increasing the number of TFs cannot resolve the paradox either. If Np proteins

are searching and binding a single target site, then the probability of being occupied

is given by

P (Np) = 1− (1− Pb)Np ≈ NpPb (1.44)

where Pb is the probability of the site being occupied by a single protein and approxi-

mation is for Pb << 1/Np. As evident from Fig. 1-4b, requirement of the rapid search

is satisfied if Pb(σ/kBT ≈ 1) ∼ 10−5. An unrealistic number of copies of a single TF,

∼ 104, is required to saturate such weak binding site. Thus, an alternative solution

must be sought.
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Chapter 2

Folding and binding

2.1 The two-mode model

The “search speed-stability” paradox has already been qualitatively anticipated by

Winter, Berg and von Hippel [14], who concluded that a conformational change of

some sort must exist to allow fast switching between “specific” and “non-specific”

modes of binding. In the non-specific mode, the protein is “sliding” over an essentially

equipotential surface (in our terms, σnon−spec = 0) whereas site-binding takes place

in the “specific” mode (σspec � kBT ). A protein in the non-specific binding mode

is “unaware” of the DNA sequence it is bound to. Thus, it permanently alternates

between the binding modes, probing the underlying sites for specificity.

This model naturally raises a question about the nature of the conformational

change, which was originally described as a “microscopic” binding of the protein to

the DNA accompanied by water and ion extrusion. However, numerous calorimetry

measurements and calculations [11] show that such a transition is usually accompanied

by a large heat capacity change ∆C. This ∆C cannot be accounted for, unless

additional degrees of freedom, namely protein folding, are taken into account. On-site

folding of the transcription factor may involve significant structural change [20, 21, 36]

and take a time of ∼ 10−4 − 10−6 sec [37] (compared to a characteristic on-site time

of τ0 ∼ 10−7 − 10−8 sec).

If the TF is to probe every site for specificity in this fashion, it would take hours
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to locate the native site. We note, however, that if there was a way to probe only

a very limited set of sites, i.e. only those having high potential for specificity, the

search time would be dramatically reduced. From the previous section it is clear that

a relatively weak site-specific interaction (i.e. a smooth landscape, σ ∼ kBT ) does not

significantly affect the diffusive properties of the TF and the total search time. If this

landscape, however, is correlated with the actual specific binding energy landscape

(with σ ∼ 5−6 kBT ), the specific sites will be the strongest ones in both modes. The

protein conformational changes should occur therefore mainly at these sites, which

constitute “traps” in the smooth landscape. Since such sites constitute a very small

fraction of the total number of sites, the transitions between the modes are very rare.

We therefore suggest that there are two modes of protein-DNA binding: the

search mode and the recognition mode (Fig. 2-1). In the search mode, the pro-

tein conformation is such that it allows only a relatively weak site-specific interaction

(σs ∼ 1 − 2 kBT ). In the recognition mode, the protein is in its final conformation

and interacts very strongly (σr ≥ 5 kBT ) with the DNA (Fig 2-1 bottom). If two

energy profiles are strongly correlated then the lowest lying energy levels (“traps”)

in the search mode (≤ −5 kBT ) are likely to correspond to the strongest sites in

the recognition mode, putatively, the cognate sites. The transitions between the two

modes happen mainly when the protein is trapped at a low-energy site of the search

landscape. In this fashion, the 1D diffusion coefficient D1d is about 10–100 times

smaller than the ideal limit, but the search time in the optimal regime is reduced

only by a factor of ∼ 3− 10 (see Eq. (1.29)).

The coupling between the conformational change and association at a site with a

low-energy trap is likely to take place through time conditioning. Namely, the folding

(or a similar conformation transition) occurs only if the protein spends some minimal

amount of time bound to a certain site. This statement is basically equivalent to

saying that the free energy barrier that the protein must overcome to transform to

the final state must be comparable to the characteristic energy difference that controls

hopping to the neighboring sites.

The protein conformation in recognition mode should be stabilized by additional
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Figure 2-1: Cartoon demonstrating the two-mode search-and-fold mechanism. Top:
search mode, bottom: recognition mode (a) two conformations of the protein bound
to DNA: partially unfolded (top) and fully folded (bottom). (b) The binding energy
landscape experienced by the protein in the corresponding conformations. (c) The
spectrum of the binding energy determining stability of the protein in the correspond-
ing conformations.

protein-DNA interactions. If these interactions are unfavorable, the folded structure

is destabilized, then the search conformation is rapidly restored and the diffusion

proceeds as before. If the new interactions are favorable, the folded structure is

stable and the protein is trapped at the site for a very long time.

For this mechanism to work, transition between the two modes of search has to

be associated with significant change in the free energy (∼ 15kBT ) of the protein-

DNA complex (see Fig 2-1(c)). Such energy difference between the two states is

required to make most of the high-energy sites in the recognition mode less favorable

than in the search mode. So a protein would rather (partially) unfold than bind an

unfavorable site. As a result, sites that lay higher in energy than a certain cutoff

exhibit similar non-specific binding energy (i.e. switch into search mode of binding).

Folding of partially disordered protein loops or helices can provide the required free

energy difference between the two modes.

Efficiency of the proposed search-and-fold mechanism depends on the energy dif-
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ference between the two modes, correlation between the energy profiles and the barrier

between the two states. The barrier determines the rate of partial folding-unfolding

transition. If the barrier is too low, then the protein equilibrates while on a single site

having no effect on search kinetics. On the contrary, too high a barrier can lead to

rare folding events and the cognate site can be missed. As we show in the following

sections, a proper size of the barrier provides efficient search and stable protein-DNA

complex.

2.2 The two profiles

A protein located at a site with locally minimal energy ∆U has the average residence

time of

τres ∼ τ0e
β∆U . (2.1)

Then, the probability to undergo a conformational change there is

pf (∆U) ∼ τres
τf
∼ κ−1eβ∆U , (2.2)

where τf
−1 is the mean transition rate and κ ≡ τf/τ0. Since on a single round of

1D diffusion the protein covers ∼ n sites and makes ∼ n2 steps, each site is revisited

∼ n times. Thus, the overall probability to locate the target site once the protein

associates inside a region of size ∼ n containing the site is

ploc ∼ min[1, npf ] ∼ min[1, pfe
βEns/2]. (2.3)

Now, we say that the location mechanism is robust if ploc ∼ 1. Also, we note that for

a genome of size M , extreme values of a Gaussian distribution with variance σ2
s are

approximately

∆U ∼ σs

√
2 ln

M√
2π
, (2.4)
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and they correspond to the outlier sites in our problem. Then, the protein is able to

locate its cognate site robustly if

κ < κc ∼ exp

[
β

(
Ens
2

+ σs

√
2 ln

M√
2π

)]
. (2.5)

Thus, for instance, for a genome size M = 5 × 106bp, βσs = 1.5 and Ens ' 10kBT ,

we have

κc ∼ 5× 105. (2.6)

This corresponds to maximal mode transition (i.e. folding) times of the order of

milliseconds and even slower. Note that the accepted point of view corresponds to

σs = 0, which gives

κc ∼ 102, (2.7)

providing a much smaller degree of robustness in target location.

What happens if κ > κc? In this case, the protein dissociates from the region

containing the site before a transition to the recognition mode occurs. To locate

the site, the same region has to be scanned repetitively. In fact, for ploc � 1, the

protein has to return to the same region ∼ 1/ploc times and the overall target location

time grows proportionally to the number of returns. Thus, we come to a surprising

conclusion: for given folding times, i.e. for a given TF, the overall target location

time is shorter for slower sliding!

2.2.1 The numerics

To tackle the problem numerically, we use a version of the Gillespie algorithm [38, 39].

The protein at a given site can undergo 4 possible “reactions”: it can move in positive

or negative direction along the DNA, overcome a conformational change or dissociate

from the DNA and reassociate at some other (random) lattice site. The rate of a
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reaction δ → γ is calculated as according to

ωδ→γ =
1

τ0
×





e−β∆Uδγ if ∆Uδγ > 0

1.0 otherwise
, (2.8)

where β = 1/kBT , and ∆Uδγ is the energy barrier for the reaction. For movements

along the DNA, this is the difference in the potential at the neighboring lattice sites;

for dissociation from a site i, ∆Uδγ = Ens−Ui. Transitions from search to recognition

mode are assumed to be governed by an energy barrier

∆Gs→r = max

[
U r
i − U s

i , kBT ln

(
τf
τ0

)]
, (2.9)

where U s,r
i correspond to binding energies in the search and recognition modes, re-

spectively. Reverse transitions have the barrier

∆Gr→s = kBT ln

(
τf
τ0

)
+ U s

i − U r
i . (2.10)

Each Monte-Carlo (MC) move starts from choosing the next reaction at random,

with each reaction weighted proportionally to its rate (2.8). Then, the time to next

reaction is drawn from the exponential distribution with a mean

〈∆t〉 =

(∑

γ

ωδ→γ

)−1

. (2.11)

If the next reaction is dissociation, the total search time is incremented by a 3D

diffusion time τ3d and the protein is relocated to a new random position on DNA.

To build the recognition mode profile, we employ the standard weight–matrix

method [16, 40, 25] using a known set of PurR transcription factor binding sites (see

Appendix A). The search mode profile is built by rescaling the recognition mode

profile.
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2.2.2 Robustness of target location

First, we simulate the process of target location on a short stretch of DNA (M =

1000 bp). The process starts when a protein is bound at a random site in the search

mode and ends when it is bound at the cognate site in the recognition mode. Figure 2-

2 shows the values of the mean total search time tloc as a function of τf for various

values of σs. We see that each graph consists of a plateau region and a linear growth

region. The former corresponds to the values of τf , for which ploc ' 1, whereas the

latter is realized when ploc < 1. In this regime

tloc '
2Mτ3d

nploc
∼ 2Mτ3d

n

(
τf
τres

)
. (2.12)

In the plateau region, the smaller σs is, the faster target location is. The slowdown

for βσs ≤ 1.5 is less than by a factor of 10 (note that in the optimal regime, the

slowdown factor for βσs = 1.5 is e−7β2σ2
s/8 ' 0.14). In the linear growth region, for a

given τf , the relation is reversed. For σs = 0, the residence time τres is small (< 10−7

sec) and it grows exponentially with σs, and so does the extent of the plateau region.
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Figure 2-2: Mean target location time as a function of on-site conformational transi-
tion time for various values of σs.
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To have a more accurate measure of ploc, we perform the following set of simu-

lations. For a given search profile, we place the protein in the search mode at the

cognate site and measure the probability of finding it at the same site in the recogni-

tion mode before it dissociates from the DNA. Figure 2-3 presents the dependence of

ploc on τf for various values of σs. One can see a remarkable correspondence between

the behavior of the target location time and that of ploc.

10−8 10−6 10−4 10−2 1000

0.2

0.4

0.6

0.8

1

Conversion time [sec]

Si
te

 lo
ca

tio
n 

pr
ob

ab
ilit

y

σs = 0
σs = 1.0 kBT
σs = 1.5 kBT

Figure 2-3: Probability of conformational transition before dissociation as a function
of on-site conformational transition time.

Thus, we conclude that if the search landscape is correlated with the recogni-

tion one, target location is significantly more robust for search landscapes of finite

roughness.

2.3 Effective energy landscape

The mechanism proposed above allows to bridge the timescale gap between 1D diffu-

sion and protein conformational changes by the virtue of a “search” potential profile

which is correlated with the “recognition” profile. The latter creates the required dis-

tribution of waiting times, so that conformational transitions are very likely to occur
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at a preselected set of sites corresponding to potential minima. This hypothesis is

still to be tested experimentally, but, it appears that search speed–stability paradox

cannot be resolved without at least one additional reaction coordinate describing two

binding modes.

In this section we explore yet another possibility, namely, that this reaction coor-

dinate is continuous rather than discrete. We suggest that protein–DNA interaction

can be effectively described by a two–dimensional (2D) energy landscape. We then

model the dynamics of protein–DNA complex as a random walk on this landscape.

Finally, we discuss the influence of slow transversal dynamics on the kinetic and

equilibrium properties of the landscape.

2.3.1 The Continuos Model

Treating chemical reactions as stochastic dynamics on energy landscapes is a very

common approach in chemical physics [41]. In molecular biophysics, e.g. in protein

or RNA folding problems, the energy landscapes are defined in a multidimensional

space [42] and the computational effort associated with modelling such dynamics is

enormous.

In our approach, the effective energy landscape U(x, z) is two–dimensional: x is

the position of the protein along the DNA and z is a continuous reaction coordinate

that describes the internal dynamics of the protein–DNA complex [43, 44]. The

potential has a general form

U(x, z) = Uspec(x, z) + Unon−spec(z), (2.13)

where Unon−spec(z) is sequence–independent and arises mainly from electrostatic in-

teractions with DNA backbone, the solvent etc.; it has a minimum away from the

DNA. Uspec(x, z) depends on the sequence and the state of the complex; it is assumed

to decay rapidly in z but to be strong enough to provide a net nonzero force for finite

z. In this fashion, cognate sites can reduce the energy barrier to formation of the

specific complex.
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Figure 2-4: (a) A schematic view of a protein attached to DNA: harmonic potential
combined with sequence–specific interaction. (b) A three–dimensional view of the
energy landscape; note a specific site at x = 63

We thus assume probably the simplest possible functional form that has the re-

quired properties:

U(x, z) = Us(x)e−z +
α

2
(z − z0)2. (2.14)

Here, α and z0 are the potential parameters and Us(x) is the specific potential profile

that can be taken from one of the standard models [16, 25, 40, 45, 10]; also, Us(x) = 0.

Figure 2-5 illustrates this toy model. Note, that in the original picture by Winter

et. al. [14], the “hard” and fully folded protein switches between the non–specific and

the specific modes by “docking” to DNA and expelling water and ions. In this case,

the reaction coordinate z is merely the distance from DNA. However, the internal

protein–DNA complex dynamics involve multiple degrees of freedom [46], so that the

explicit meaning of the ad hoc reaction coordinate z is not obvious. Nevertheless, in

what follows, we assume that these dynamics can be effectively described by a single

coordinate.

For suitably chosen α and z0, all sites can be divided into three categories. Most

non–cognate sites have an equilibrium position at nonzero z. Cognate sites have a
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single minimum at z = 0. The third group consists of the so-called “traps,” a set of

sites that differ in sequence from the cognate ones at a few nucleotides. The traps

have equilibrium positions separated by a barrier, at both z = 0 and z 6= 0. A protein

moving in such a landscape would spend most of the time sliding inside a “gutter” of

a nearly parabolic cross-section that varies slightly from site to site and would quite

rarely get stuck at z = 0. The gutter thus corresponds to the non–specific binding

mode, while z = 0 describe the specific one. Both α and z0 can be readily estimated

from few simple considerations. First, we note that in the non–specific mode, the

variations in the potential along x should be small enough, which places a lower

bound on z0. Second, we use energetic parameters known from the experiments.
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Figure 2-5: (a) Spectrum of protein–DNA binding energies; (b) Potential profiles for
various binding sites with different Us(x).

A typical situation is shown in Fig. 2-5. The spectrum of specific binding energies

is described by a Gaussian with standard deviation σ ' 6 − 6.5kBT . Cognate sites

reside Us ' 15− 20kBT below this threshold [24]. One can also estimate the change

in the non–specific binding energy ∆Ens as the protein converts between the two

modes [46] which is usually positive and amounts to ∼ 15 − 20kBT . Naturally, this

observed one–dimensional spectrum should be obtainable from the 2D landscape by

projecting the latter along z in some way, as shown in Fig. 2-5. If e−z0 is small enough,
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we can estimate

∆Ens ≈
1

2
αz2

0 . (2.15)

Also, to discriminate between the traps and the cognate sites, we require that for a

cognate site the force is always in the negative z–direction

∂U(x, z)

∂z
≥ 0 for z > 0, (2.16)

where the equality occurs for some z < z0 and x such that U(x, 0) = Umin
s . For given

∆Ens and Umin
s , we solve

α

[
1− ln

(
α

Umin
s + ∆Ens

)]2

= 2∆Ens (2.17)

for α and then obtain z0 from Eq. (2.15).

2.3.2 Dynamics on 2D Landscape

As we mentioned above, there is much experimental evidence in favor of describing

protein–DNA association kinetics as intermittent rounds of 1D and 3D diffusion. The

1D diffusion distance n is controlled by a free energy barrier Ens (see Chapter 1), which

is merely a difference between the free energy of a protein in solution (or cytoplasm)

and that of a nonspecifically bound protein

n ∼ exp

(
Ens

2kBT

)
. (2.18)

Thus, for Ens ∼ 9− 12kBT , we have n ∼ 100− 400 bp.

Within our model, the observed 1D dynamics of the protein are a projection of

its motion on the 2D energetic landscape. We assume that the motion in both x–

and z–directions is overdamped with well–defined diffusion coefficients Dx and Dz,

respectively. To tackle the problem numerically, we put the landscape on a lattice

and use a version of the Gillespie algorithm [38, 39]. The protein at a given lattice

site can undergo 5 possible “reactions:” it can move in positive or negative x– or z–
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directions or it can dissociate from the DNA and reassociate at some other (random)

lattice site. The rate of a reaction δ → γ is calculated as according to

ωδ→γ =
1

τδγ
×





e−β∆Uδγ if ∆Uδγ > 0

1.0 otherwise
, (2.19)

where β = 1/kBT , τδγ = τγδ is the relevant time constant and ∆Uδγ is the energy

barrier for the reaction. For movements on the landscape, this is the difference in the

potential at the neighboring lattice sites; for dissociation from a site (i, j), ∆Uδγ =

Esol − U(i, j). Longitudinal motion and dissociation reactions have a timescale τδγ =

τx = (2Dx)
−1, whereas for transversal motion, τδγ = τz = (∆z)2/2Dz, ∆z is the lattice

spacing in the z-direction. Each Monte–Carlo (MC) move starts from choosing the

next reaction at random, with each reaction weighted proportionally to its rate (2.19).

Then, the time to next reaction is drawn from the exponential distribution with a

mean

〈∆t〉 =

(∑

γ

ωδ→γ

)−1

. (2.20)

If the next reaction is dissociation, the total search time is incremented by a 3D

diffusion time τ3d [47].

The potential profile Us(x) of E. coli genome was built by a standard weight-matrix

method [16, 25], using a known set of PurR transcription factor binding sites [48].

Landscape parameters were chosen to fit |Umin
s | ' 12kBT , ∆Ens ' 18kBT , i.e. α =

4.0kBT and z0 = 3.0. Also, from the previous work [24, 47] it is known that Dx ∼
1−10µm2/sec and τ3d ∼ 10−3sec. However, no reliable order–of–magnitude estimates

are possible for Dz unless the collective coordinate z has been defined explicitly in

terms of coordinates and masses of all participating particles. Thus, in what follows,

we fix Dx at some predefined value and study various aspects of the target location

kinetics for different values of κ ≡ Dx/Dz.

As we mentioned above, any effective model should allow for both rapid target

location and stable cognate complexes. Figure 2-6 shows the dependence of the mean

target location tloc time as a function of κ for a short (M = 103 bp) stretch of DNA.
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Figure 2-6: Average target location time tloc as a function of Dx/Dz for M = 103 bp
measured directly from MC simulations (squares) and estimated from the number of
“jumps” (triangles). Inset: scaling of tloc with genome size M for κ = Dx/Dz = 102;
the slope of the line is equal 1.

One can see that tloc is practically constant for κ < 104 and blows up very fast when

κ > 104. This behavior can be explained as follows. Before the protein finds its

target, a significant part of the genome becomes “covered” by segments of effectively

one–dimensional diffusion, each containing n = 100 − 200 base pairs. Most of the

time, the protein is sliding in the nonspecific mode. If the diffusion in the z–direction

is fast enough, the protein is able to locate the target each time its segment “covers”

the target site. The protein returns to the same location inside each segment 102

times and thus the requirement of fast transverse diffusion is relaxed significantly. It

is clear that there must be some characteristic κc, at which the protein starts missing

the target site before it dissociates from the segment and should wait for another

return to the vicinity of the target. To demonstrate this point, we monitor the mean

number of dissociation–reassociation events (or “jumps”) nj before target location.

The mean time to location can be estimated as

tloc ' nj(τ3d + τsl), (2.21)
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where τsl is the mean time the protein spends sliding over the landscape before dis-

sociation. As one can see from Fig. 2-6, this estimate is very close to the mean

location time measured from numerical simulations. To estimate κc, we compare the

characteristic time of transverse diffusion

tz ∼ kBT/(αDz), (2.22)

to the longitudinal diffusion time tx ∼ n2/Dx. At κ ∼ κc, we should have tx ∼ tz and

thus

κc ∼ αn2/(kBT ). (2.23)

Plugging in the numbers, we get κc ∼ 104 − 105, as observed. Figure 2-6 also shows

that target location time scales linearly with the size of the genome M (see inset),

and thus the above argument holds for more realistic genome sizes of M ∼ 106 bp.
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Figure 2-7: Specific mode occupancy η as a function of Dx/Dz for a M = 105 bp
stretch of E. coli genome. Different symbols correspond to different values of ∆z.
Inset: fraction of time spent at different sites for M = 106 bp, κ = 16; circles
designate real binding sites.

Next, we explore the stability of cognate complexes in our model. For that pur-
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pose, we define the specific mode occupancy η as the fraction of the time spent in

the specific mode (z ≤ 0.25). Figure 2-7 shows η calculated for a set of runs with

M = 105 bp. On this stretch, there was a single cognate site for PurR binding. The

calculated total duration of each run was at least 60 sec; the runs were performed for

different values of lattice spacing ∆z. We see that for κ < κc, the protein was able

to both locate the site and explore a large part of the “genome”, so that η fluctuates

close to its equilibrium value. Above κc, the protein cannot accomplish the search in

60 sec and thus η = 0. We therefore conclude that for finite times, measured stability

is also influenced by the exact value of κ. Figure 2-7 also shows a typical occupancy

profile for M = 106 bp at κ = 16. The calculated total duration of the run was ∼ 30

sec. We see that the protein has effectively located many cognate sites1 and that the

total specific mode occupancy η ' 0.53 is close to the equilibrium one (ηeq ' 0.58).

The average occupancy of each site, especially in the case of few tens to hundreds of

protein molecules per cell, is thus sustained at a near–equilibrium limit. However,

in this limit of fast diffusion (and equilibration) along the z–direction, each single

protein molecule stays at a cognate site for just a few seconds. This is probably

not the best property from the functional point of view and thus we conclude that

at κ ∼ 102 − 103 we may expect a more robust though slightly slower performance.

In real time units this corresponds to mode interconversion times tz ∼ 10−5 − 10−4

seconds. It is noteworthy that, in principle, it is possible to have κ � 1. But that

limit is virtually inaccessible to PC simulations of reasonable duration and is more

appropriate for molecular dynamics studies. Also, for the reasons mentioned above,

this limit is unlikely to be of practical interest.

1The efficiency of real cognate sites discovery is at most as good as in the underlying model for
Us(x).
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2.4 Biological implications

2.4.1 Specificity “for free”: kinetics vs. thermodynamics.

The proposed mechanism of specific site location is akin to kinetic proofreading [49],

which is a very general concept for a broad class of high-specificity biochemical reac-

tions. In kinetic proofreading, the required specificity is achieved through formation

of an intermediate metastable complex that paves the way for an irreversible enzy-

matic reaction. If the reaction is much slower than the life-time of the complex, then

substrates that spend enough time in the complex are subject to the enzymatic reac-

tion, while substrates that form short-lived complexes are released back to the solvent

before the reaction takes place. In other words, the substrates are selected by kinetic

partitioning.

2.4.2 Coupling of folding and binding in molecular recogni-

tion

Several DNA- and ligand-binding proteins are known to have partially unfolded (dis-

ordered) structures in the unbound state. The unstructured regions fold upon binding

to the target. Does binding-induced folding provide any biological advantage?

The idea of coupling between local folding and site binding has been around for

some time and was recently reassessed in the much broader context of intrinsically

unstructured proteins [50, 51, 52]. Induced folding of these proteins can have several

biological advantages. First, flexible unstructured domains have intrinsic plasticity

allowing them to accommodate targets/ligands of various size and shape. Second,

free energy of binding is required for compensation for entropic cost of ordering of the

unstructured region. A poor ligand that doesn’t provide enough binding free energy

cannot induce folding and, hence, can not form a stable complex. Williams et al. have

suggested that unstructured domains can be result of evolutionary selection that acts

on the bound (structured) conformation, while ignoring the unbound (unstructured)

conformation [53]. Partial unfolding can also increase protein’s radius of gyration
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and, hence, increase the binding rate [54, 55]

Here we propose a mechanism that suggests a role for induced folding in provid-

ing rapid and specific binding. Induced folding (or other sorts of two-state confor-

mational transitions) allows a protein to search and recognize DNA in two different

conformations, providing rapid binding to the target site. Importantly, this mecha-

nism reconciles rapid search for the target site with stable bound complex. The rate

of induced folding can also play a role in determining the specificity of recognition.

Structural and thermodynamic data argue in favor of distinct protein conforma-

tions for search along non-cognate DNA and for recognition of the target site. Proteins

such as λ cI, Eco RV and GCN4 apparently do not fold their unstructured regions

while bound to non-cognate DNA [56, 57, 58], supporting our hypothesis.

Heat capacity measurements on a vast variety of protein-DNA complexes report a

large negative heat capacity change in site-specific recognition, which is a clear indi-

cation of a phase transition. These measurements supplemented by X-ray crystallog-

raphy and NMR structural data were interpreted by Spolar et al. [11] mainly in terms

of hydrophobic and conformational contributions to entropy. Thus, folding-binding

coupling is now considered a well-established feature of a large set of transcription

factors.

However, real-time kinetic measurements were not performed until recently, so

the question of the actual mechanism was left open. Major advances in this direction

were made by Kalodimos et al. [59, 60, 36], who observed a two-step site recognition

by dimeric Lac repressor. The H/D-exchange NMR data unambiguously demonstrate

site pre-selection by α-helices bound in the major groove followed by folding of hinge

helices that bind to the minor groove elements and complete the specific site recog-

nition. Though the experiments in this field were performed with a single model

system, their implications are likely to have a general character.
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Chapter 3

The long reach of DNA

heterogeneity.

Until now, we assumed that the potential profile of protein-DNA interaction is un-

correlated, i.e. the values of the sequence–specific binding energy at two neighboring

sites are independent of each other. In this chapter, we analyze the influence of

correlations of arbitrary range in the potential profile on the 1D diffusion.

3.1 Diffusion in a correlated random potential

3.1.1 The model

The random walk is characterized by the set of hopping probabilities that are derived

from the random potential Ui, which is the sequence-dependent component of the

potential energy. The latter is basically a sum of many random contributions and

can therefore be considered to be normally distributed [24]. Thus, in the absence of

correlations, the probability for realization of a certain profile U(x) of length L is (in

the continuum limit)

P [U(x)] ∝ exp

[
−α

2

∫ L

0

dx U2(x)

]
. (3.1)
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This is the well-known Random Energy Model [61], which has been applied suc-

cessfully to various biophysical problems, from protein folding [62] to protein-DNA

interaction [24]. It assumes no correlations between energies of different sites. One

can think of a more general form of potential profile

P [U(x)] ∝ exp

[
−1

2

∫ L

0

∫ L

0

dydx U(x)G(x − y)U(y)

]
. (3.2)

Taking for example, G(x−y) ∝ ∂2
xyδ(x−y), we obtain the Random Force Model [63],

which describes an energy landscape as a random walk with linearly growing correla-

tions. This model was studied during the last decades in the context of heteropoly-

mer dynamics [64, 65], glassy systems [66, 67] and quite recently to describe DNA

denaturation dynamics [68]. Characteristic features of the Random Force Model are

logarithmically slow (“Sinai’s”) diffusion [69, 70] and aging [67, 68]. More generally,

G is related to the correllator of U by 〈U(x)U(y)〉 = G−1(x− y).

To include finite-range correlations into Eq. (3.1), we must incorporate a limita-

tion on the acceptable forces. The ensemble of energy profiles is therefore naturally

described by the following probability density

P [U(x)] ∝ e−H[U ], (3.3a)

with pseudoenergy

H[U ] =
1

2

∫ L

0

dx

[
αU2(x) + γ

(
dU

dx

)2
]
. (3.3b)

Energy level statistics for this kind of potential profile is also Gaussian, as can be

seen from the average

〈
eikU

〉
=

∫
D[U ]eikUe−H[U ]

∫
D[U ]e−H[U ]

= exp

(
− k2

4
√
αγ

)
, (3.4)

which is the characteristic function for Gaussian distribution with zero mean and
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variance

σ2 =
1

2π

∫ ∞

−∞

dq

α + γq2
=

1

2
√
αγ

. (3.5)

The correlator of the potential profile is readily calculated as

g(r) ≡ 1

2
〈[U(x)− U(x + r)]2〉 = σ2

(
1− e−|r|/ξc

)
, (3.6)

where ξc =
√
γ/α is the correlation length.

3.1.2 Mean First Passage Time

The hopping probabilities are defined as

pi =
ωi,i+1

ωi,i+1 + ωi,i−1
, qi = 1− pi, (3.7)

where, as before

ωi,i±1 = ν ×





e−β(Ui±1−Ui) if Ui±1 > Ui

1.0 otherwise
. (3.8)

The disorder-averaged version of the MFPT is readily obtained after we note that the

sequential products in Eq. (1.18) reduce to

i∏

j=k

αj = exp [β(Ui − Uk)] . (3.9)

For an uncorrelated potential profile, this exponential factorizes into independent

exponentials; after the ensemble averaging and the summations are carried out, we

obtain for N � 1

〈t̄0,N〉 = N2eβ
2σ2

, (3.10)

where, for the uncorrelated potential (γ = 0)

σ2 =
1

αa
. (3.11)
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Note that this expression cannot be obtained by simply putting γ = 0 in Eq. (3.5),

since the discrete nature of the underlying lattice (the DNA) starts to matter when

γ becomes small. The integration in the Fourier space in Eq. (3.5) extends only up

to |qmax| = π/a, and thus,

σ2|γ→0 =

∫ π/a

−π/a

dq

2πα
=

1

αa
. (3.12)

Returning to the case of a finite correlation length, we calculate

〈
eβ(U(x)−U(y))

〉
=

∫
D[U ]eβ(U(y)−U(x))e−H[U ]

∫
D[U ]e−H[U ]

= exp

[
β2ξc
2γ

(1− e−|x−y|/ξc)
]
. (3.13)

For |x− y| � ξc, Eq. (3.13) reduces to exp(β2|x− y|/2γ), so that for N � ξc we have

〈t̄0,N〉 ∼ N2 exp(β2σ2N/ξc) = N2 exp(β2N/2γ). (3.14)

(Here and in what follows, we measure distances in units of a, unless specified other-

wise.) This kind of exponential creep is quite expected, since for α→ 0, ξc →∞ our

model (3.3) reduces to the Random-Force Model.

In the opposite limit |x− y| � ξc, we can neglect the exponent e−|x−y|/ξc , so that

Eq. (1.18) produces an ordinary diffusion law, with a disorder-renormalized diffusion

coefficient:

〈t̄0,N〉 = N2eβ
2σ2

. (3.15)

3.2 Typical versus average

Large deviations from the average are characteristic to many disordered systems. In

this section, we therefore explore the typical properties of random walks as compared

to the disorder-averaged ones.
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3.2.1 Potential profile generation

To numerically explore the diffusion in correlated potentials, we set up the following

procedure for generating potential profiles.

Given the pseudoenergy partition function

Z(λ) =

∫
D[U ]e−λH[U ], (3.16)

the average pseudoenergy is

〈H〉 = − ∂

∂λ
lnZ(λ)

∣∣∣∣
λ=1

, (3.17)

and the variance is

〈(∆H)2〉 = 〈H2〉 − 〈H〉2 =
∂2

∂λ2
lnZ(λ)

∣∣∣∣
λ=1

. (3.18)
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Figure 3-1: Pseudoenergy probability density for a profile of length L = 10000,
with σ = 1.0, ξc = 20.0. Insets: (a) Typical potential profile; (b) Potential profile
correllator g(r) = 1/2〈[U(x) − U(x + r)]2〉; the averaging was performed over 1000
profile realizations.
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Straightforward calculation for the pseudoenergy given by Eq. (3.3) yields

Z(λ) =
∏

q

1√
2πλ (α + γq2)

. (3.19)

Since a discrete chain of length L has exactly L modes, each contributing a factor of

λ−1/2, we have

lnZ(λ) = −L
2

lnλ+ A, (3.20)

where A does not depend on λ. Thus,

〈H〉 = L/2, 〈(∆H)2〉 = L/2. (3.21)

Hence, typical potential profiles have pseudoenergies in the range L/2 ±
√
L/2.

This result together with Gaussian statistics of energy levels of Eq. (3.4) forms the

basis of the algorithm we employ for building the energy profiles. First, a random and

uncorrelated potential profile obeying Gaussian statistics with the required variance

σ2 is generated on a one-dimensional lattice. Next, we look for a permutation of lattice

sites that produces a typical pseudoenergy H[U ] for a given correlation length ξc (or,

equivalently, for given values of α and γ). This is accomplished by a Metropolis-type

algorithm that converges to a prescribed value of pseudoenergy picked at random

from Gaussian distribution around 〈H〉 (see Fig. 3-1).

3.2.2 Quantifying fluctuations

After the potential profile is generated, we calculate the MFPT using Eq. (1.18).

Fig. 3-2 presents the mean first passage times calculated for various realizations of

U(x) at biologically relevant temperature (σ ' kBT ). It is clear that although the

ensemble-averaged MFPT does behave as prescribed by Eq. (3.15), typical MFPT

exhibits high variability from one profile to another. The stepwise shape of typical

curves suggests that a random walk in such a profile consists of intermittent regions

of subdiffusion (vertical “steps”) and superdiffusion (plateaus).

To quantify the sample dependence of the MFPT, we calculate its variance over
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Figure 3-2: Mean First Passage Times: typical versus average. Thick solid line is
the result of averaging over 1000 realizations of correlated potential profiles with
βσ = 2.0, ξc = 20.0.

the ensemble of potential profiles. Fig. 3-3 presents the standard deviation in t̄0,N as

a function of N for correlated as well as uncorrelated potential profiles. We observe

that the variance scales as N 3 for all profiles. This dependence can be obtained

analytically in a quite straightforward fashion. The MFPT is given by Eq. (1.18);

then

〈(∆t̄0,N)2〉 ' 4

∫ N

0

dx

∫ N

x

dy

∫ N

0

dx′
∫ N

x′
dy′
[
〈eβ(U(x)−U(y)+U(x′)−U(y′))〉

−〈eβ(U(x)−U(y))〉〈eβ(U(x′)−U(y′))〉
]
. (3.22)

We now recall that energies at points separated by distances larger than ξc are essen-

tially independent. Therefore, to estimate the averages, we assume the energies to be

equal for points within one correlation length and independent otherwise. The first
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average in the integral produces

〈eβ(U(x)−U(y)+U(x′)−U(y′))〉 ' 〈eβ(U(x)−U(y))〉〈eβ(U(x′)−U(y′))〉

+ ξcδ(x− x′)〈eβ(2U(x)−U(y))〉〈e−β(U(y′))〉

+ ξcδ(y − y′)〈e−β(2U(y)−U(x))〉〈eβ(U(x′))〉

+ ξ2
c δ(x− x′)δ(y − y′)〈e−2β(U(y)−U(x))〉+ ...

' 〈eβ(U(x)−U(y))〉〈eβ(U(x′)−U(y′))〉

+ ξce
3β2σ2

[δ(x− x′) + δ(y − y′)]

+ ξ2
ce

4β2σ2

δ(x− x′)δ(y − y′) + ... . (3.23)

Plugging this expression into Eq. (3.22) and performing the integrations, we obtain

the leading term

〈(∆t̄0,N)2〉 ∼ ξcN
3e3β2σ2

. (3.24)
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Figure 3-3: MFPT standard deviation for βσ = 1.0 for correlated and uncorrelated
potential profiles.

59



Comparing the expressions for the variance with the corresponding expressions

for disorder-averaged MFPT, we see that for any temperature, there is a character-

istic distance Nc, below which there is no self-averaging and the typical MFPT is

determined by fluctuations. This length is

Nc ∼ ξce
β2σ2

. (3.25)

This effect is akin to “freezing” in the Random Energy Model [61] – for low enough

temperatures, typical passage times for distances below Nc are dominated by high

barriers. This is more pronounced for correlated profiles due to amplification by a

factor of ∼ ξc, as sites within a correlation length give similar contributions. Figure 3-

4 demonstrates the lack of self-averaging for uncorrelated potential profiles at short

distances and low temperatures: the median MFPT (defined as the 50th percentile of

a sample) shows large deviations from the average at distances shorter than Nc and

coincides with it at distances larger than Nc.
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Figure 3-4: Probability density functions for MFPT calculated for 100,000 uncorre-
lated profile realizations at βσ = 2.0.

Large differences between the median and the average values are a signature of
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a broad (“fat-tailed”) asymmetric probability distribution. The insets of Fig. 3-4

present two probability density functions for MFPT, at N � Nc and N � Nc.

For the short distance, the distribution is very broad and spans several orders of

magnitude. For N � Nc, the system is self-averaging, in the sense that the MFPT

distribution is much narrower with almost identical median and average values.

3.3 Examples from biology

In this section, we study a few examples that demonstrate how energy landscapes

with finite correlation length may appear in living cells.

3.3.1 DNA bending

Recent scanning force microscopy experiments by Erie et al. [26] clearly demonstrate

DNA bending by the Cro repressor protein, both at operator and at non-operator

sequences.1 Since local DNA elasticity is known to be highly sequence-dependent [71],

the energy of protein bound at random locations should have a random component,

correlated at length scales of the order of the protein binding domain size; see Fig. 3-

5a. This sequence-dependent interaction energy component appears in addition to

possible local uncorrelated sequence-dependent contributions from amino acid-base

pair contacts.

To estimate the significance of the random component of the elastic energy, we use

DNA elasticity data supplied by the BEND.IT server [72], that incorporates DNase

I based bendability parameters [73] and the consensus bendability scale [74]. We

assume that the protein-DNA complex in Fig. 3-5a has a fixed geometry, i.e. the

protein is “hard.” Then, the elastic contribution to the protein-DNA interaction

energy at the i-th sequence has a random component proportional to the random

1DNA bending by transcription factors is a well-known phenomenon, though practically all the
available experimental data focus on proteins bound to operator sequences.

61



(a)

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

(b)

Figure 3-5: (a) Prokaryotic transcription factor sliding; (b) Nucleosome repositioning.

component of the Young’s modulus δEi

Ui =

[
1 +

δEi
Ē

](
`pθ

2

2L

)
kBT, (3.26)

where `p ' 50 nm is the DNA persistence length, θ ' 60◦ is the curvature angle [26],

L = 10 − 20 bp is the bent sequence length and Ē ' 3.4 × 108 N/m is the average

Young’s modulus. The resulting potential profile is plotted in Fig. 3-6a. The standard

deviation of the elastic energy induced by the Young’s modulus variations (10-15%

typically) for biologically relevant parameters is 〈(δU)2〉1/2 ∼ 0.5− 1.5 kBT , so that

disorder appears to be relevant for this problem. Figure 3-6b shows the normalized

energy-energy correlator for the random energy component

g(r) =
1

2〈δU2(x)〉〈[δU(x)− δU(x + r)]2〉, (3.27)
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averaged over 10000 DNA sequences. Saturation to g(r) ' 1 is clearly observed on

the scale of 15 base-pairs, which is the correlation length of this potential profile.

Another interesting example, also from the field of protein-DNA interaction, was

considered recently by Schiessel et al. [75] and deals with nucleosome repositioning

by DNA reptation. It was argued that chromatin remodeling [76, 77] can be readily

understood in terms of intranucleosomal loop diffusion; the size of the loop resulting

mainly from a compromise between elastic energy and nucleosome-DNA binding en-

ergy. Here again, for a given size of the loop, the elastic energy is sequence-dependent

[77] and therefore has a random component with finite correlation length; see Fig. 3-

5b. For nucleosome repositioning, this effect may be even more pronounced than for

prokaryotic protein-DNA interaction; the bending angles θ and the sequence lengths

L are 2-3 times larger so that the net effect may be twice as strong as for the Cro

repressor [75].

It is known that DNA can have an intrinsic curvature arising from the stack-

ing interactions between base pairs. Such sequence-dependent curvature can play a

role similar to sequence-dependent DNA bendability in providing a correlated land-

scape. The bending energy of an intrinsically curved region is easier, requiring a

smaller angular deformation θ = θcomplex−θintrinsic by the DNA-protein complex. Such

sequence-dependent intrinsic curvature was suggested to be involved in positioning

nucleosomes [78].

Aside from DNA bendability and curvature, local correlations in nucleotide com-

position, known to be present in eukaryotic genomes, (AT/GC-rich isochores) can

result in a correlated landscape of the protein-DNA binding energy. This effect be-

comes especially pronounced when a DNA-binding protein has a strong preference

toward a particular AT/GC composition of its site. However, in this case, variations

take place over much longer scales, and are not quantitatively relevant in the specific

contexts addressed in this paper.

Both above examples can be viewed as specific cases of DNA reptation by means

of a propagating defect (or “slack”) of a fixed size. Elastic energy associated with

the slack creation is sequence-dependent and correlated on the scale of the slack

63



0 500 1000 1500 20004

5

6

7

8

9

Base pair No.

U 
[k

BT]

〈 (δ U)2 〉1/2 = 0.75 kBT

−100 −50 0 50 1000

0.2

0.4

0.6

0.8

1

r

g(
r)

(a) (b)

Figure 3-6: (a) Energy of local elastic deformation and (b) Potential profile correlator,
as calculated from the data supplied by the server BEND.IT for a segment of E. coli
genome. The deformed DNA sequence is assumed to be of length L = 15 bp.

size. The propagating defect is well localized and samples the energies of well-defined

subsequent DNA segments. As was pointed out by Cule and Hwa [65], short-range

correlated randomness of this kind has no effect on the scaling of the reptation time.

However, the defect motion itself is strongly influenced by the disorder and has non-

trivial behavior at different length scales, as we demonstrate in Chapter 3.

3.3.2 DNA translocation through a nanopore

Consider a piece of single-stranded DNA (ssDNA) passing through a large membrane

channel. If the potential difference across the membrane is zero, the motion of the

ssDNA is governed by thermal fluctuations. Since the channel width differs from the

ssDNA external diameter only by few Ångstroms2, it is reasonable that local interac-

tions between the nucleotides and the amino acids of the channel take place. These

interactions may have a local base-dependent component. In addition, longer-range

terms are likely to appear in the presence of a voltage difference. In the cytoplasm, the

DNA negative charge is almost completely screened out at distances of few nanome-

ters by the counterion cloud. When the DNA molecule enters the pore, most of the

counterions are likely to be “shaved off,” though some of them may remain stuck to

2For α-haemolysin, the diameter of the limiting aperture is about 15 Å.
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the DNA; see Fig. 3-7. Thus, the linear charge density inside the pore acquires a

random and basically uncorrelated component:

q(x) = q̄(x) + δq(x), 〈δq(x) δq(y)〉 = ρ2aδ(x− y), (3.28)

where a = 0.34nm is the interbase distance. The potential energy of the DNA segment

inside the pore in the presence of a voltage difference of V0 is

U(x) =
V0

h

∫ h

0

x′q(x+ x′)dx′. (3.29)
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Figure 3-7: ssDNA transport through the nanopore; on the right: charge density
q(x) and correlator g(r) = 〈[δU(x) − δU(x + r)]2〉/(2〈δU2(x)〉) as a function of the
coordinate r.

Since the average charge density q̄(x) is in general nonzero, DNA transport is

driven by the average force V0q̄(x)/h. The correlation function of the random com-

ponent of U(x) is readily calculated to be

〈δU(x)δU(x + y)〉 =
V 2

0 ρ
2a

3h2
(h− |y|)2

(
h+
|y|
2

)
H(h− |y|), (3.30)

where H(x) is the Heaviside function. Thus, the potential profile for DNA motion

has a random component with correlation length of h. Taking V0 ∼ 100 mV, ρ ∼ e/h

(e is the elementary charge), h ∼ 10 nm, we obtain δU ∼ kBT .
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Although this example differs from the above ones in that a nonzero average

driving force is present, large random fluctuations of the energy landscape may have

significant effect on the distribution of translocation times – a problem that has

attracted much interest lately [79].
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Part II

Random Walks and Polymer

Statistics
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Random walks are often used to model long polymer molecules. Proper description

includes a nontrivial requirement: the random walk must be self–avoiding, i.e. no

point in space should be visited more than once. This requirement introduces long–

range correlations and makes the problem tractable only approximately. However, if

the self–avoidance is removed, the problem becomes much simpler. Such a polymer

is called phantom; alternative names are ideal or Gaussian chain. The distribution

function for the end–to–end radius vector r of a phantom polymer of length N obeys

the diffusion equation (B.1).

Rapid developments in polymer physics and the theory of critical phenomena have

revealed a number of universal properties that arise in all polymer chains beyond a

certain level of coarse–graining [80, 81]. These properties are characterized by scaling

relations. Perhaps the most widely known scaling law relates the mean end–to–end

distance R of a polymer chain to its length: R ∝ N ν . The number 1/ν thus plays

the role of the polymer’s fractal dimension. It is universal in that it depends only on

the dimensionality of the embedding space, e.g. in 3D, ν ≈ 0.59 for a self–avoiding

polymer and ν = 1/2 for a phantom one. Another important scaling relation describes

the number of different configurations N of a polymer

N = const× ζNNγ−1,

where ζ is the “effective coordination number” that depends on the microsopic details

and γ is a universal exponent. The factor ζN can be thought of as counting the

configurations of an unconstrained N–step random walk with ζ options available at

each step, whereas N γ−1 accounts for constraints such as self–avoidance, obstacles

present etc.

If the distribution function G(r, N) is known, the exponent γ can be obtained

in a very straightforward way – by simply integrating G(r, N) over the whole space.

Thus, a phantom polymer has γ = 1. It turns out that incorporating self–avoidance

constraint leads to γ ' 1.16. This can be interpreted as the enhancement of available

space for a self–avoiding polymer that appears “swollen” compared to a phantom one.
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In Chapter 4, we show how to calculate the probability distribution function for

a Gaussian polymer confined to a half–space using field theory methods. To say the

least, this is not the most effective way of doing it. For instance, the above mentioned

analogy to random walks can be exploited to obtain the answer in just a few lines, as

we demonstrate in Appendix B. However, beside its clear educational value, the path

integral analysis of random walks is a much more flexible and powerful tool when

it comes to real systems, like polymers in solvents. The self-avoidance constraint

introduces long-range interactions that make the traditional approaches lose their

power and elegance. For example, the factorization of G(r, N) into transverse and

longitudinal parts is no longer valid. Integrating out one set of degrees of freedom

introduces non-local interactions into the other. Although lattice walks are useful for

Monte Carlo simulations and diffusion equations could perhaps be modified to include

mean-field corrections, field theory, specifically the renormalization group, is presently

the only analytical tool for obtaining universal scaling relations and phase diagrams

using controlled approximations [82]. As an example, we consider in Chapter 5 the

problem of self–avoiding polymers attached to the tip of an impenetrable probe. We

find that the scaling exponents γ1 and γ2, characterizing the number of configurations

for the attachment of the polymer by one end, or at its midpoint, vary continuously

with the tip’s angle. These apex exponents are calculated analytically by ε-expansion

and numerically by simulations in three dimensions. We find that when the polymer

can move through the attachment point, it typically slides to one end; the apex

exponents quantify the entropic barrier to threading the eye of the probe.
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Chapter 4

Diffusion in a half–space via path

integrals

4.1 Example: unconstrained Gaussian chain

In the field theoretic approach, a flexible chain is described by a function (path) c(τ),

where τ measures the position along the chain. The energy of a self-avoiding chain

in an external potential is given by [81, 82]

H[c] =
1

2

∫ N

0

ċ2(τ) dτ +

∫ N

0

U [c(τ)]dτ +
v

2

∫ N

0

∫ N

0

δ[c(τ)− c(τ ′)]dτdτ ′. (4.1)

The first two terms can be viewed as a harmonic potential between neighboring

segments of the chain and the external potential, respectively, whereas the last one

accounts for excluded volume effects: each time the chain self-intersects, a penalty

of v is paid. In what follows, we omit the self-avoidance constraint. The partition

function for such a chain is a sum over all possible paths c(τ) given by a path integral

Z(N) =

∫
D[c(τ)] e−H[c]. (4.2)

If the external potential is set to zero, Eq. (4.2) counts the number of configurations

of a Gaussian chain of length N . The configurations are weighted by e−H[c]. If we
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want to count only paths starting at the origin and leading to some point r, then

after normalization by Z(N), we obtain the probability density

G(r, N) =
1

Z(N)

∫
D[c(τ)]δ[c(N)− c(0)− r]e−H[c]. (4.3)

To calculate this integral, we have to define a measure of integration. One way would

be to discretize the chain and view Z(N) as a limit of a multidimensional integral.

In this case, the problem is almost identical to calculating a quantum free particle

propagator by path integration as was done in Refs. [83] and [84]. Another way is to

integrate over the Fourier components of c(τ); this way is somewhat easier because

the degrees of freedom decouple in Fourier space for harmonic Hamiltonians. Thus,

if we set ∫
D[c(τ)]→

∫ ∏

q

d3c̃(q)

(2π)3
, (4.4)

and Fourier transform Eq. (4.3), we obtain

G(k, N) =

∏

q

∫
d3c̃(q)

(2π)3
eik·c̃(q)[eiqN−1]− 1

2
q2|c̃(q)|2

∏

q

∫
d3c̃(q)

(2π)3
e−

1
2
q2|c̃(q)|2

. (4.5)

Both the numerator and the denominator contain products of Gaussian integrals

which can be calculated by completing the square. The result is

G(k, N) = exp
(
− k2

∫ +∞

−∞

dq

2π

1− cos qN

q2

)
= e−k2N/2, (4.6)

which is the Fourier transform of

G(r, N) =
e−r2/(2N)

(2πN)3/2
. (4.7)
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4.2 Anchored polymer: The partition function

Now that we are familiar with the methodology of path integrals, we study a more

complicated problem – anchored Gaussian chain in a half-space z > 0. In terms

of path integrals, we immediately see that our task will not be as simple as before

because the possible values of cz(τ) must be positive. If we stay in real space and

calculate the limit of a multidimensional integral, we see that the resulting integrals

cannot be calculated analytically with the constraint z > 0. If we were to move to

Fourier space, it is not even clear how to define the measure of integration. The way

out of this complication is as follows. We allow the polymer to cross the boundary and

introduce a strong repulsive interaction between the plane at z = 0 and the chain.

Each time the polymer crosses or touches the plane, it is penalized by a certain

amount of energy. The modified Hamiltonian is then

H = H0 +H1, (4.8)

where

H0 =
1

2

∫ N

0

ċ2 dτ, (4.9)

and

H1 = g

∫ N

0

δ[cz(τ)− cz(0)] dτ. (4.10)

Thus, we expect that when the coupling constant g > 0 becomes infinitely large, the

polymer will be entirely on one (either positive or negative) side of the plane. The

partition function is then

Z(g,N) =

∫
D[c(τ)]e−H0[c]−H1[g,c]. (4.11)

To evaluate Z(g,N), we expand the integrand in Eq. (4.11) in powers of g. Such

an expansion could be problematic when g is large, the limit of primary interest.

However, if we are able to calculate all terms in the expansion and to perform the

summation, then this expansion is not an issue. The nth (n = 1, 2, . . .) term of the
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expansion reads

(−g)n

n!

∫
D[c(τ)]e−H0[c]

n∏

l=1

∫
δ[cz(τl)− cz(0)] dτl. (4.12)

We order the set {τl}, Fourier transform the δ-functions, and rewrite Eq. (4.12) as

(−g
2π

)n ∫
D[c(τ)] e−H0[c]

∫ N

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1

n∏

l=1

∫ +∞

−∞
dkl e

−ikl[cz(τl)−cz(0)].

(4.13)

Henceforth, we focus on cz(τ) and denote it c(τ) for simplicity. If we integrate it out

by completing the square, we are left with

(−g
2π

)n ∫ N

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1

∫ +∞

−∞
dk1 . . . dkl exp

[
−1

2

∑

l,m

klT(n)
lm km

]
. (4.14)

Here,

T(n)
lm = τmin[l,m] =




τ1 τ1 τ1 · · τ1

τ1 τ2 τ2 · · τ2

τ1 τ2 τ3 · · τ3

· · · · · ·
· · · · · ·
τ1 τ2 τ3 · · τn




(4.15)

To perform multiple integration over ki, we use the well known formula

∫ +∞

−∞

∏

j

dkj exp
(
− 1

2

∑

l,m

klT(n)
lm km

)
=

√
(2π)n

detT(n)
. (4.16)

It is straightforward to show that

detT(n) = τ1(τ2 − τ1)(τ3 − τ2) . . . (τn − τn−1), (4.17)
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so that after integration over ki, Eq. (4.12) reduces to

( −g√
2π

)n ∫ N

0

dτn

∫ τn

0

dτn−1√
τn − τn−1

. . .

∫ τ3

0

dτ2√
τ3 − τ2

∫ τ2

0

dτ1√
τ1(τ2 − τ1)

=
( −g√

2π

)n ∫ N

0

dτnτ
n/2−1
n

n−1∏

m=1

∫ 1

0

xm/2−1(1− x)−1/2dx =

(
− g
√
N/2

)n

Γ
(n

2
+ 1
)

≡ (−ĝ)n

Γ
(n

2
+ 1
) , (4.18)

where ĝ ≡ g
√
N/2. Thus,

Z(g,N) = Z(ĝ) =
∞∑

n=0

(−ĝ)n

Γ
(n

2
+ 1
) = eĝ

2

[1− Φ(ĝ)], (4.19)

where Φ(x) = 2√
π

∫ x
0
e−t

2
dt is the error function. When N → ∞, so does ĝ. We

expand Z(ĝ) for large ĝ and obtain

Z(ĝ) =
1√
π

[1

ĝ
− 1

2ĝ3
+O(ĝ−5)

]
. (4.20)

Hence,

γ = 1 + lim
N→∞

∂ lnZ
∂ lnN

=
1

2
. (4.21)

Several remarks should be made at this point. First, note that while calculating the

general term of the expansion, we omitted the common factor

Z0(N) =

∫
D[c(τ)]e−H0[c], (4.22)

which has the form ζN . Second, the coupling constant g plays here the role of the

inverse cutoff length, which often occurs in field theory. Finally, we note that for any

value of g > 0, we can find N large enough to make the non-dimensional coupling

ĝ = g
√
N/2 � 1, so that the number of accessible configurations scales as N−1/2

relative to the unconstrained case. This important observation is a signature of

universality: no matter how small g is, for a long enough polymer, the overall repulsion

74



is infinitely strong!

4.3 Probability distribution

The Fourier transform of the (unnormalized) probability distribution function for the

end-to-end distance of the random walk is given by

G(q, N) =

∫
D[c(τ)], e−iq·[c(N)−c(0)] e−H0[c]−H1[g,c]. (4.23)

As before, we focus only on the z-dependent part of the probability distribution

function G(z,N). If we expand the path integral in powers of g and integrate out

c(τ), we observe that the nth term of the expansion reads

(−g
2π

)n∫ N

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1

∫ ∏

l

dkl exp
[
− 1

2
(q2N +

∑

l

klτl +
∑

l,m

klT(n)
lm km)

]

=
( −g√

2π

)n∫ N

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1√
detT(n)

exp
[
− q2

2
(N −

∑

l,m

τl[T(n)]−1
lmτm)

]
,

(4.24)

where T(n) is given by Eq. (4.17). Now,

[T(n)]−1
lm =





− δl+1,m
τl+1 − τl −

δl−1,m
τl − τl−1

+ δm,l
( 1
τl+1 − τl + 1

τl − τl−1

)
(l 6= n, 0)

− δ2,m
τ2 − τ1

− δ1,l

( 1
τ2 − τ1

+ 1
τ1

)
(l = 1)

− δn−1,m
τn − τn−1

+
δm,n

τn − τn−1
(l = n)

(4.25)

A straightforward calculation yields

∑

l,m

τl[T(n)]−1
lmτm = τn. (4.26)
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Equation (4.24) therefore reduces to

( −g√
2π

)n∫ N

0

dτn

∫ τn

0

dτn−1 . . .

∫ τ2

0

dτ1√
detT(n)

exp
[
− q2

2
(N − τn)

]

=
(−g)n e−q

2N/2

2n/2Γ(n/2)

∫ N

0

dτ

τ
τn/2eq

2τ/2 =
(−ĝ)n e−q

2N/2

Γ(n/2)

∫ 1

0

ds

s
sn/2e(q2N/2)s. (4.27)

If we sum over n, we obtain

G̃(q, N) = e−q
2N/2

[
1 + 2

∫ 1

0

ds

s
e(q2N/2)s2 f(ĝs)

]
, (4.28)

where

f(x) = − x√
π

+ x2ex
2

(1− Φ(x)). (4.29)

Thus,

G(z,N) =
e−z

2/2N

√
2πN

F (ĝ, ẑ), (4.30)

where ẑ ≡ z/
√
N , and

F
[
ĝ, ẑ
]

= 1 + 2

∫ 1

0

ds

s

e−
1
2
ẑ2s2/(1−s2)

√
1− s2

f(ĝs) (4.31)

is the scaling function. To calculate F (ĝ, ẑ), we rewrite Eq. (4.31) as

F (ĝ, ẑ) = A(ĝ)− 2

∫ 1

0

ds

s

1− e− 1
2
ẑ2s2/(1−s2)

√
1− s2

f(ĝs), (4.32)

where

A(ĝ) = 1 + 2

∫ 1

0

ds

s
√

1− s2
f(ĝs). (4.33)

The integral in Eq. (4.32) cannot be calculated analytically in general, that is, for

arbitrary ĝ and ẑ. However, because we are interested in the limit ĝ � 1, we can

easily calculate the leading term. We note that the integrand is essentially nonzero

only for values of s larger than some value s0(ẑ). However small s0(ẑ) is, we can
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always take ĝ large enough to make ĝs0(ẑ)� 1. Thus, we can take

f(ĝs) ' − 1

2
√
πĝs

, (4.34)

so that

F (ĝ, ẑ) ' A(ĝ) +
1√
πĝ

∫ 1

0

ds

s2

1− e− 1
2
ẑ2s2/(1−s2)

√
1− s2

. (4.35)

By using the substitution

u =
|ẑ|s√

2(1− s2)
, (4.36)

we finally obtain

F (ĝ, ẑ) ' A(ĝ) +
|ẑ|√
2πĝ

∫ ∞

0

du

u2
(1− e−u2

) = A(ĝ) +
|ẑ|√
2ĝ
. (4.37)

For large values of ĝ, we have

A(ĝ) =
1

2
√
πĝ2

+O(ĝ−4). (4.38)

Thus, when ĝ →∞, the scaling function is linear in ẑ and the normalized probability

distribution function has the form

G(z,N) =
|z|
2N

e−z
2/2N . (4.39)

Apart from a factor of 2, this function is identical to the one obtained by solving the

diffusion equation (see Appendix B). This factor appears because now the chain can

be either in the z < 0 or in the z > 0 half-space. Figure 4-1 shows the numerically

computed scaling function F (ĝ, ẑ) for different values of ĝ. As expected, the larger ĝ,

the closer is F (ĝ, ẑ) to the linear dependence.
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Figure 4-1: The (normalized) scaling function F (ĝ, ẑ). Different curves are labeled by
corresponding values of ĝ. The larger ĝ, the closer is the scaling function to a linear
dependence.
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Chapter 5

Apex exponents for polymer–probe

interactions

5.1 Introduction

There has been remarkable progress in recent years in nanoprobing and single–

molecule techniques. These developments have had a direct impact on biopolymer

research, producing a wealth of beautiful results on DNA dynamics [85], molecular

motors [86], and protein/RNA folding [87, 88]. Today it is possible to measure statisti-

cal properties of a single macromolecule rather than deducing them from experiments

with solutions of many polymers. This naturally leads to questions regarding the the-

oretical limitations of these techniques, such as the effects of microscopic probes on

the measured properties of the polymer. Consider, for instance, a polymer attached

to the apex of a cone–shaped probe (e.g. a micropipette or the tip of an atomic force

microscope [89, 90]). What is the configurational entropy for this system? Suppose

that this probe is a microscopic needle with a hole at the end. How hard is it to

thread a polymer through the needle’s eye?

As we already mentioned, the number of configurations N of a polymer of length

N or, equivalently, of an N–step self–avoiding walk (SAW), behaves as [91]

N = const× zNNγ−1. (5.1)

79



The “effective coordination number” z, depends on microscopic details, while the

exponent γ is “universal.” As we have seen in the previous chapter, γ does depend on

geometric constraints which influence the polymer at all length scales. In particular,

there are a number of results demonstrating the variations of γ for polymers confined

by wedges in two and three dimensions [92, 93, 94, 95, 96]. SAW anchored at the

origin and confined to a solid wedge (in 3D) or a planar wedge (in 2D) has an angle–

dependent exponent γ that diverges as the wedge angle α vanishes. A limiting case

which has been extensively studied, both analytically [97, 98] and numerically [96, 95],

is a SAW anchored to an impenetrable surface, for which γ ≡ γs = 0.70± 0.02 [96].

To model the polymer–probe system, we consider a SAW attached to the apex

(tip) of an impenetrable obstacle (needle). To avoid introduction of an external length

scale, we focus on obstacles of scale–invariant shape, such as a planar slice (sector)

of angle α (Fig. 5-1a), or a conical needle of apex semi-angle β (Fig. 5-1b). While

both geometries are natural extensions of the 2D wedge, they are clearly different in

three dimensions (and also distinct from the 3D wedge, which consists of two planes

intersecting at a line). The former excludes the polymer from the volume of a cone,

while the latter prevents it from crossing the surface of a slice. Nonetheless, the

resulting phenomenology is rather similar. Indeed, one of the technical innovations

of this chapter is the demonstration that many such geometries can be treated in the

same manner by an ε = 4−d expansion focusing on the interaction with a 2D surface.

The ε–expansion, as well as numerical simulations in 3D, shows that the exponent

γ ≡ γ1 varies continuously with the apex opening angles in Fig. 5-1. Continuously

varying exponents are rather uncommon in critical phenomena. In the present case

they arise from the interaction of two self-similar entities, the polymer and the probe.

Another variant of this problem occurs when a polymer is attached to the apex

at its midpoint. This case is described by Eq. (5.1) with exponent γ ≡ γ2. More

generally, let us denote by N2(N,N1), the number of accessible configurations for a

polymer attached to the apex at an arbitrary monomer, dividing it in two segments

of lengths N1 and N2 = N −N1. If we allow the two segments to exchange monomers

80



α

(b)(a)

β

Figure 5-1: Configurations of a polymer near an obstacle: (a) attached to the apex
of a planar sector of angle α; (b) threaded through the eye of a cone with apex
semi–angle β.

with each other (which can be done by replacing a rigid attachment with a slip–ring as

depicted in the Fig. 5-1b), then the equilibrium configurations will be distributed with

a weight proportional to N2(N,N1). A natural interpolation formula as a function of

α (or β), supported by the ε-expansion at first order, is

N2(N,N1) ∝ N c(α)[N1(N −N1)]c1(α). (5.2)

To get a feeling for this scaling relation, let us look at some limits: When the probe

is absent, we recover Eq. (5.1) and c(0) = γ0 − 1, where γ0 ' 1.158 describes the

geometrically unconstrained SAW. If the obstacle is present but the two segments do

not interact with each other, then c = 0 and c1 = γ1 − 1. By fitting to the limits of

N1 → 0 and N1 ∼ N2, we find c1 = γ2−γ1 and c = 2γ1−γ2−1. Below, we estimate the

exponents in Eq.(5.2) both analytically and numerically. For now, assuming Eq. (5.2)

holds, we see that if c1 < 0, the maximum number of configurations is realized when

either N1 or N2 equals N . This brings us to one of our main findings: No matter

how small the apex angle, we find c1 < 0, i.e. the most likely states have N1 ' N or

N2 ' N , with an entropy barrier separating the two. Threading a needle is hard!
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5.2 Analytic calculations

To treat the problem analytically, we start with the Edwards [99] model of a self-

avoiding polymer, and add an interaction with the obstacle. In this formulation,

configurations of the polymer are described by r(τ) ∈ <d, where τ measures the

position along the chain, and are weighted according to the energy 1

H =
1

2

∫ N

0

ṙ2 dτ +
v0

2

∫ N

0

dτ

∫ N

0

dτ ′δ[r(τ)− r(τ ′)]

+ g0

∫

M
d2R

∫ N

0

dτδ[r(τ)−R]. (5.3)

The self-avoiding interaction is replaced by a “soft” repulsion of strength v0. In the

same spirit, the impenetrable obstacle is replaced with a soft repulsion of magnitude

g0. The key observation is that in 3D the polymer can only sense the exterior of an

impenetrable obstacle, and will not care if its interior is hollow. In generalizing to d-

dimensions, we keep the dimensions of the now softened exterior manifold (indicated

by R ∈ M) as two. The advantage of this choice is that both g0 and v0 have the

same bare dimensions, and in a perturbative scheme, they simultaneously become

relevant in d ≤ 4. We then analyze the model using a renormalization group (RG)

scheme [97, 98], which is a modification of the conformation space RG [100, 82].

The scaling exponents are calculated using dimensional regularization in d = 4 − ε
dimensions to order O(ε).

It is customary to define non-dimensionalized coupling constants ṽ0 = v0L
ε, g̃0 =

g0L
ε where L is some length scale. Bare coupling constants are related to the renor-

malized ones by

ṽ0 = Zv(v, g)v = (1 + Av +Dg + ...)v,

g̃0 = Zg(v, g)g = (1 + Cv +Bg + ...)g.
(5.4)

Inverting these equations, we obtain series expansions v(v0, g0) and g(v0, g0) that can

1To simplify notation, the monomer size is absorbed into a redefinition of N , giving it dimensions
of [length]2.
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(e)

(a) (c)(b)

(d) (f)

β

Figure 5-2: Diagrams contributing to renormalization of g to second order (a–c); to
Z in first order (d,e) at the apex of a slice; and to Z2 in first order (f) at the eye of
a conic needle.

be viewed as perturbative expansions in the bare coupling constants

v = (1− Aṽ0 −Dg̃0 + ...)ṽ0,

g = (1− Cṽ0 − Bg̃0 + ...)g̃0.
(5.5)

To obtain the leading corrections to critical indices, we perturbatively calculate

the coefficients of the expansion in d = 4 − ε dimensions. First, we note that self-

interaction of the polymer is not influenced by the presence of the sector. Therefore,

in the expansion (5.5) we can put D = 0. Also, the value of A is well known [82]; as

ε→ 0, A has a pole

A =
2

π2ε
+O(1). (5.6)

Diagrams contributing to the renormalization of g0 are shown in Fig. 5-2a–c and

involve both interaction of polymer with the plane and polymer self-interaction. To

estimate the contribution of the former, we first consider the limiting case α = 2π,

i.e. a complete plane [98, 101]. In this case, first-order correction to g0 is

g0

∫ N

0

dτ

∫

M
d2r Gd(r, τ), (5.7)
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where

Gd(r, τ) =
1

(2πτ)d/2
e−r

2/2τ (5.8)

is a d-dimensional Gaussian. Note, that since r is a two-dimensional vector, Gd(r, τ)

can be rewritten as

Gd(r, τ) =
1

(2πτ)1−ε/2 ·
1

2πτ
e−r

2/2τ . (5.9)

Plugging this expression into (5.7), we obtain

g0

∫ N

0

dτ

∫

M
d2r Gd(r, τ) =

g0L
ε

2π

2

ε

(
2πN

L2

)ε/2
=
g̃0

πε
+O(1). (5.10)

A correction to g0 due to the polymer self-interaction is shown in Fig. 5-2c. Its value

is

v0

∫ N

0

dτ

∫ N

0

dτ ′
∫
ddr Gd(r, τ)Gd(−r, τ ′) = v0

∫ N

0

dτ

∫ N

0

dτ ′ Gd(0, τ + τ ′)

=
ṽ0

2π2ε
+O(1). (5.11)

The β-functions describing the RG flow for this problem are calculated straightfor-

wardly yielding

β1(v, g) ≡ L
dv

dL
= ε(v − Av2) +O(ε2) (5.12)

β2(v, g) ≡ L
dg

dL
= ε(g − Bg2 − Cgv) +O(ε2). (5.13)

The nontrivial RG fixed point is thus

(v∗, g∗) =

(
1

A
,

1

B

[
1− C

A

])
=

(
π2ε

2
,

3πε

4

)
. (5.14)

For arbitrary sector angle α, the only coefficient that can possibly change is B,

i.e. the second-order interaction with the plane. However, the leading singularity in

ε comes from small distances. Therefore, as long as it is possible to draw a circle of a

finite radius around any point of polymer-sector contact (see Fig. 5-2b), the leading

singularity remains unchanged. This also shows why the interaction with the sector
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in the degenerate α = 0 case is irrelevant.

The fixed point of the RG depends only on the dimension of the manifold and

not on its shape; this fact was mentioned before [101, 102]. However, the number of

accessible configurations does depend on certain details of the manifold, as described

below.

Consider first-order corrections to the partition function Z due to the self–interaction

(Fig. 5-2d) and the interaction with the slice (Fig. 5-2e). Combining them and adding

relevant counterterms to eliminate poles in ε, we obtain

Z = 1 +
1

4π2
(v∗ − αg∗) ln

(
2πN

L2

)
+O(ε2). (5.15)

Comparing this with Nγ1(α)−1 = 1 + (γ1(α)− 1) lnN + · · · , and substituting the fixed

point values (v∗, g∗), we find

γ1(α) = 1 +
ε

8

(
1− 3α

2π

)
+O(ε2). (5.16)

The above treatment is easily generalized to a polymer attached by its midpoint. For

the number of configurations, we observe that the contribution from the interaction

with the obstacle is doubled. Interaction between the two halves of the polymer,

however, makes no separate correction and is already included. (Note that if we ignore

the obstacle and consider self-interactions only, we get a “degenerate” star polymer

with two branches that is equivalent to a linear polymer.) Thus, for the calculation

of γ2 at order of ε, we can add the separate contributions from self-avoidance and

avoidance of the obstacle; cross-terms can only occur at higher orders. This enables

us to identify the scaling exponent

γ2(α) = 1 +
ε

8

(
1− 3α

π

)
+O(ε2). (5.17)

Repeating this argument for the slip–ring geometry, we find

N2 ∝ N ε/8[N1(N −N1)]−3αε/(16π), (5.18)
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which confirms the Ansatz in Eq. (5.2) to first order in ε.

It is straightforward to extend the above formalism to obstacles of different shapes,

such as the conical manifold with apex angle β (Fig. 5-1b). In counting the number

of configurations we obtain a result similar to Eq. (5.15), with α replaced by 2π sin β.

Since the fixed point location is the same as before, this substitution in Eqs. (5.16-

5.17) gives

γcone
1 (β) = 1 +

ε

8
(1− 3 sin β) +O(ε2), (5.19)

Ncone
2 (β) ∝ N ε/8[N1(N −N1)]−(3/8)ε sin β. (5.20)

The difference between the two geometries is thus merely quantitative.

Thus, our approach provides a simple way of calculating critical exponents for

geometries intractable by other methods that explicitly exclude entire d-dimensional

regions [92, 93]. However, it does break down in certain limits. For instance, in the

case of a cone, the polymer is free to occupy either side of the hollow cone– the parti-

tion sum is dominated by the arrangement with the largest number of configurations.

Hence the result for γ1(β) is valid only for β ≤ π/2. The restriction for γ2(β) is

even more severe. For values of β larger than some critical angle βc < π/2, the self-

avoidance will cause the two halves of the polymer to be on the opposite sides of the

conical surface thereby invalidating the calculation. Certain limitations exist for the

planar sector geometry as well. For example, in 3D we must have γ2(2π) = 2γs − 1.

This equality does not hold in the ε–expansion. The reason is that in 3D, a complete

plane prevents two polymers on its opposite sides from interacting with each other,

whereas in 4D it does not. In short, the method described above, despite its appealing

simplicity, is not omnipotent and must be used with some caution.

5.3 The numerics

To check the validity of the analytic approach, we present here the values of scaling

exponents γ1,2 calculated from numerical simulations, performed by Dr. Roya Zandi
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(UCLA) and Prof. Yacov Kantor (Tel-Aviv University).

5.3.1 Entropic competition

The earlier discussion of “threading a needle” illustrates the essence of the method

of “entropic competition” [103, 104], which we employ to numerically estimate the

exponents γi(α) in 3D. We sample the ensemble of different configurations of two

polymer segments which can exchange monomers and thus “compete entropically.”

To calculate γ1(α), we prevent the two segments from interacting with each other.

The number of configurations is then

N1 ∝ [N1(N −N1)]γ1(α)−1, (5.21)

so that the resulting histogram for N1 allows us to calculate the exponent γ1(α).

Possible Monte Carlo (MC) moves include attempts to remove one monomer from

the free end of a randomly chosen polymer segment and add it to the free end of

the other segment; both segments also undergo random configuration changes via

pivoting [105]. Figure 5-3 illustrates the dramatic effect of the angle α on p(N1),

the probability distribution function (PDF) for the segment length N1. For small

α, the distribution is peaked at the center while for α bigger than a critical value

αc, the maximum of the PDF moves to the sides. The numerical data from entropic

competition suggest αc ≈ 5π/8, which is not too far from the first order ε–expansion

result of αc = 2π/3 in Eq. (5.16).

For the purpose of calculating γ2(α), we include interactions between the segments.

Open symbols in Fig. 5-4 show variations of the exponents γ1,2(α) fitting histograms

from entropic competition, such as in Fig. 5-3, to power-laws as in Eqs. (5.21) and

(5.2).

5.3.2 Dimerization

It is instructive to compare the results of entropic competition with those of a more

established procedure, such as dimerization [106, 107]. The latter is quite an efficient
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Figure 5-3: The probability distributions p(N1) for two non-interacting segments of
lengths N1 and N − N1 attached to the apex of a planar slice for diffrent values of
angle α. The curves are the result of 109 MC steps for N = 2000.

method [105], in which an N -step SAW is created by generating two (N/2)-step SAWs

and attempting to concatenate them. We generated SAWs for N = 16, 32, · · · , 2048,

and by attempting to attach them to the end point of an appropriate sector, measured

a success probability pN . Let us indicate the number of SAWs not attached to the

sector by A0z
NNγ0−1, and those attached to the sector either (1) by their ends,

or (2) by their mid-point as Aiz
NNγi(α)−1 (i = 1, 2 corresponds to the notation

introduced earlier). Then, the ratio between the number of configurations, pN ≡
(Ai/A0)Nγi(α)−γ0 , represents the probability to attach an N–step polymer to a sector

with angle α. Fitting a power law to this ratio thus provides a means of estimating

the exponent difference

∆γi ≡ γ0 − γi = ln(pN/p2N )/ ln 2. (5.22)
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The functional form represented by Eq. 5.1 is valid only in the limit of N → ∞.

For large finite N , we expect the expressions in Eqs. 5.1 and 5.22 to be modified by

a multiplicative factor of the form 1 + c/
√
N , where we assume that the correction

to scaling exponent [108] is 1
2
. Consequently, the value of ∆γi will also depend on

N . By examining the successive estimates as a function of 1/
√
N and extrapolation

of the results to 1/
√
N = 0, one can estimate the asymptotic value of the exponent.

Using the dimerization method we generated M = 106 SAWs. We were able to obtain

reasonable estimates of the exponent for all values of α, as shown in Fig. 5-4 (full

symbols).

0 2 4 6
α (radians)
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Figure 5-4: Extrapolated values of the exponents ∆γ1 = γ0 − γ1 (circles) and
∆γ2 = γ0−γ2 (diamonds) as a function of sector angle α from “entropic competition”
(open symbols), and dimerization (full symbols). Error bars represent statistical un-
certainties of individual estimates of the exponents, as well as the uncertainty in the
extrapolation N →∞.

The two numerical approaches are in very good agreement; error bars for “entropic

competition” results are even smaller than those for dimerization. For α = 0, our
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results deviate from zero beyond the statistical error range. We believe this deviation

to be a finite size effect, due to discreteness of the lattice. As a check, we estimated

∆γ1,2 when the obstacle consists of the positive x-axis. While asymptotically such a

situation corresponds to α = 0 and should lead to ∆γi = 0, we obtained ∆γ1 = 0.02

and ∆γ2 = 0.05. For α = 2π, we expect to have ∆γ1 = γ0 − γs ≈ 0.46, and

∆γ2 = γ0 − 2γs + 1 ≈ 0.76; our results are quite close to these estimates.

5.4 Conclusions

We consider configurations of a polymer attached to the apex of a self-similar probe

(at least on the scale of the polymer size). The geometric constraints imposed by the

impenetrable probe lead to exponents γ which vary continuously with the apex angle.

Two such exponents are associated with attachment of the polymer by one end or by

a mid-point. Together, they determine if a mobile attachment point is likely to be

in the middle or slide to one side. These apex exponents are obtained analytically

by an ε = 4 − d expansion and through independent numerical schemes in d = 3.

The ε-expansion takes advantage of the marginality of interactions of a polymer with

a two-dimensional manifold in four dimensions, and can be applied to a variety of

shapes. The numerical method of “entropic competition” is shown to be a powerful

tool in this context, comparable to or better than the more standard dimerization

approach. The numerical and analytical results agree up to 10-15% and indicate the

presence of an entropic barrier that favors attachment of the polymer to the apex at

its end. It would be interesting to see if these predictions can be probed by single

molecule experiments.
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Chapter 6

Concluding remarks and future

directions

6.1 Protein-DNA interactions

6.1.1 Relevance to a bacterial cell

Needless to say, the model described in Chapter 1 (as any quantitative model) is a

gross simplification of protein-DNA recognition in vivo. Despite this simplification,

the proposed mechanism can be generalized to describe in vivo binding.

Simultaneous search by several proteins

If several TFs are searching for their sites on the DNA, the total search time is given

by Eq. (1.36) and is obviously shorter than the time for a single TF. For example,

if 100 copies of a TF are searching in parallel for the cognate site, then assuming

kcytoplasm
on ≈ 108M−1s−1 and a cell of 1 µm3 volume, we obtain the search time of

ts ≈ 0.1sec. Increasing the number of TF molecules can further decrease the search

time, but can have harmful effects by causing molecular crowding in the cell. Note,

however, that increasing the number of TF molecules to 100 − 1000 per cell cannot

resolve the speed-stability paradox.
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“Funnels,” local organization of sites

In both bacterial and eukaryotic genomes, sites that tend to cluster together have

been observed. One may suggest that such clustering or other local arrangement of

sites can create a “funnel” in the binding energy landscape, leading to a more rapid

binding of cognate sites. Our model suggests that even if such “funnels” do exist, they

would not significantly speed up the search process. The proposed search mechanism

involves ∼ M/n̄opt ∼ 104 rounds of 1D/3D diffusion. So a TF spends nearly all the

search time far from the cognate site. Only the last round (out of 104) will be sped

up by the “funnel,” which will not lead to a significant decrease of the search time.

Local organization of sites and other sequence-dependent properties of the DNA

structure (flexibility of AT-rich regions, DNA curvature on poly-A tracks, etc.) may

influence the preferred localization of TFs and lead to faster asociation and dissocia-

tion rates and fast equilibration on neighboring sites (see [109] for details).

Protein hopping: intersegment transfer

Our model assumes that rounds of 1D diffusion are separated by periods of 3D dif-

fusion. Intersegment transfer is another mechanism that can separates rounds of 1D

diffusion. If two segments of DNA come close to each other, a TF sliding along one

segment can “hop” to another. The benefit of this mechanism is that it significantly

shortens the transfer time τ3d. Several pieces of experimental evidence suggest that

tetrameric LacI, which has two DNA-binding sites, travels along DNA through 1D

diffusion and intersegment transfer.

We did not consider this mechanism because of the following two considerations.

First, it is unclear whether TFs that have only one binding site can perform interseg-

ment transfer. Second, for this mechanism to work, distant segments of DNA need

to come close to each other. While DNA packed into a cell or nuclear volume crosses

itself every ∼ 500bp, DNA in solution (at in vitro concentrations) is unlikely to have

any such self-crossings. Hence intersegment transfer cannot explain “faster than dif-

fusion” binding rates observed in vitro. However, this mechanism may play a role in
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vivo, especially for proteins that have multiple DNA-binding sites.

Nonspecific binding energy

As we have shown above, the nonspecific binding energy Ens controls the balance

between sliding and 3D diffusion. By checking the optimality condition τ1d = τ3d,

one can see whether a given TF was optimized for fast target location. It is known

that bacterial transcription factors exhibit quite a wide range of nonspecific DNA

affinities [110, 111], whereas Eq. (1.39) has a very general character. Therefore, for

each specific transcription factor or other DNA-binding protein, there must be a set

of evolutionary driving forces and factors that determine Ens, possibly to optimize a

certain function.

It would be interesting (and relatively simple) to check, for instance, if there is a

correlation between the nonspecific binding energy and the number of binding sites

for a given protein. In bacteria, some proteins (like LacI) have only one or just a few

binding sites, whereas others, highly pleiotropic TFs (like PurR or Crp) possess tens

or even hundreds of cognate sequences. The exact number of copies per cell for each

TF generally unknown, but it typically ranges from about 10 for the former to 100–

1000 for the latter. Highly pleioptropic TFs are usually versatile regulators, providing

universal repression or activation “services” throughout the bacterial DNA [1]. The

large number of protein copies may compensate for slower 1D or 3D diffusion or for

the imbalance between the two.

On the other hand, if nonspecific binding is anomalously strong, the TF will

dissociate from the DNA only infrequently, and thus it will be present in the vicinity

of the specific site for minutes. This may be the case for LacI; the fact that the gene

that encodes for LacI is situated (on the DNA) close to Lac operon may also be of

functional significance.

Cytoplasm inhomogeneity

In developing our model, we tacitly assumed that the cell cytoplasm is homogeneous,

so that protein motion inside the cytoplasm is adequately described by normal 3D
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diffusion. However, in reality, the cell cytoplasm is crowded with enzymes, structural

proteins, nucleic acids, ribosomes, etc. For example, the total density of protein and

RNA inside a bacterial cell is about 300-400 g/L [112], whereas a typical biochemical

experiment in vitro deals with total macromolecular densities of 1-10 g/L. Macro-

molecules occupy about 30% of the cell volume, and the mean distance between

enzymes is of the order of the diameter of a typical tetrameric protein [113, 114].

Under these conditions, it is only natural to question the relevance of the adopted

picture.

Recently, there were several attempts to assess the effects of macromolecular

crowding in the cytoplasm on diffusion-limited reactions. The most obvious conse-

quence is a considerable reduction of the diffusion coefficient, as reported by Lipkow

et al. [115]. Furthermore, recent observations by Golding and Cox [116, 117] suggest

a possibility of a change in the 3D diffusion law. Namely, in a crowded cytoplasm,

a protein moves subdiffusively, i.e. its RMS displacement R scales with the diffusion

time t as

R ∼ tα, α < 1/2. (6.1)

This change in the diffusion law is usually a signature of a the change in the fractal

dimension or connectivity of the underlying matrix [30]. If this is a real effect, it

would be useful to study its implications for protein-DNA interaction.

It might appear counterintuitive, but macromolecular crowding may actually ex-

pedite protein-DNA association kinetics by sequestering the irrelevant part of the cell

volume. Also, effective microcompartmentation of the cell may help in keeping DNA-

binding proteins close at hand so that, upon receiving a signal, they can find their

sites without exploring the entire cell. Similar mechanisms are now widely believed to

be responsible for “channeling” and kinetics expedition in metabolic pathways [113].

6.1.2 Implications for eukaryotes

The basic assumptions of the developed picture (naked DNA, regulation by single

TF molecules, etc.) make it directly applicable to bacteria only. However, the devel-
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oped framework can provide useful guidelines for analyzing transcription regulation

in higher organisms as well.

The effect of chromatin

Above we assumed that a TF is free to slide along the DNA. In vivo the picture

is complicated by other proteins and protein complexes (nucleosomes, polymerases,

etc.) bound to DNA, preventing a TF from sliding freely along DNA. What are the

effects of such molecular crowding on the search time?

Our model suggests that molecular crowding on DNA can have little effect on

the search time if certain conditions are satisfied. Obviously, the the cognate site

should not be blocked by other DNA-bound molecules or nucleosomes. DNA-bound

molecules can interfere with the search process by shortening regions of DNA scanned

on each round of 1D diffusion. If, however, the distance between DNA-bound molecules

or nucleosomes in the vicinity of the cognate site is greater than n̄opt ∼ 300− 500 bp

(Eq. (1.32) and [23]), then obstacles on the DNA do not shorten the rounds of 1D

diffusion and, hence, do not slow down the search process. Our analysis also suggests

that sequestering of part of genomic DNA by nucleosomes can even speed up the

search process by decreasing the effective genome size.

Formation of regulatory complexes

In prokaryotes, the regulation of a gene or operon is usually accomplished by a single

repressor and/or a single activator. Also, bacterial TFs form a large number of specific

contacts and thereby achieve high sequence specificity. In eukaryotes, the situation

is much more complicated, even in the most simple cases.

Gene activation or repression in eukaryotes is performed by large protein com-

plexes. Some members of these complexes bind DNA directly; others mediate inter-

actions between different DNA-binding proteins, each forming only a small number

of specific contacts on DNA. This makes the regulating signal quite extended (some-

times up to thousands of base-pairs long) and very vaguely defined. Also, whereas

prokaryotic genes are switched on or off by one signal, eukaryotic genes are often
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regulated by quite a few different signals, interacting with different TFs and inte-

grated when all these TFs bind the DNA – an example of the so-called combinatorial

control [2, 118].

The small number of significant contacts formed on the DNA by eukaryotic tran-

scription factors makes them very nonspecific. In addition to functional regulatory

sequences, there may be thousands of pseudosites at random places on the DNA.

However, when the sites for all relevant TFs are in close proximity, the resulting

regulatory complex is highly specific and very stable.

It is clear that the framework presented in the first part of this thesis is not directly

applicable to such complex situations. However, it can provide a quantitative insight

for further development. For example, consider the kinetics of the regulatory complex

formation. The traditional “building-block” picture of molecular biologists is based

on recruitment of some members of the regulatory complex by other ones. Physically,

this may mean that the high final specificity of the complex is achieved gradually,

on several timescales. The first TF to find its site on the DNA will be bound rather

loosely and will stay there for a short period of time, say, 10 msec. However, this

waiting time may be sufficient to bind another TF. Together, the two members of

the complex bind the DNA much stronger. Since the lifetime of the complex grows

exponentially with the interaction energy, the recruitment of the next member can

occur on the scale of a few seconds, etc. This hierarchy of lifetimes may also reflect

itself in the hierarchy of concentrations of each TF.

6.1.3 Sequence, energy and folding

One of the main novel ideas introduced in this thesis is the notion of sequence depen-

dence of the interaction with non-cognate DNA and the role it may play in the target

location. While there is no reason to ignore this possible dependence, and there is no

firm experimental evidence disproving it, most biochemists stick to the original von

Hippel picture where σsearch = 0. Most biochemical and structural studies concen-

trate on specific rather than non-specific complexes. A possible (and probably the

real) explanation of this fact is that, for a given TF, there usually just a few cognate
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sequences and 107−109 non-cognate ones. Also, most non-cognate complexes are too

unstable for proper structural studies.

However, in the light of our theory, it would be instructive to study the range

of binding energies corresponding to the search mode of protein-DNA interaction.

This may be not too difficult, though possibly quite time-consuming. For example,

standard biochemical binding assays used on a large random set of binding sequences

may provide us with at least some answers, such as the approximate value of σsearch.

A much more difficult point to establish is the correlation between search and

recognition energy profiles. The main conceptual problem is that at equilibrium ei-

ther only cognate or only non-cognate complexes are observed, depending on the

sequence. Modern protein engineering techniques may provide a solution by stabiliz-

ing the protein in the search mode and measuring its binding affinity to both cognate

sequences and sequences with mutations at random positions. Recently, Kalodimos

et al. [59] used a DNA sequence that was mutated virtually at all positions compared

to the consensus sequence. The non-cognate structure they reported had most of its

protein-DNA contacts in the sugar-phosphate backbone, thus allegedly proving the

widely accepted view of sequence independence of non-specific interactions. However,

using a variety of binding sequences, this all-or-none picture could be significantly re-

fined, which would be an important contribution to our current understanding of

protein-DNA interaction.

6.1.4 DNA conformation effects

One of the central parameters of our model is τ3d, the mean interval of time between a

dissociation of the protein from DNA till the next binding to DNA. Exact calculation

of τ3d is a very difficult task, considering the nontrivial packing of the DNA molecule

inside a bacterial cell, electrostatic effects and the inhomogeneity of the cytoplasm.

Considering the microscopic picture, one can easily obtain a reasonable estimate

for the upper limit of τ3d as a characteristic time of 3D diffusion across the nucleoid

(the region of a bacterial cell to which the DNA is confined). The corresponding

diffusion length depends on the conformation of the DNA molecule. If the DNA
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molecule was a single homogeneous globule, there would be a single relevant length

scale, which is the molecule characteristic size lm (the radius of gyration). On the

other hand, as Fig. 6-1 shows, diffusion of a protein molecule inside a more realistic

non-homogeneous multi-domain molecule involves at least one additional length scale

ld, which is a characteristic size of a domain. These two lengths may differ by a factor

of ∼ 10 [119], making the ratio of the resulting diffusion times τm3d/τ
d
3d ∼ 102. In the

original problem (a single protein molecule searching for a single site on the DNA),

the search process is dominated by the larger time-scale, since at least few domains

must be explored before the target site is located. However, there are often about

102 TF molecules present in a cell, so it is reasonable to assume that the domains are

scanned in parallel, making the inter-domain transfer processes irrelevant.

ml
dl

ml

(a) (b)

Figure 6-1: Effect of DNA conformation on the effective diffusion distance: (a) Single
globule; (b) Multi-domain conformation.

6.2 Random walks and polymers

The above discussion about a protein diffusing inside a DNA molecule is in fact a

special case of a rather old problem. In its most general form, it can be formulated

as a random walk interacting with absorbing manifold. The walk can be Gaussian or

self-avoiding, normal or anomalous [30, 120]; the manifold can be smooth or fractal.

In the second part of this thesis, we study a couple of examples demonstrating that

most posible complications of the problem beyond normal diffusion in fairly simple

geometries makes the problem only approximately tractable (if at all). If the diffu-
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sion is anomalous, very unusual features emerge even in the simplest geometries. For

instance, the method of images has recently shown to be inapplicable for a superdif-

fusing particle in a half-space [121].

There is no formal way to describe the conformation of DNA in a real cell. It

certainly has many elements we expect to meet in randomly conformed polymers,

it has compact and swollen regions; in addition, DNA is irregularly looped and su-

percoiled [122]. Solving the diffusion equation with absorbing boundary conditions

on such a structure is clearly impossible. Nevertheless, it is instructive to study the

influence of possible regular conformation elements, such as swollen self-avoiding coil

or compact globule on the 3D diffusion. Standard procedures exist for simulating

these structures, so that this problem is accessible at least numerically.

To complete the picture, we mention several attempts to treat the problem analyt-

ically. Oshanin et al. [123, 124] have analyzed chemical reaction kinetics in polymer

systems and recognized the importance of correlations in reacting particle positions.

These correlations are very strong in polymer-trap systems. It was also pointed out

that the tail of the diffusion time distribution is governed by the distribution of trap-

free volumes. In a uniform solution of absorbers, the diffusion times are distributed

exponentially, as dictated by a simple diffusion equation with traps. However, in a

dense polymer solution, the distribution of cavities is quite nontrivial, which produces

a stretched exponent in the tail of difusion time distribution. In a dilute solution or

in the presence of a single (infinite) absorbing swollen polymer, there is no cutoff on

the maximal trap-free volume. In this case, the picture is much more complicated.

Cates and Witten [125] have studied this limit using an RG scheme which revealed

the multifractal nature of the probability density for the diffusing particle. It is pos-

sible that diffusion times inside a random coil have a power-law distribution, and the

association rates in this limit have a strong stochastic component. However, as far

as protein-DNA association kinetics are concerned, the “average” DNA state is prob-

ably more appropriately described by some kind of a random globule, with a finite

average density. In this limit, there is nothing anomalous about 3D diffusion times

and one can more or less safely assume that their distribution is exponential (see
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e.g. [126]), so that τ3d is well defined. As a possible extension, it would be interest-

ing to consider the effect of correlations between 3D diffusion and the distance along

DNA between dissociation and reassociation sites. Such correlations could introduce

important corrections to the presented framework or even reformulate it anew.
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Appendix A

Protein-DNA interaction

energetics

A.1 Equilibrium Model for Interaction Energy

Protein–DNA interaction plays a central role in many critical cellular functions [127].

A broad class of DNA–binding proteins, such as transcription factors, restriction and

DNA repair enzymes, exhibit a vast (∼ 3− 8 orders of magnitude) range of affinities

to DNA depending on the actual underlying sequence. Each such protein has one

or several cognate sites on the DNA molecule where the binding is the strongest.

The exact location of these sites on the chromosome usually has a clear functional

(e.g. regulatory) meaning, therefore, knowing the sequence→energy mapping function

would be of great assistance to biologists and bioengineers. Unfortunately, an exact

calculation of such a function is extremely difficult and requires the knowledge of many

interaction parameters that can be neither derived nor measured with the desired

degree of precision. Instead, a number of heuristic knowledge–based models have been

developed in the recent years [16, 25, 40, 45]. These models differ a lot in complexity

and site prediction reliability; however, they usually produce binding energy spectra

sharing many common features. For instance, cognate sites always reside at the lower

edge of binding energy spectrum, which should be broad enough to ensure cognate

complex stability with respect to the rest of the genome. Also, most spectra can be
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approximated by a Gaussian over a wide range of energies [24, 45]. These properties

have been verified in a number of equilibrium measurements [128, 129, 9].

In this section, we discuss the first attempts to formulate the evolutionary frame-

work for protein-DNA interaction. This theory has been applied quite successfully to

a variety of experimental situations [130, 131] and remains a default starting point

for any theoretical work in the field.

A.1.1 Berg - Von Hippel theory

Exact (ab-initio) calculation of a protein-DNA complex energy is generally a very

difficult problem. The energy constituents are, to name a few: the direct electrostatic

interaction between charged elements of the protein and the DNA (e.g. phosphate

backbone), hydrogen bonds between binding domain amino acids and DNA bases,

effective hydrophobic interactions, water-mediated interactions, etc. Though much

effort is invested presently in this direction, a coherent picture is still missing.

However, a heuristic approach to this seemingly intractable problem originating

in the seminal papers by von Hippel and Berg has proved to be very successful. The

complete theory is described in detail elsewhere [16, 132]; here, we provide only the

necessary background.

Suppose there are ns specific sites of length L for a given regulatory protein. In

thermal equilibrium with proteins in solution, the probability of a certain site i to

be occupied (or a site binding constant) is proportional to a Boltzmann factor e−βEi.

Then, by measuring site affinities, it is possible to estimate site binding energies.

Futhermore, if we assume that each base contributes independently to the binding

energy, it is possible to measure individual contributions of the bases by mutating

the binding sequence1.

The argument of Berg and von Hippel is based on the analogy they draw between

thermodynamic picture and an evolutionary selection process. This analogy appears

reasonable if we assume that during evolution, only sequences with binding energies

1The independence conjecture has been verified experimentally for a very wide class of transcrip-
tion factors. In this paper, we ignore correlations between bases inside the binding sequences.
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in a certain interval Es ±∆/2 are selected. Suppose that the binding domain of the

regulatory protein is conserved throughout the evolution process and that there exists

some strongest (consensus) binding sequence. Then every base-pair mismatch in the

sequence will weaken the binding by a certain discrimination energy, the value of

which depends both on the position and the identity of the mutated base-pair. If all

positions are equally important and any mutation contributes the same discrimination

energy, then specifiyng the required sequence energy (for selection) is equivalent to

specifying the number of base-pair mismatches.

In Fig. A-1, the results of numerical simulation for 20 bp sequence binding energy

for a random “genome” of size 107 bp are shown. The logarithm of the density of

states Ω(E) can be quite adequately fitted by a parabola, which is merely a conse-

quence of the Central Limit Theorem (CLT) applied to a sum of 20 random variables.

Thus, the genome binding energy spectrum can be described by the Random Energy

Model (REM) [24, 61], so that we can define the evolutionary temperature T ∗ as

T ∗ ≡
[
d

dE
ln Ω(E)

]−1

E=Es

=
Σ2

|Es − 〈E〉|
, (A.1)

where Σ2 is the variance and 〈E〉 is the average binding energy. This equation estab-

lishes the transition to the canonical description, which is more appropriate in the

general case, when different positions and mutations contribute nonequally. Then,

if the entire genome is at “thermal equilibrium” at temperature T ∗, the partition

function for a set of all possible sequences of length L is

Z∗ =

L∏

i=1

4∑

α=1

e−β
∗εi,α, (A.2)

where α counts the possible mutations and εi,α is the corresponding discrimination

energy. Under these conditions, the probability of α-th base to be observed in the

selected sequence at the i-th position is

pα(i) =
e−β

∗εi,α

∑4
λ=1 e

−β∗εi,λ
. (A.3)
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Figure A-1: Energy spectrum of 20 bp sequence with unit discrimination energy. The
squares are the results of computer simulation; the solid line is a quadratic fit.

Thus, if a collection of binding sites for a certain protein is known, it is possible to

estimate the binding energies (up to a certain constant factor2) by observing the base

frequencies at various positions in the sites and taking a logarithm, thus constructing

the weight matrix [130]. The weight matrix is a characteristic of the binding domain

of the protein; applying it to any arbitrary DNA sequence produces this sequence

binding energy (see Fig. A-2).

A.1.2 Energy Gap

A large energy gap between the cognate site ~sc and the bulk of genomic sites would

solve the paradox of rapid search and stability. One may seek parameters ε(j, s) of

the energy function

U(~s = si, ..si+l−1) =
l∑

j=1

ε(j, sj), (A.4)

2Interestingly enough, most experiments[130, 131] suggest values of T ∗/T ∼ 1.
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Figure A-2: Energy spectrum and energy profile for E. coli purine repressor (PurR).
The weight matrix was built by analyzing 35 known binding sites for PurR.

to maximize the energy gap by minimizing the Z-score

Z(~sc) =
U(~sc)− 〈U〉

σ
, (A.5)

where both the mean and the variance are taken over all possible sequences of length

l (or over genomic words of length l). It’s easy to see that Z(~sc) is minimal if

εopt(j, s) = −δ(s, scj) (A.6)

where δ(x, y) is Kronecker delta. For K types of nucleotides, assuming their equal

frequency in genome, we obtain the maximal reachable energy gap of

Zmin = −
√
lK. (A.7)

For K = 4 and l ≈ 8 we get Zmin ≈ −5. For the genome of 106-107bp the energy

spectrum of the genomic DNA ends at Z ≈ −5. While sufficient to provide stability

of the bound complex (see main text), such an energy gap is unable to resolve the

search-stability paradox.
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Appendix B

Diffusion in a Half-Space -

Classical results

B.1 Diffusion and random walks

B.1.1 Some history

The theory of diffusion was first developed in the beginning of the 19th century

by Joseph Fourier; his work was summarized in the famous Théorie analytique de

la chaleur [133], first published in 1822. It contains an extensive treatment of ho-

mogenous heat diffusion problems for a variety of geometries, mostly by the variable

separation method.

The first generalized approach to solving non-homogenous diffusion probems was

formulated by Sir William Thomson [134], more widely known as Lord Kelvin, in 1850.

He realized that particular solutions can be obtained by superposition of solutions

for “instantaneous simple point sources” (which are now called by physicists “Dirac’s

delta–functions”). In short, what he did was to invent the Green’s function method

for the diffusion equation; it was later used by E. W. Hobson to treat heat-conduction

problems with a variety of sources and boundary conditions [135].

Kelvin was also the first to apply the method of images to account for boundary

conditions for electricity conduction in a semi–infinite telegraph line [134].
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B.1.2 Boundary conditions

Consider a N–step random walk starting at r0 = 0 in the three–dimensional (3D)

space. Let G(r, N) be the probability density for the walk to end at r. For large N

and in the absence of obstacles and boundaries, G(r, N) is a solution of the diffusion

equation [30] (
∂

∂N
− 1

2
∇2

)
G(r, N) = 0 (B.1)

with the initial condition

G(r, 0) = δ(r). (B.2)

Here, we took the diffusion coefficient D = 1/2. The solution has a well–known form

G(r, N) =
e−r2/(2N)

(2πN)3/2
. (B.3)

It is reasonable therefore to assume that solutions of the same kind can as well

be found for any bounded region R. Naturally, one has to specify the boundary

conditions. This is not as trivial as it appears and, in fact, depends on the physical

context of the problem. If, for example, the random walker is allowed to touch the

boundary and then step back with probability 1, the reflecting boundary conditions

are appropriate. Formally, it means that the flux across the boundary vanishes

∇G(r, N) · n|r∈∂R = 0. (B.4)

Here ∂R denotes the boundary of the region R and n is a unit vector locally normal to

∂R. Another possible choice of boundary conditions corresponds to the case when the

walker sticks to the boundary upon reaching it – the absorbing boundary conditions

G(r, N)|r∈∂R = 0. (B.5)
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B.1.3 Method of images

Consider a random walk starting at r0 = ẑa away from the plane z = 0 and confined

to the z > 0 half–space. For the absorbing boundary, we expect the probability

distribution for the end point to satisfy the following boundary value problem





(
∂

∂N
− 1

2
∇2

)
G(r, N ; a) = 0

G(z = 0) = 0, G(r, 0) = δ(r− ẑa)

(B.6)

Any introductory textbook on PDEs contains a straightforward solution of this prob-

lem, which consists of introducing a sink, or negative image, at (0, 0,−a) and ex-

tending the problem to the entire space1. The boundary condition at z = 0 is then

automatically satisfied and the solution is

G(r, N ; a) =
1

(2πN)3/2

[
e−(r−ẑa)2/(2N) − e−(r+ẑa)2/(2N)

]
. (B.7)

For a�
√
N , we can expand the expression in parentheses to obtain

G(r, N ; a) '
(

2az

N

)
e−r2/(2N)

(2πN)3/2
. (B.8)

We see that the probability distribution can be factorized into z–dependent and z–

independent parts. The latter, which includes degrees of freedom parallel to the

boundary, is not affected by the presence of the boundary. Thus, in what follows we

will be predominantly occupied with the z–dependent part of G(r, N ; a).

B.1.4 Counting walks on a lattice

Chandrasekhar [136] suggested a direct way of counting the paths on a lattice when a

reflecting or an absorbing boundary is present. We will briefly describe the derivation

for an absorbing boundary. The reader is encouraged to read the original paper

which, despite being written more than half a century ago, remains one of the best

1It is straightforward to verify that reflecting boundary conditions correspond to a positive image.
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introductions into random walks and stochastic processes in general.

Consider a one–dimensional random walker on a lattice (discrete z–axis) with

absorbing boundary at z = 0. Suppose, the walk starts some distance n from the

origin; our task is to calculate the number of paths leading from n to some other

point m, without touching the boundary. It turns out that it is easier to calculate

the number of paths that do touch the boundary and then to subtract it from the

total number of paths leading from n to m. To do so, we make use of a very elegant

theorem – the reflection principle.

mn0−n

N

z

Figure B-1: The reflection principle.

Let us extend our lattice to include the negative part of the z–axis as well. Then,

the reflection principle states that the number of N–step paths originating at n,

ending at m and touching or crossing the boundary z = 0 is equal to the number of

N–step paths that originate at −n and end at m. Figure B-1 illustrates the reflection

principle by presenting a way to build a one–to–one mapping between the two sets of
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paths. Thus, the number of paths not touching the boundary is

N =


 N

1
2
[N +m− n]


−


 N

1
2
[N +m+ n]


 . (B.9)

For the starting point near the boundary and m � N , we can expand the binomial

coefficients using Stirling’s formula to obtain

N ' 2N
(

2

πN

)1/2
m e−m

2/(2N)

N
. (B.10)

Dividing by the total number of paths of length N (which is 2N), we obtain the

probability density for a path to start near the boundary and to end at some point

m without returning to the boundary

G(m,N) ' 2m

N

e−m
2/(2N)

(2πN)1/2
. (B.11)
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