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Diffusion in correlated random potentials, with applications to DNA
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Many biological processes involve one-dimensional diffusion over a correlated inhomogeneous energy land-
scape with a correlation lengtf. Typical examples are specific protein target location on DNA, nucleosome
repositioning, or DNA translocation through a nanopore, in all cases g#hl0 nm. We investigate such
transport processes by the mean first passage(titk®T) formalism, and find diffusion times which exhibit
strong sample to sample fluctuations. For a displaceidetiie average MFPT is diffusive, while its standard
deviation over the ensemble of energy profiles scaledl¥&swith a large prefactor. Fluctuations are thus
dominant for displacements smaller than a charactemtie &.: typical values are much less than the mean,
and governed by an anomalous diffusion rule. Potential biological consequences of such random walks,
composed of rapid scans in the vicinity of favorable energy valleys and occasional jumps to further valleys, is
discussed.
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I. INTRODUCTION prokaryotes. The sliding is viewed as an unbiased, thermally

e . . . . . activated process. The actual rules of motion for sliding de-
Diffusion appears in most basic processes in the I|vm%

. ; end on the details of interaction between the protein and the
matter and therefore has been studied extensively by theorggya The general belief is that there are two protein-DNA

ical and experimental biophysicists for many decades. At thgging modes: a strong “specific’ mode that characterizes
macroscopic scale, the phenomena are adequately describgflding of operator sites, and a much weaker “nonspecific”
by continuum models that form a well established methodmode in which binding of noncognate DNA occurs
ology finding many applications in science and technology[10,12—14. In the nonspecific or “search” mode, the interac-
[1]. Advanced experimental methods, such as nanoprobingon energy is usually assumed to be independent of the DNA
and single-molecule techniques, provide us with a wealth o§equence that the protein is bound to, though not much ex-
data at the microscopic level. Theoretical description of theperimental evidence beside relatively fast observed search
observed phenomena at such scales is often a considerabimes favors this strictly “equipotential” picture. On the other
challenge, since many irregular features that average out dmand, scanning force microscopy experiments by Etial.
the macroscopic scale cannot be ignored anymore. Som¢i5] clearly demonstrate DNA bending I§ro repressor pro-
times, however, rather simple characteristics emerge, allowtein, both at operator and at nonoperator sequef8és
ing for exact analytic treatment. Since local DNA elasticity is known to be highly sequence-
One-dimensional1D) transport is rarely found on the dependenfl6], the energy of protein bound at random loca-
macroscopic scale; at the molecular level though, one cations should have a random component, correlated at length
find several examples, e.g., kinesin motion along microtuscales of the order of the protein binding domain size; see
bules[2—4] or DNA translocation through a nanopdi®-§]. Fig. 1(a). This sequence-dependent interaction energy com-
Usually, in such problems, the underlying potential profile isponent appears in addition to possible local uncorrelated
considered to be constant or at least regular. However, as weequence-dependent contributions from amino acid-base pair
show in this paper, DNA sequence heterogeneity and theontacts.
resulting random energy landscape can have a considerable To estimate the significance of the random component of
influence on the diffusion up to biologically relevant length the elastic energy, we use DNA elasticity data supplied by
scales at room temperatures. the BEND.IT server{17], that incorporates DNase | based
bendability parametergl8] and the consensus bendability
scale[19]. We assume that the protein-DNA complex in Fig.
1(a) has a fixed geometry, i.e., the protein is “hard.” Then,
The first example we study here arises in the context othe elastic contribution to the protein-DNA interaction en-
protein-DNA interaction. As proposed by von Hippel andergy at theith sequence has a random component propor-
Berg[9,10], and recently observed in many systefhg, 1D  tional to the random component of the Young’s modulks

A. Protein-DNA interaction

“sliding” of proteins along the DNA molecule is an impor- SE /¢
tant component of protein specific site location; at least in U=|1+— (—gf)kBT, (1
E

where{,=50 nm is the DNA persistence length=60° is
*Electronic address: mich@mit.edu the curvature angl€l5], L=10-20 bp is the bent sequence

1539-3755/2004/69)/06190311)/$22.50 69 061903-1 ©2004 The American Physical Society



SLUTSKY, KARDAR, AND MIRNY PHYSICAL REVIEW E 69, 061903(2004)

ure 2b) shows the normalized energy-energy correlator for
the random energy component

g(r) = ([SU() = SU(x+1)?), (2)

1
2(8U%(x))
averaged over 10 000 DNA sequences. Saturatiog(i®
=1 is clearly observed on the scale of 15 base pairs, which is
[9]a7eYoYe30} the correlation length of this potential profile.
Another interesting example, also from the field of
@ protein-DNA interaction, was considered recently by Schies-
sel et al. [20], and deals with nucleosome repositioning by
DNA reptation. It was argued that chromatin remodeling
[21,22 can be readily understood in terms of intranucleoso-
mal loop diffusion, the size of the loop resulting mainly from
a compromise between elastic energy and nucleosome-DNA
binding energy. Here again, for a given size of the loop, the
elastic energy is sequence dependedi, and therefore has
a random component with finite correlation length; see Fig.
1(b). For nucleosome repositioning, this effect may be even
FIG. 1. (a) Prokaryotic transcription factor slidingb) nucleo- ~ more pronounced than for prokaryotic protein-DNA interac-
some repositioning. tion; the bending angle8 and the sequence lengthsare 2
o to 3 times larger so that the net effect may be twice as strong
length and E=3.4x10® N/m is the average Young's as for theCro repressof20].
modulus. The resulting potential profile is plotted in Fig. It is known that DNA can have amtrinsic curvature
2(a). The standard deviation of the elastic energy induced byrising from the stacking interactions between base pairs.
the Young’s modulus variationd0—15 % typically for bio- ~ Such sequence-dependent curvature can play a role similar to
logically relevant parameters i&sU)2)Y2~0.5-1.5 kgT, sequence-dependent DNA bendability in providing a corre-

so that disorder appears to be relevant for this problem. Figated landscape. The bending energy of an intrinsically
curved region is easier, requiring a smaller angular deforma-

tion 6= Ocomplex Gintrinsic Y the DNA-protein complex. Such

(b)

[{e]

(BU)'2 =075k T sequence-dependent intrinsic curvature was suggested to be
8 involved in positioning nucleosomgg3).
Aside from DNA bendability and curvature, local correla-
F 7 tions in nucelotide composition, known to be present in eu-
%‘ karyotic genomes(AT/GC-rich isochorek can result in a
6 correlated landscape of the protein-DNA binding energy.
This effect becomes especially pronounced when a DNA-
5 ] binding protein has a strong preference toward a particular

AT/GC composition of its site. However, in this case, varia-
. . tions take place over much longer scales, and are not quan-
0 %0 pse NG, (200 2000 titatively relevant in the specific contexts addressed in this
(@) paper.
' ' ' Both above examples can be viewed as specific cases of
DNA reptation by means of a propagating def@ut“slack”)
of a fixed size. Elastic energy associated with the slack cre-
ation is sequence-dependent and correlated on the scale of

0.8
the slack size. The propagating defect is well localized and
Zo0s6 samples the energies of well-defined subsequent DNA seg-
ments. As was pointed out by Cule and H\&d], short-
04 range correlated randomness of this kind has no effect on the
o2l scaling of the reptation time. However, as we show below,
’ the defect motion itself is strongly influenced by the disorder
. . and has nontrivial behavior at different length scales.
(b)-%o -50 0 50 100

. . ) B. DNA translocation through a nanopore
FIG. 2. (a) Energy of local elastic deformation aiild) potential

profile correlator, as calculated from the data supplied by the server Consider a piece of single-stranded DNgsDNA) pass-
BEND.IT for a segment oE.coli genome. The deformed DNA ing through a large membrane channel. If the potential dif-
sequence is assumed to be of lengthl5 bp. ference across the membrane is zero, the motion of the ss-
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a(n

-h h
r
FIG. 3. (Color onling ssDNA transport through the nanopore; on the right: charge degéilyand correlatorg(r)={[ U(x)— sU(x
+1)1%/(2(8U3(x))) as a function of the coordinate

DNA is governed by thermal fluctuations. Since the channeklementary chargeh~ 10 nm, we obtainsU ~kgT.

width differs from the ssDNA external diameter only by few  Although this example differs from the above ones in that
Angstroms[40], it is reasonable that local interactions be-a nonzero average driving force is present, large random
tween the nucleotides and the amino acids of the channdluctuations of the energy landscape may have significant
take place. These interactions may have a local basesffect on the distribution of translocation tisie— a problem
dependent component. In addition, longer-range terms arat has attracted much interest latEhp].

likely to appear in the presence of a voltage difference. In the

cytoplasm, the DNA negative charge is almost completely

screened out at distances of few nanometers by the counter- Il. DIFFUSION IN A RANDOM POTENTIAL

ion cloud. When the DNA molecule enters the pore, most of A The model

the counterions are likely to be “shaven off,” though some of '

them may remain stuck to the DNA; see Fig. 3. Thus, the The problems described above map onto a one-
linear charge density inside the pore acquires a random angimensional random walk with position-dependent hopping
basically uncorrelated component: probabilitiesp;, g;=1-p; to the right and to the left, respec-

_ ) tively; it is most natural to assume the regular activated
q(X) = Q(X) + 5CI(X), <5CI(X) 5Q(Y)> =p a5(x - y), (3) transport form

where a=0.34 nm is the interbase distance. The potential
energy of the DNA segment inside the pore in the presence p, o e PUismU) - g oc @AUi-7 Vi) (6)
of a voltage difference oY is

Vo (M whereB= (kgT)™* andUj; is the sequence-dependent compo-
Ux) = FJ X'q(x+x")dx’. (4)  nent of the potential energy. The latter is basically a sum of
0 many random contributions and can therefore be considered
Since the average charge dengT@() is in general non- to be normally distributedl13]. Thus, in the absence of cor-
zero, DNA transport is driven by the average fok@x)/h relations, the probablllty for realization of a certain prOf”e
The correlation function of the random componentigk) is ~ Y(X) of lengthL is (in the continuum limit
readily calculated to be

2 2 o _ C_YJL 2
<5U(X)5U(X+ y)> — V;_ﬁza(h _ |y|)2<h + %)H(h _ |Y|), P[U(X)] eXp|: 5 . dxu (X)] . (7)
(5) This is the well-known random-energy mod&6] that
was applied successfully to various biophysical problems,
where H(x) is the Heaviside function. Thus, the potential from protein folding[27] to protein-DNA interactiorf13]. It
profile for DNA motion has a random component with cor- assumes no correlations between energies of different sites.
relation length ofh. Taking V,~100 mV, p~e/h (e is the  One can think of a more general form of potential profile
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1t (t the MFPT is readily obtained after we note that the sequen-
PLU(x)] = exp| = > fo fo dy dx Ux)G(x-y)U(y) |. tial products in Eq(13) reduce to
® |
, _ [T 0= exdB(Uisy + Ui = U - U )] (14
Taking for example,G(x—y)ocaiy(S(x—y), we obtain the j=k

random-force mod€]l28] that describes an energy landscape
appearing as a random walk with linearly growing correla-
tions. This model was studied during the last decades in th
context of heteropolymer dynami¢g4,29, glassy systems
[30,3] and quite recently—to describe DNA denaturation
dynamics[32]. Characteristic features of the random-force {ton) = N2e26°0 (15)
model are logarithmically slowSinai's”) diffusion [33,34 ' ’
and aging31,32. More generallyG is related to the correl- where, for the uncorrelated potentigi=0)
lator of U by (U(X)U(y))=G X(x-y).

To include finite-range correlations into EJ), we must o= i (16)
incorporate a limitation on the acceptable forces. The en- aa
semble of energy profiles is therefore naturally described by
the following probability density:

For an uncorrelated potential profile, this exponential fac-
torizes into independent exponentials; after the ensemble av-
raging and the summations are carried out, we obtain for
N>1,

Note that this expression cannot be obtained by simply
putting y=0 in Eq.(11). The reason is that whepbecomes

P[U(x)] o eV (93 small, the discrete nature of the underlying latiitee DNA)
, starts to matter. The integration in the Fourier space in Eq.
with pseudoenergy (11) extends only up tdoma=7/a, and thus,
H[U]= ldex U(x) + (d—u)z (9b) T dg _ 1
=3, a Nax/ | 02|w0=J P (17)
—mla 2T ad

Energy level statistics for this kind of potential profile is

; Returning to the case of a finite correlation length, we
also Gaussian, as can be seen from the average

note that in the limit of§.>a, variations of the potential
" between neighboring sites can be neglected compared to
f DUl VeVl p( 2 ) variations between sites separated by distances of ¢gder
=exp - , (10

(V) = — larger. Since the main contribution to the MFPT comes from
fD[U]e—H[U] HNay the double sum in Eq(13), we can write the continuum
version as
which is the characteristic function for Gaussian distribution _ N N U0-U)]
with zero mean and variance ton = 2] dxf dy AV-Ul (18
0 X
1 (7 dq 1

= (11)  To average over all possible realizations{bf(x)}, we cal-

= — - I
2mw) . at yoP 2Vay culate

The correlator of the potential profile is readily calculated
- f D[U]eZB[UW)—U(x)]e-H[U]

g(r) = %([U(X) - U(x+ r)]2> — 0,2(1 _e—|r|/§c), (12) <e23[U(x)—U(y)]> =

f D[Ule VI

2B ix
= I 5Cq _ gx-yllg
B. Mean first passage time exp{ y (1-e o9 (19

A convenient formalism for analyzing diffusion in a ran- gq, Ix-y| <&, Eq.(19) reduces to exg|x-y|/y), so that
dom one-dimensional potential profile is that of mean first-ty, N < we have '
Cc

passage timg34,35. For a given set of probabiliti€g;}, the
MFPT fromi=0 toi=N (in terms of number of stepss {ton) ~ N2exp(4B2a°NIE,). (20)

N-1 N-2 N-1 i

where ¢.=\y/ a is the correlation length.

— (Here and in what follows, we measure distances in units of
ton=N+ 2 o+ X E 1+ wk)_H @i, (13 3 unless specified otherwisdhis kind of exponential creep
k=0 k=0 i=k+1 j=k+1 . . .
is quite expected, since far— 0, £, — o our model(9a) and

wherew; =q;/p; (see Appendix A for derivationThe MFPT  (9b) reduces to the random-force model.
given by this expression is for a fixed realization of prob- In the opposite limifx—y|> &, we can neglect the expo-
abilities, i.e., for a given potential energy profile; as such, itnente /4, so that Eq(18) produces an ordinary diffusion
is itself a random variable. The disorder-averaged version dfaw, with a disorder-renormalized diffusion coefficient:
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{Top) = N26¥°7”, (21) px10°

Comparing Eqs(21) and(15), we see that diffusion in a
correlated potential profile proceeds more slowly than in an
uncorrelated profile. It is straightforward to obtain an expres-
sion for the disorder-averaged MFPT for arbitrary correlation
length. If we keep all four terms in the exponential in Eq.
(14) while going to the continuum limit, we obtain

-
(3]

MFPT (no. of steps)

N N
ton=2 J dx f dy Uraru-Uy-Uy-al (22
’ 0 X

N . . . 0
Averaging this expression over the disorder as in (&) i
yields for N> ¢ 3
25X 10
(ton) = NPexpi28%0%(1 + &%), (23) )
which has the obvious limits of Eqg15) and (21) for g
&.— 0 and§. > a, respectively. :g 15
g
Ill. TYPICAL VERSUS AVERAGE e L
L
Large deviations from the average are characteristic to = o5l
many disordered systems. In this section, we therefore ex-
plore thetypical properties of random walks as compared to 0 ‘ \ ‘
the disorder-averaged ones. (b) © 1000 2000 3000 4000 5000

N

FIG. 4. (Color onling Mean first passage times: typical versus
average. Thick solid lines are the result of averaging over 1000
After the potential profile is generatédee Appendix B realizations of potential profileso=1.0): (a) correlated profile

we calculate the MFPT using E@L3). Figure 4a) presents  with £,=40.0;(b) uncorrelated profile.

the mean first passage times calculated for various realiza-

tions of U(x) at biologically relevant temperatufe=kgT).

It is clear that although the ensemble-averaged MFPT do
behave as prescribed by E3), typical MFPT exhibits
high variability from one profile to another. The stepwise
shape of typical curves suggests that a random walk in such'@ e ; .
a profile consists of regions characterized by subdiffusior?9NtS W'th'.n one correl_atlon Igngth and independent other-
(vertical “steps) and superdiffusioriplateauy appearing in- wise. The first average in the integral produces

termittently. Uncorrelated potential profiles, as Fighy

shows, also lead to a certain disorder-induced variability,

though of a considerably smaller magnitude. To quantify the 10
sample dependence of the MFPT, we calculate its variance
over the ensemble of potential profiles. Figure 5 presents the
standard deviation ity as a function oN for correlated as
well as uncorrelated potential profiles. We observe that the
variance scales ds® for all profiles. This dependence can be
obtained analytically in a quite straightforward fashion. In a
correlated profile, the MFPT is given by Ed.8); then

(Atgp)?) = 4JON dXJXN dyfoN dx’

N
% J dy,[<ezﬁ(U(x)—U(y>+u(x’>—U(y’)]>
XI

A. Quantifying fluctuations

SRie now recall that energies at points separated by distances
larger thané; are essentially independent. Therefore, to esti-
ate the averages, we assume the energies to be equal for

20172 372
(At )O'® ~N

MFPT standard deviation

, ’ FIG. 5. MFPT standard deviation f@to=1.0 for correlated and
— (e2PUX-Uy(2AU)-UYIN] - (24)  uncorrelated potential profiles.
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<eZB[U(X)—U(y)+U(X')—U(y’)]> 10
. 10°
— (2AU00-U(y]y (2B )-Uy )y r—]
! 10
+ £.8(x — X' (PARYX-UIy (@=2BlUG )]y '5_10
+ E.8(y — y' (e 2RV -V AU, s
25(x = X' ) S(v — v/ /e 4BUm-Uy 4 ... 10° g
+ §C5(X X )6(y y )[<e , > : . 9 QQX «  median at ﬁc 1.0
=~ (2PU-UM]y(2BUK)-UNy £t 02[5()( -x') o medianatfc=15
0 2 2
+oy-y)]+ 5(2;616B2025(X_X,)5(y_y,) +:-. (25 10101 102 N 10° 10*
Plugging this expression into E¢24) and performing the @ "
integrations, we obtain the leading term 10
(Ao ~ ENEH, (26) o
Similar reasoning yields for the uncorrelated case =
o 10
_ 10 1
((Atpp)?) ~ N38F, 27 = S, -0
We see that for giveir and 8, correlated energy landscapes 105 . <% .
produce stronger fluctuations in MFPT than uncorrelated ° ﬁeg:a: a: &’fg'g
ones, in agreement with Fig. 4. 0 edian at po = 2.
Comparing the expressions for the variance with the cor- (b1)°101 102 10°N  10° 10°

responding expressions for disorder-averaged MFPT, we see
that for any temperature, there is a characteristic distBiace FIG. 6. Median versus disorder-averagedlid lines calculated
below which there is no self-averaging and the typical MFPTfrom Eg. (23)] MFPT. Median values were calculated for 1000

is determined by fluctuations. This length is realizations of potential profilesta) Correlated potential profile
with £.=20.0;(b) uncorrelated potential profile.

N, ~ £ (28)
for correlated profiles, and ing sample{f)i} containsN/2 values distributed with a vari-
Nc~ezﬁ2"2 29) ance 2°. The minimum and the maximum dU;} have

_ _ . o therefore characteristic values of ¢2In[N/(2\s“'ZT)], re-
for uncorrelated ones. This effect is akin to “freezing” in the spectively. Thus, a typical MFPT for an uncorrelated poten-
random-energy mode26]: for low enough temperatures, tja| reads

typical passage times for distances beldware dominated

by high barriers. This is more pronounced for correlated pro- _ N

files since in addition to stronger temperature dependence, ton ~ EXD{QBU\HHW} (31
there is amplification by a factor of &, as sites within a vem

correlation length give similar contributions. Figure 6 dem-gq; the purposes of estimating the extreme values of a cor-

onstrates the lack of self-averaging for uncorrelated potentigly|5teq energy landscape, the sample size is effectively re-
profiles at short distances and low temperaturesnbeian  4,ceq by a factor of-£,, therefore, the extrema ¢b);} are

MFPT (defined as the 50th percentile of a sammbows . /—— . . .
large deviations from the average at distances shorteNhan approximately 7y2 I[N/ (£:v2m)]. Noting that sites within
a correlation length around the extrema contribute similarly

and coincides with it at distances larger t ; .
ger tdn to the MFPT, for a correlated potential we write

e _ / N
B. Anomalous diffusion ton ~ §§exp[4,80 21n _} ) (32
&N2m

The lack of self-averaging in the regigi<N<N; can
be quantified by estimating the typical MFPT. Consider Eq'Figure 7 compares typical valuest_gj\, calculated from Egs,

(14) for _an uncorrelaied potential and defme thf fO”(_)W'ng(Sl) and (32) with numerically calculated median values of
coarsening procedurélj=Uy +U,i,;. Then, in the “freezing  FPT. We see that our analytical estimates produce a correct

regime,” the double sum order of magnitude fotyy. As expected, for uncorrelated
~ - profiles, the agreement is better at lower temperatures; for
% ; ex A(U; — U] (30) higher temperatures, E(B1) is an underestimation since we

do not include contributions from second lowest, second
is dominated by(i,k) producing the largest exponent. For a highest, etc., energy levels. E§2), on the other hand, turns
finite sample{U;} of sizeN and variancer?, the correspond- out to be a slight overestimation, since we have replaced the
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10% ‘ ‘ 8000 6000
6000
— 4000
@ 4000
#10” —
5 g 20005 5 T 5 10
g Q 6500 5000
= =3
K 10% £ 6000 4500
L [
= EE§ 5500 4000W
i
10 ‘ 2 5000 25 s %007 75 8
1 Oo 1 02 N 1 04 1 06 O 6500 4300
4200
(@
10% 6000 4100
4000
T : Eaf;'S %5 25 255 %8 765 7.7
2,0® o= (a) step no. (x 10’ in scale)  (b) step no. < 10”in scale)
k]
g FIG. 9. Random walk in(@) uncorrelated, andb) correlated
= . with £.=20.0, potential energy profiles.
10"
E . .
C. Characteristics of random walk
10° To complete the picture, we perform direct simulations of
) 10' 10 N 10° 10* random walks in correlated and uncorrelated potential pro-

files; typical results are depicted in Fig. 9. One can see a
FIG. 7. Typical MFPT forN<N, at various values oBo: (@  clear qualitative difference between the two cases: random
Uncorrelated potential profilgh) correlated potential profile with  walks in the uncorrelated profile look very much like stan-
£:=10. Solid lines are the analytical estimates from E&$) and  dard walks withp,=q;=1/2, whereas motion of a particle in

(32). a correlated profile has a somewhat different nature.
As above, we see that macroscopic motion of a particle in
average of~£ terms by their maximum value. a correlated potential consists of subdiffusive as well as su-

Large difference between the median and the average Vaperdiffusive_ segments. It also appears that the particl_e tends
ues is a signature of a brogtiat tailed”) asymmetric prob- {0 be localized near the bottom of “valleys” of fed in
ability distribution. The insets of Fig. 8 present two probabil- xt€nt, whereas in an uncorrelated profile, there are no pref-
ity density functions for MFPT, aN<N, and N> N,. For erable sites for localization. Obviously, when the time is
short distances, the distribution is very broad and spans se{f€asured in real-time units, rather than in number of steps,
eral orders of magnitude. Fai>N,, the system is self- the particle is more likely to be found at the minima of the
averaging, in the sense that the MFPT distribution is muctgnergy landscape in both cases. In terms of the number of

narrower with almost coinciding median and average valuesSteps though, all sites of the uncorrelated landscape are re-
visited more or less uniformly.

L o meden IV. BIOLOGICAL IMPLICATIONS
10T § ] Standardde:amn 1 A. Transcription factors
2 o a '
102 o . 2 - i Consider a DNA-binding protein searching for its target
T R . " site on the genome. As explained in the Introduction, a cor-
10"} MFPT s 8 - related random-energy landscape can arise from the interplay
£ st 08 . of sequence-dependent flexibility, and the bending contribu-
= ol s, 2" 1 tion to the total DNA-binding energy. Diffusion on such a
LB fo e ] landscape may then lead to localization in the energy “val-
ol oo § o N= st ] leys,” i.e., the protein will reside preferentially in specific
5 o = (favorablg areas of the genome. Such nonuniform sampling
10° - s 0l M- S has important implications for biological strategies of tran-
. MEPT scription factor bindings: First, if a valley contains several
10° - - - - - \ binding sites, the rapidsuperdiffusivg scanning of the val-

ley leads to quick equilibration between these sitekile

equilibration for similarly spaced sites outside a valley will
FIG. 8. Probability density functions for MFPT calculated for take much longer This is important when the protein binds

100 000 uncorrelated profile realizations@at=2. nearby sites with distinct binding energies, and the strongest
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one has to be occupied first to provide correct regulatgen  bility. In general, nucleosomes have to fg positioned at
in the case of theCro repressor. Second, several proteins specified locations, andi) be able to move along the DNA
bind their specific sites only when activated by ligaelg., in the vicinity to the initial placement site allowing access to
PurR, Gal§ etc), spending the rest of the time in an inactive this region of the DNA.
form “waiting” for the ligand. These proteins can benefit Nucleosome positioning is determined by specific se-
from staying close to the site in the waiting mode, since theyquences on the DNA. Such sequences are also known to
can then quickly find their target upon activation. provide DNA flexibility and/or internal curvatur@3,36. As

One of the results of this study was that inhomogeneitiesliscussed above, local DNA flexibility and curvature create a
significantly reduce the overall diffusion rate, as in E28).  correlated energy landscape for binding. We suggest that in-
While this may be beneficial in confining a protein to favor- homogeneous diffusion on such landscapes is an important
able regions, it severely restricts the ability to search largelement that provides botl) preferential positioning of the
portions of the genome by one dimensional diffusion. Sincenucleosomes due to DNA flexibility and curvature, giidl
we argue that a portion of the inhomogeneity originates fronrelatively rapid diffusion within the confines of the energy
variations in the bending energy of the DNA, a potentialvalley. Conversely, uncorrelated landscapes cannot achieve
strategy is for the binding protein to switch between twoboth objectives, since strong nucleosome binding sites pre-
states which bend the DNA weakly or strongly. The weakvent local diffusion along the DNA, while weak sites are not
bending state is subject to reduced variations in the energgble to localize these proteins, leading to their random place-
landscape and can diffusive more freégarch mode com-  ment. In fact, experiment{86] have shown that nucleosome
pared to the strongly bending state which is more likely to bgoositioning sites are extended and are fairly weak. Such
confined in the vicinity of favorable energy vallegwaiting  structure of positioning sites creates an extended valley on
mode. One potential candidate for exploiting this strategy isthe correlated binding landscape, supporting our hypothesis.
the tertarmericLacl protein that consists of two DNA- This mechanism can also explain how certain proteins
binding dimeric subunits. Each subunit binds DNA and(such as HMGB can reposition nucleosomes by binding to
bends it slightly; when both subunits are bound, DNA isthe DNA in their proximity. It has been suggested that such
deformed into an extended loop. Several experimental resuligoteins alter the local mechanical properties of the DNA
suggest thatacl binds DNA with only one subunit while (such as its flexibility, curvature, or supercoilingading to
searching for its target sit¢holding DNA with one arm’). repositioning of the nucleosoni&7]. If the nucleosome is
Only when both subunits find their site, the DNA is bent intoindeed preferentially localized by being trapped in a valley
a loop. Very few structural data are available for proteinsof the binding landscape, HMGB proteins may well alter the
bind to DNA nonspecifically¥search mode The above strat- shape of the valleye.g., by shrinking it on one sigleMobile
egy suggests that DNA is less deformed in such complexesiucleosomes, rapidly diffusing within the boundaries of the

Another potential source for a correlated inhomogeneousalley, will then reposition themselves in the new landscape.
energy landscape is an extended protein—DNA interface with
net interactions that are the sum of several local contribu-
tions. (The addition of such correlated contributions leads to
a much larger variance of energy than if they were uncorre- In Sec. IB we described how slogactivated passage of
lated) This can be a significant effect for large multiprotein sSSDNA through a nanopore can be modeled by diffusion over
complexegsuch as polymerases, TFIID, TFIIB complexes in a correlated landscape. In particular, we demonstrated that if
yeast, etg. To avoid slow down by such inhomogeneities, there are inhomogeneities in the charge of the DiNgide
protein complexes can avoid scanning DNA in the fully as-the channelthere will be variations in the potential energy
sembled state when the protein-DNA interface is extensivelandscape that are proportional to the applied voltage differ-
Individual components of the complex can search for theirenceV. There is in fact scant structural information about the
sites independently, assembling the whole complex only omeconfigurations of charggdoth free and boundas DNA
the right site. In fact, most of large protein—~DNA complexespasses through a channel. Examining the variations in the
follow this strategy of assembly on the site, while manyMFPT of DNA as a function of the applied voltag®], may
dimers and tetramers are assembled in the solution. provide an indirect probe of any inhomogeneities in the

charge passing through a channel.

C. Translocation

B. Nucleosomes

. L S V. CONCLUSIONS
Other implications concern nucleosome positioning and

dynamics. Wrapping of the DNA around these large multi- We studied one-dimensional diffusion in a random-energy
protein complexes is essential for packing DNA in the smalllandscape with short-range correlations. We found that dis-
volume of the cell nucleus. Nucleosomes, however, preverrder with short correlation lengtly, leads to a strong
transcription factors and other proteins from accessing DNAsample dependence of diffusion characteristics. The diffusive
To allow a transcription factor to access its target, nucleotransport is influenced up to length scales exceedingy
somes close to that site have to be removed from the DNA oorders of magnitude. Three diffusion regimes can be identi-
repositioned. While removal of nucleosomes is made by spefied:

cific enzymes that chemically modify the(e.g., by histon (1) For distances smaller than the correlation lendth
methilation, repositioning relies in part on nucleosome mo- <¢,), the disorder-averaged MFPT is
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{ton) ~ N2exp(40?B2NIE,). for example, any path contributing 1, ;.,(n) should end

] ] ) with a step from theth site to the right, i.e.,
At biologically relevant temperatures, thNg factor prevails;

however, at low temperaturéksT=< 20/ V"EC), we obtain ex- Piir1(n) =pTi(n-1), (A1)
ponential creegSinai’s diffusion. ) i . ,

(2) For distancesN much larger than the characteristic WhereTi(n) is defined as the probability of returning to the
value N, MFPT exhibits some variability from sample to ith Site aftem stepswithout stepping to the right of.iNow,
sample. However, the typical value of the MFPT is given byaII the paths contributing t@;,(n—1) shouldstart with a step

the disorder-averaged MFPT: to the left, i.e., to thgi-1)th site with probabilityq;, and
. then returning to théth site in the remaining—2 stepsnot
{ton) = N?ex28%0%(1 +e@%)]. necessarily for the first imé\ny path possessing these prop-

The variance of MFPT over the ensemble of potential profileertles consists of paths that originate from the 1)t site

realizations scales d¥® with distance abovéN,. The char- and reach théth site for the first time i< (n—2) steps and

teristic distance s 6% ¢ lated orofil paths that originate from thi¢h site and return to thith site
ac er|52|c2 istancd, equalsg.e or correlated profiles (n—-m-2) steps without stepping to the right of it. Thus,
ande*"*" for uncorrelated ones.

! ! ) the probabilityT;(n—1) can be written as
(3) In the intermediate casé,<N<N, the disorder-
averaged MFPT behaves as described by(Z8). However, (1) = a o :
the MFPT distribution over the ensemble of profile realiza- Ti(n = 1) =20 Progy (MT) S - (A2)
tions is much broader below; than above it, as Fig. 8 ) ) ]
demonstrates. As a result, a typical sample yields diffusion Ve now introduce generating functions
times orders of magnitude shorter than the average. This ef- o o
fect can be qualitatively u_nder'stooq in terms of the .random P (2) = s 2P (), Ti(2)= S 2 T(n). (A3)
energy model. BelowN,, diffusion times are mostly influ- =0 =0
enced by high barriers and deep valleys that are at the ex-
trema of energy landscape histogram. The typical diffusiorOne can easily shodsee, e.g., Ref38]) that
times are given by

N-1
/ Bon@ = 11 Boinl2).
1:_ON ~ eXp|:4ﬂ0' In Nr‘| O,N(Z) |1:([) Pi, 1(2) (A4)
’ 2\2m

m,

for an uncorrelated profile, and Knowing I~3i,i+1(z), one calculates the MFPT straightfor-
wardly as
_ N
2
ton ~ gcexp[ 4B0+ /2 Ingc\’,zl , > NPy n(N)
J— n ~

for a correlated one. Abovid,, most obstacles to the particle ton= S P, (1) - [d—zln PO'N(Z)Lzl
motion lie in the central region, so that E@3) produces a = ON

valid estimation for a typical diffusion time: the system be- Nel
comes self-averaging. _ d -~

These regimes appear to be relevant for biological sys- - g’) {dzln Pij+1(2) o (AS)
tems and provide qualitative insight into the kinetics of

protein-DNA interaction. Using Eqs(A1) and(A2), we obtain the following recursion
relation for P; 11(2):
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APPENDIX A: MEAN FIRST-PASSAGE TIME DERIVATION cal simulations suggest, its influence relaxes quite fast, so
that for longer times, the result is clearly independent of the

The MFPT from the Oth site to thMth site is defined as boundary. The benefit of settingy=1 becomes clear when
the mean number of steps the particle has to make in order e observe that

reach theNth sitefor the first time The derivation here fol-

lows the one in Ref[35]. N . ]50 (D=1, O i iSi (D) =1. (A7)
Let P; ;(n) denote the probability to start at tith site and ‘ ’

to reach thgth site for the first time in exactly steps. Then, Hence,

(A6)
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N-1
Ton= 2 Piina(d). (A8)
i=0
The recursion relation foP; ;,,(1) is readily obtained from
Eqg. (A6):

ﬁl,l+l(1) (;I PI, ll(l) 1+ wl[l + P| 1 |(1)] (Ag)

with w;=q;/p;. Thus, the expression f(15N is obtained in
the closed form as

N-1 N-2 N-1 i
Ton=N+ 2 o+ 2 > (L+w) [ o). (A10)
k=0 k=0 i=k+1 j=k+1

APPENDIX B: POTENTIAL PROFILE GENERATION

Given the pseudoenergy partition function

Z(\\) f D[U]e MV (B1)

the average pseudoenergy is
(Hy= - iIn Z(\) (B2)

Y A1
and the variance is
2 2 2 (92
(AR =(H) = (H)*= —3In Z(N) (B3)
2 =1
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FIG. 10. Pseudoenergy probability density for a profile of length
L=10 000, witha=1.0, £=20.0. Insets(a) Typical potential pro-
file; (b) potential profile correllatorg(r)=1/2[U(x)-U(x+r)]?);
the averaging was performed over 1000 profile realizations.

L
In Z()\)z—aln N+A, (B5)
whereA does not depend ok. Thus,
(Hy=L/2, ((AH)®»=L/2. (B6)

Hence, typical potential profiles have pseudoenergies in
the range./2++L/2. This result together with Gaussian sta-
tistics of energy levels of Eq.10) forms the basis of the
algorithm we employ for building the energy profiles. First, a
random and uncorrelated potential profile obeying Gaussian

Straightforward calculation for the pseudoenergy given bystatistics with the required varianag? is generated on a

Egs.(9a) and(9b) yields

z00 =[] —=

/=' B4
q V2m\(a+ g (B

Since a discrete chain of lengthhas exacthy. modes, each
contributing a factor oh ™2, we have

one-dimensional lattice. Next, we look for a permutation of
lattice sites that produces a typical pseudoenétfy] for a
given correlation lengtlg, (or, equivalently, for given values

of @ and y). This is accomplished by a Metropolis-type al-
gorithm that converges to a prescribed value of pseudoen-
ergy picked at random from Gaussian distribution around
(H); see Fig. 10.
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