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We developed a novel Monte Carlo threading algorithm which allows
gaps and insertions both in the template structure and threaded
sequence. The algorithm is able to ®nd the optimal sequence-structure
alignment and sample suboptimal alignments. Using our algorithm we
performed sequence-structure alignments for a number of examples for
three protein folds (ubiquitin, immunoglobulin and globin) using both
``ideal'' set of potentials (optimized to provide the best Z-score for a
given protein) and more realistic knowledge-based potentials. Two physi-
cally different scenarios emerged. If a template structure is similar to the
native one (within 2 AÊ RMS), then (i) the optimal threading alignment is
correct and robust with respect to deviations of the potential from the
``ideal'' one; (ii) suboptimal alignments are very similar to the optimal
one; (iii) as Monte Carlo temperature decreases a sharp cooperative tran-
sition to the optimal alignment is observed. In contrast, if the template
structure is only moderately close to the native structure (RMS greater
than 3.5 AÊ ), then (i) the optimal alignment changes dramatically when an
``ideal'' potential is substituted by the real one; (ii) the structures of sub-
optimal alignments are very different from the optimal one, reducing the
reliability of the alignment; (iii) the transition to the apparently optimal
alignment is non-cooperative. In the intermediate cases when the RMS
between the template and the native conformations is in the range
between 2 AÊ and 3.5 AÊ , the success of threading alignment may depend
on the quality of potentials used.

These results are rationalized in terms of a threading free energy
landscape. Possible ways to overcome the fundamental limitations of
threading are discussed brie¯y.
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Introduction

The problem of predicting protein conformation
from sequences is of great importance and has
drawn a lot of attention recently (see e.g. Moult
et al., 1997; Shakhnovich, 1997a; Finkelstein, 1997;
Jones, 1997; Levitt, 1997) with hundreds of papers
from dozens of groups.

A most desirable solution to the problem is to
®nd a model and an algorithm that stimulate fold-
ing of a protein pretty much in a way that mimics
natural protein folding and converges to the native
conformation. While some success along these lines
has been documented (Kolinski & Skolnick, 1994),

this approach encounters a number of serious tech-
nical dif®culties, making ab initio structure predic-
tion hardly feasible now and perhaps in the
foreseeable future (Finkelstein, 1997; Ortiz et al.,
1998; Mirny & Shakhnovich, 1996). The main
reason for such a reclusion was discussed by
Shakhnovich (1997a), Finkelstein (1997) and Mirny
& Shakhnovich (1996): a ``good'' folding model
must be detailed enough to reproduce energetics
faithfully and yet simple enough to be computa-
tionally feasible, a blend that has not been reached
yet.

The energetics requirement is a very important
one as far as folding is concerned: the energy func-
tion must be precise enough to single out the
unique native structure as the global energy mini-
mum among an astronomically large number of
decoys, some of which have very low energy
(Shakhnovich, 1994). The precision of potentials
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required to achieve this goal was analyzed by
Bryngelson (1994) and Pande et al. (1995) for lattice
model chains and by Mirny & Shakhnovich (1996)
for real proteins. The analysis by Mirny &
Shakhnovich (1996) suggests that at the level of a
simple two-body approximation of energetics and
structure-less amino acids there may not exist any
potential which is able to fold real proteins into
their native conformations. Adding more details
into the model is probably the way to go. How-
ever, this complicates the search in conformational
space, making computations far more demanding.
Thus, ab initio folding success is contingent on ®nd-
ing a safe pathway between the Scilla of incorrect
energetics and the Kharibda of a too complicated
and thus computationally infeasible model.

The complications inherent in ab initio folding
were realized early by a number of workers in the
®eld, and alternative approaches were suggested;
the most notable of them is threading (Finkelstein
& Reva, 1991; Finkelstein, 1997). The key idea of
the threading method is to decrease dramatically
the number of decoys. This is achieved by con-
straining all protein conformations to a smaller
subset of conformations obtained by threading
through known protein structures that serve as a
scaffold for the protein sequence in question and
®nding the energetically optimal alignment of the
sequence to the scaffold structure. From the physi-
cal point of view the threading problem is some-
what equivalent to folding, because it also requires
searching over a large set of possible alignments
for the one that delivers minimum ``energy''. It
was shown (Lathrop, 1994) that such a search is an
NP complete problem (i.e. that there is an apparent
``Levinthal'' paradox in threading). As in folding,
the search in threading is biased by the energy
function, so that the related key issue is the pre-
cision of the energy function. The rationale for
using threading rather than folding is the hope
that a less precise energy function will suf®ce for
the search over a more constrained conformational
set: in this case the native state should be distin-
guished as having the lowest energy among the
smaller number of alternatives. However, such
simpli®cation of the conformational space comes at
a serious price. The reason is that the native struc-
ture itself may not belong to the constrained con-
formational set! In this case, threading seeks an
approximate solution, i.e. the one that is closest to
the native state in the conformational set of align-
ments. However, if this best solution is relatively
distant structurally from the native state, its energy
may be considerably higher than the energy of the
native state (even with the ``ideal'' potential that
strongly favors the native state). This factor clearly
may decrease the energy gap, balancing on the
negative side the gain achieved due to the restric-
tion of conformational space. Obviously, the con-
formational space restriction, which is the basis of
the threading approach, is not an ``innocent''
approximation that is guaranteed to work almost
by de®nition. Clearly this issue requires a detailed

study that aims to address a question of gains and
losses made by threading approximations and add
to our intuition about which factors are more
important for particular models and when should
we expect success in threading simulations and
when we cannot.

As pointed out above, threading is very much
like folding in terms of key questions and dif®cul-
ties. In folding one asks basically two questions:
are energy functions correct? and is a confor-
mational search ef®cient enough to ®nd the global
minimum? An important advance in protein fold-
ing theory, which started from the seminal work of
Go (Taketomi et al., 1975), is understanding that
those two questions can be studied separately. The
®rst approach proposed by Go (Taketomi et al.,
1975) was to design an energy function that favors
the native contacts and disfavors non-native ones.
Such an energy function gives rise to fast folding
(Gutin et al., 1996). However, the arti®cial penalties
imposed on non-native interactions make the
model somewhat unphysical for studying the
physical principles of folding, because in real life
strong non-native contacts cannot be excluded a
priori. In fact they occur in some proteins (Lacroix
et al., 1997). A more physical model for folding is
based on sequence design, which generates, for
any given potential function, special sequences for
which the native structure is guaranteed to be the
global minimum. Then the same potential is used
for folding as the one used to design sequences
(Shakhnovich, 1994; Shakhnovich et al., 1996a). In
this case folding simulations quickly converge to
the native state (Gutin et al., 1996; Shakhnovich,
1994). The properties of energy landscape and
dynamics that lead to the native state can be stu-
died in detail with implications for folding and
evolution of real proteins (Shakhnovich et al.,
1996a). An approach that is very similar in spirit is
to design a potential which provides low energy to
a natural sequence in its native structure
(Goldstein et al., 1992; Mirny & Shakhnovich, 1996;
Koretke et al., 1996; Hao & Scheraga, 1996; Ortiz
et al., 1998). While this energy function may not be
transferable to other proteins (Mirny &
Shakhnovich, 1996) it serves its purpose by provid-
ing a free energy landscape with a large gap and
hence reasonably fast folding. One conclusion from
the analysis carried out for a number of folding
models suggests that Monte Carlo (MC) simulation
represents a powerful search strategy that is very
ef®cient in ®nding the native state on a physically
reasonable landscape.

Here we take a similar systematic approach to
study threading. First we develop and present a
Monte Carlo threading algorithm, which allows
gaps and insertions both in structure and in
sequence. The advantage of the Monte Carlo
approach is that it converges to the Boltzmann dis-
tribution. This feature makes this method a valu-
able tool to map and characterize a free energy
landscape and outline the physical requirements of
convergence to the global minimum solution.
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To test and rationalize the MC threading method
we apply it to a number of problems of increasing
complexity. The reason behind this ``gradual''
approach is the need to differentiate between limi-
tations intrinsic to the threading approach, as
suggested above, and the ones that originate from
uncertainties in potential functions and the form of
the Hamiltonian (scoring function) used.

Following this program, ®rst we use our algo-
rithm for the structure-structure alignment. It turns
out that in the framework of our approach the
structure-structure alignment is a counterpart of
the Go model studied in folding: it provides the
``ideal'' potential function in which only the native
interactions are favorable. This simple implemen-
tation of the method makes it straightforward to
compare it with existing heuristic approaches such
as the structure alignment algorithm Dali (Holm &
Sander, 1993) used to build the FSSP database. The
comparison shows that the MC procedure pro-
posed in this work gives a more optimal alignment
than Dali (with the same scoring function as used
in Dali).

Next, we turn to a more realistic two-body
energy function where interaction energy depends
on amino acid types, and distances between them
rather than on their location in the native structure.
We design an ``ideal'' parameter set for this Hamil-
tonian scoring function and study how the
approximate character of the potential function
affects the results of threading at various degrees
of similarity between the template and the native
conformations.

Moving closer to the realm of structure predic-
tion, we explore the accuracy of threading, using
one of the knowledge based potentials that are cur-
rently available in the literature (Miyazawa &
Jernigan, 1996).

In order to make our conclusions signi®cant and
general we carried out the analysis for three
fold classes: a/b (ubiquitin and its structural
homologues), all-b (class I immunoglobulin fold)
and all-a (globin fold). The results are consistent
between the fold classes studied. This allows us to
arrive at quantitative conclusions concerning the
degree of similarity between the native structure
and the template that is required for successful
sequence-structure alignment.

In what follows we provide a detailed discussion
of the ubiquitin superfamily followed by the data
(Tables 4 and 5) with comments for the immuno-
globulin and globin fold.

Model

MC threading

To sample possible sequence-structure align-
ments and search for the alignment with the mini-
mal energy we use the Monte Carlo (MC)
procedure. The power of the MC procedure is that
it allows us to ®nd a global minimum on a variety
of rough landscapes (Allen & Tildesley, 1987). In

the search for a minimum, it samples possible
alignments and allows us to study statistical prop-
erties of the energy landscape. This made the MC
procedure extremely useful in the study of various
disordered physical systems such as spin-glasses
(Binder, 1995), liquids (Allen & Tildesley, 1987)
and proteins (Shakhnovich, 1997b; Abkevich et al.,
1995; Pande et al., 1997; Sali et al., 1994).

We develop the MC procedure to sample
sequence-structure alignments. In contrast to pre-
vious work (Bryant, 1996; Lathrop & Smith, 1996),
the whole space of possible alignments is sampled,
allowing arbitrary gaps in both sequence and struc-
ture and arbitrary fragments of matching sequence
and structure. Gap penalties are not used.

General scheme

To construct the MC procedure one needs to
®nd a suitable representation of sequence-structure
alignment and design a move set which could
make sampling effective, i.e. provide a high accep-
tance ratio for the trial moves. In Methods we
describe the alignment representation and the
move set we designed.

Simulation starts from a random alignment. At
each step of the procedure we make a trial move
which slightly changes the alignment. Then we
compute how energy changes, �E, upon this
move. The move is accepted or rejected according
to the Metropolis scheme (Metropolis et al., 1953).
A move is always accepted if �E 4 0, and is
accepted with probability P � exp(ÿ�E/T) if
�E > 0, where temperature T is a parameter of the
procedure. Irrespective of whether the move is
accepted or rejected another step is done and so
on.

This procedure was proven to converge to the
Boltzmann ensemble (Allen & Tildesley, 1987). In
the simulation, the equilibrium ensemble is
obtained by recording an alignment every 1000
steps. The interval is important to avoid correlation
between sampled alignments (Binder, 1986). The
typical length of the run is 106-107 steps which is
10-100 times longer than the typical time required
to reach the alignment with the minimal energy (at
the optimal temperature). An ensemble obtained in
this way is used to compute average values of
different quantities, such as energy and various
distance measures (see below).

Energy function

The energy of an alignment is given by the sum
of pairwise residue-residue interactions. If a struc-
ture of protein I is represented by a set of pairwise
distances between residues rIii0 ; i; i0 � 1; . . . ; I and a
sequence of protein J aligned to this structure is
ai, j � 1, . . . ,J then:

E �
XI

i<i0�1

V�pi; pi0 ; rIii0 � �1�
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where V ( j, j0, R) is the energy of interaction
between residues j and j0 located at distance R in
space, and pi is the number of the residue in the
sequence aligned with position i in the structure
(see Methods: Alignment representations). If aj and
a0j are identities of residues in positions j and j0,
then:

V� j; j0;R� � U�aj; a0j;R�; �2�
where U(x, Z, R) is the potential which gives the
energy of interaction between residue types x and
Z located at distance R in space. Particular forms
of V( j, j0, R) and U(x, Z, R) used for threading are
described below.

To write the energy function in this form we
made the following assumptions.

(1) Energy is a sum of pairwise residue-residue
interactions.

(2) Interaction between residues is a function of
their identities only (not of the distance between
them along the chain (Sippl, 1995) or their local
environments).

(3) Energy of interaction between residues
depends on the distance between some ``represen-
tative'' points of the residues (Ca, Cb, center of
mass, etc.) and not on their relative orientation
(Berriz et al., 1997; Bahar & Jernigan, 1996).

In this study all the distances are measured
between Cb atoms. We do not use penalties for
gaps. Instead, similar to Holm & Sander (1993), we
constrain the length of a fragment to be greater
than or equal to Lmin � 6.

Note that threading with a pairwise potential is
equivalent to alignment of two matrices: rii0 and
V( j0, j, � ) under the constraint that diagonals of the
matrices coincide.

Results

Testing MC search strategy with an
``ideal'' potential

Our ®rst goal is to evaluate the proposed MC
threading as a search strategy for threading as well
as to probe a possible alignment energy landscape.
The results of threading, however, always depend
on both the potential and the search strategy. In
order to test the search strategy and eliminate the
problem of inaccurate potential we use an ``ideal''
potential.

``Ideal'' potential is the one which guarantees the
lowest energy to the native conformation. Using
dRMS (distance RMS, see Methods) as the energy
function is an example of an ``ideal'' potential
(Elofsson et al., 1996). Clearly, the native confor-
mation has dRMS � 0 and all other conformations
have dRMS > 0. In the case of contact potential, the
so-called Go-matrix (Go & Abe, 1981), which we
described in the Introduction, can serve as an
``ideal'' potential. Namely, if i and i0 are in contact
(i.e. rii0 < Rcut) in the native structure, then

V( j, j0, r < Rcut) � ÿ1 and 0 otherwise, where Rcut is
a contact cutoff. Then all conformations which do
not have all the native contacts have higher energy
than the native conformation. Below we use differ-
ent ``ideal'' potentials to test the MC threading
algorithm.

Since an ``ideal'' potential guarantees the lowest
energy to the native conformation, success of
threading and quality of alignment depend only
on the search strategy (threading algorithm).

Threading is equivalent to
structure comparison

When the energy V( j, j0, R) of interaction
between residues j and j0 is a function of rJjj0 (dis-
tance between j and j0 in the native structure J ),
threading becomes equivalent to structure-struc-
ture comparison. For example, when:

V� j; j0;R� �
�rJjj0 ÿ R�2

�Nalg ÿ 1��Nalg ÿ 2� �3�

the energy function becomes equal to dRMS2:

E � 1

�Nalg ÿ 1��Nalg ÿ 2�
XI

i�2<i0�1

�rJjj0 ÿ rIii0 �2

� dRMS2�I ;J � �4�
where Nalg is the length of alignment, i.e. number
of matched residues. Hence, we can use our
threading algorithm for structure-structure align-
ment as well as for threading. In general any
threading algorithm which allows pairwise dis-
tance-dependent potential can be used for structure
comparison.

Then the ®rst test for a threading algorithm is to
apply it to protein structure-structure alignments
and compare the results with those obtained by a
widely used structure comparison algorithm
(Holm & Sander, 1993).

Testing alignment procedure: structure-
structure alignment

Here we compare our results with the structure
alignments made by Holm & Sander available in
the FSSP database (Holm & Sander, 1993). FSSP
was built using the Dali algorithm (Holm &
Sander, 1993), which utilizes the following scoring
function for structure comparison:

V� j; j0;R� � 0:2ÿ 2�
rJjj0 ÿ R

rJjj0 � R

 !
exp�ÿ�rJjj0 � R�=40�

�5�
We use the negative of this Dali scoring function as
a potential for MC threading. In fact, this potential
represents an ``ideal'' Lennard-Jones-like potential
for threading. It has a deep minimum at distance
R � rJjj0 , rapidly increases at small R < rJjj0 and
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slowly increases at R > rJjj0 , approaching a constant
value. (The exponent leads to a very slow decrease
of the potential at large R � 40 AÊ .) This shape
makes the Dali potential equivalent to an ``ideal''
distance-dependent potential, which has a mini-
mum when two residues are at the separation that
they have in the native structure.

Finding the optimal alignment

To assess our Monte Carlo threading as a search
strategy we apply it to structure-structure compari-
son. Optimal alignments obtained by our pro-
cedure are then compared with alignments
provided in the FSSP database. Importantly, we
use exactly the same measure of fold similarity as
the one used by Holm & Sander to build the FSSP
database.

Here we consider a few examples of structures
which have similar folds and no signi®cant
sequence similarity:

ubiquitin-ubiquitin self-alignment �1ubi� : Ubi-Ubi

ubiquitin-cRaf1 �1gua� : Ubi-Gua

ubiquitin-G-protein �1igd� : Ubi-Igd

ubiquitin-ferrodoxin; chain A�1frr� : Ubi-Frr

PDB identi®ers are taken for abbreviation of each
pair. As a control we also use a pair of proteins
with no structural similarity:

ubiquitin-plastocyanin �1plc� : Ubi-Plc

This control mimics the case when the wrong
structure has been chosen as a template for thread-
ing.

For every pair, we compare the optimal align-
ment found by our MC threading and the align-
ment reported in the FSSP. Table 1 summarizes the
results of this test.

For all three cases and for the self-alignment we
®nd alignments that are very close to the FSSP
alignments. Moreover, our procedure clearly ``out-
performs'' the Dali algorithm used to build the
FSSP. Using the same scoring (energy) as Dali, our
procedure ®nds alignments which have better
scores (lower energy) than alignments reported by
FSSP. FSSP was built using a heuristic algorithm,
which found alignments close to, but different

from the optimal ones (Holm & Sander, 1993). In
contrast, our procedure uses the Monte Carlo
search strategy and is known to ®nd the global
optimum when simulated annealing is properly set
up (Kirkpatrick, 1984).

From these results we conclude that our pro-
cedure successfully passed the ®rst test. These
results also demonstrate the superiority of the
Monte Carlo procedure in comparison to a heuris-
tic algorithm in the search for the global optimum.
Clearly, Monte Carlo threading can easily ®nd the
right alignment when an exact distance-dependent
potential of residue-residue interactions is pro-
vided. Can similar success be achieved when a
contact potential (also an ``ideal'' one) is used
instead?

Contact potential versus distance-dependent
potential

A vast majority of protein models currently used
for threading rely on contact approximation, i.e.
two residues are said to interact with each other if
the distance between them is less than a cutoff dis-
tance. The energy in contact approximation is
given by:

E �
XI

i<i0�1

Bpi;p0i �
I
ii0 �6�

where Bjj0 is the energy of a contact between resi-
dues in positions j and j0 of protein J , and �Iii0 � 1
if positions i and i0 are in contact in protein I
and �Iii0 � 0 otherwise. Two residues i and i0 are
said to be in contact if the distance between their
Cb atoms rii0 < Rcut � 8.0 AÊ . If aj, j � 1, . . . ,J is the
sequence of the protein J , then the energy of a
contact Bjj0 � U(aj, aj0), where U(z, Z), x, Z � 1, . . . ,20
is a potential of interactions between residues of
types x and Z. The long-standing question is how
this approximation affects the accuracy of thread-
ing alignments.

To address this question we make threading
using both contact and distance-dependent poten-
tials. Comparing optimal alignments obtained with
these models demonstrates the impact of contact
approximation on the accuracy of alignments.

Table 1. Comparison of the optimal structure-structure alignments obtained by minimization
of the Dali function by MC threading and by the Dali algorithm (Holm & Sander, 1993) (as
reported in FSSP (Holm & Sander, 1997))

FSSP MC threading
Proteins Dali dRMS (AÊ ) Lalg Dali dRMS (AÊ ) Lalg Qalg

Ubi-Ubi ± 0.00 76 ÿ2832 0.00 76 1.00
Ubi-Gua ÿ729 2.05 68 ÿ1047 2.03 58 0.82
Ubi-Igd ÿ344 2.34 46 ÿ362 2.58 50 0.87
Ubi-Frr ÿ579 2.79 61 ÿ648 2.40 60 0.62

The distance between alignments is given by Qalg (see Methods).
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An ``ideal'' potential for the contact approxi-
mation is given by:

Bjj0 � ÿ�Jjj0 �7�
Threading with ``ideal'' contact potential is equiv-
alent to structure-structure alignment, which maxi-
mizes the number of common contacts between
the two structures. In other words, we align con-
tact maps of the two proteins to maximize
Q � �Ii<i0�1�Jpi;p0i

�Iii , which is the overlap between
contacts in the matrices. Table 2 compares optimal
alignments with contact and distance-dependent
approximations for the same ®ve cases.

Clearly, using contacts instead of a distance-
dependent potential introduces very small changes
in the alignments. These changes are predomi-
nantly shrinkage/expansion of fragments by one
or two residues. We also observed that the closer
the two proteins are, the smaller the effect on con-
tact approximation on the accuracy of the align-
ment.

The major advantage of the contact approxi-
mation, compared to the distance-dependent one,
is the small number of parameters required to
de®ne a potential. Since contact approximation
does not change the optimal alignment very much
it can be used ef®ciently for threading. Below we
use the contact approximation for all threading
experiments.

Thermodynamics of alignment

Here we study the generic properties of the
threading energy landscape. Following the
approach of ``ideal'' potential we make structural
alignments of ubiquitin with cRaf1, G-protein, fer-
rodoxin, plastocyanin and ubiquitin itself. Note
that these alignments are equivalent to threading
of the ubiquitin sequence through corresponding
structures when an ``ideal'' potential is used.

For every case we make several MC runs, each
at different constant temperature T. Each run
yields an equilibrium ensemble of alignments.
Averaging over this ensemble we obtain hEi,
Cu � (hE2i ÿ hEi2)/T2, and hQalgi as a function of T
(see Figures 1 and 2). The temperature at which Cu
has the main peak is the transition temperature Tf.

In order to study suboptimal alignments we per-
form a long MC run at transition temperature Tf .
Alignments sampled every 1000 MC steps consti-
tute an equilibrium ensemble of suboptimal align-
ments. For this ensemble of alignments we
compute frequency wij of a match between every
pair of residues i and j as:

wij � 1

M

XM
m�1

dj;pm
i

�8�

where pm is the mth alignment out of M in the
ensemble. Figures 3A, 4A and 5A present wij for
three pairs of proteins considered above.

Figure 1. The average energy in
equilibrium ensemble as a function
of temperature for different pairs of
aligned proteins.

Table 2. Comparison of the optimal structure-structure alignments which minimize distance-
dependent function (columns 2 to 4) and overlap between contacts (columns 5 to 6)

Contact Distance-dependent
Proteins Dali dRMS (AÊ ) Lalg Dali dRMS (AÊ ) Lalg Qalg

Ubi-Ubi ÿ2832 0.00 76 ÿ2832 0.00 76 1.00
Ubi-Gua ÿ1029 2.16 69 ÿ1047 2.03 58 0.96
Ubi-Igd ÿ239 3.15 52 ÿ362 2.58 50 0.90
Ubi-Frr ÿ591 3.06 66 ÿ648 2.40 60 0.84
Ubi-Plc(control) 592 5.54 65 ÿ272 2.67 42 0.30

The distance between alignments is given by Qalg.
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After normalization:

~wij �
wij

�J
j�1wij

we compute the positional entropy of alignments

Si as:

Si � ÿ
XJ

j�1

~wij log ~wij: �9�

Positional entropy Si introduced in this way clearly
measures the degree of uncertainty in matching the
residue i. If i is always matched with j, then pos-

Figure 2. Heat capacity Cu as a
function of temperature. The main
peak on Cu corresponds to the tran-
sition temperature (Tf).

Figure 3. Self-alignment of ubiquitin. Equilibrium ensemble of alignments for structure-structure (A and C) and
sequence-structure alignments (B and D) obtained at Tf . A and B, Distribution of matches wij in the alignments. The
continuous line shows the optimal alignment. C and D, Positional entropy Si, which is the measure of reliability of
alignment.
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itional entropy Si � 0. In contrast, Si has its maxi-
mum if i is matched equally often with all j terms.
Figures 3C, 4C and 5C present Si for the three
cases studied.

Self-threading

First we consider the case of self-alignment, i.e.
the structural alignment of ubiquitin with itself
(Ubi-Ubi). Figures 1 and 2 present average energy
E and heat capacity Cu � dE/dT as a function of T.

As we raise the temperature, T, a sharp tran-
sition in E is observed (see Figure 1). The jump in
E shows that at high T the ensemble consists pre-
dominantly of incorrect high-energy alignments,
whereas at low T the optimal (``native'') alignment
dominates in the ensemble. What is more import-
ant is that this transition is very cooperative (it has
a clear ®rst order-like type). The cooperative nature
of the transition can easily be seen from the sharp-
ness of transition in E, the peak on Cu (Figure 2)
and the bimodal histogram (Figure 6A) obtained at
transition temperature (Tf). Drawing a parallel
with protein folding, we can say that the two
peaks on the energy histogram correspond to two
distinct coexisting states: ``folded'' (correct optimal
alignment) and ``unfolded'' (random alignments).
Both ``folded'' and ``unfolded'' states are free
energy minima. As T decreases the ``unfolded''

state is destabilized. What is more important, as in
the ®rst-order transition scenario, the incorrect
alignments with relatively low energy have high
free energy and are not populated in the equili-
brium ensemble obtained by the MC procedure,
because equilibrium ensemble should be domi-
nated by the correct alignment and a few subopti-
mal alignments with very similar structure.

Figure 3A presents alignments constituting the
equilibrium ensemble. Clearly, the optimal align-
ment (main diagonal, for this case) dominates over
all alternative alignments. Suboptimal alignments,
which contain incorrect i,j matches, constitute a
tiny fraction of the ensemble, since wii � 0.6 and
wij 6�i < 0.01. This domination of the optimal align-
ment is also manifested in a uniformly low pos-
itional entropy Si (see Figure 3C).

Analysis of the self-alignment test brings us to
the following conclusions: (i) the optimal align-
ment can be easily found by the MC procedure; (ii)
the transition for random alignments to the opti-
mal alignment is cooperative; (iii) the optimal
alignments dominates in the ensemble. Although
self-alignment is an essential test for any threading
procedure, it de®nitely represents the simplest
possible case. Now we consider more realistic
cases when the structure of ubiquitin is aligned
against various similar folds.

Figure 4. Ubiquitin-cRaf1 protein. Equilibrium ensemble of alignments for structure-structure (A and C) and
sequence-structure alignments (B and D) obtained at Tf . A and B, Distribution of matches wij in the alignments. The
continuous line shows the optimal alignment. C and D, Positional entropy Si.
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High structural similarity: ubiquitin-cRaf1 protein

Now we make an alignment of ubiquitin and
cRaf1 structures (Ubi-Gua). For this pair the FSSP
database (Holm & Sander, 1997) reports
dRMS � 2.2 AÊ for 58 atoms, providing Z � 5.5.

As in the case of self-alignment the transition is
very sharp (see Figure 1) yielding a peak of Cu
almost as high as for the self-alignment (see
Figure 2). Another observation is that self-align-
ment has a transition temperature Tf higher than
all other cases. The transition temperature for ubi-
quitin-cRaf1 Tubi-Gua

f is the next highest. To ensure
that transition in this case retains its ®rst-order
character we make a histogram of the energy of
the equilibrium ensemble at Tf (see Figure 6B). The
observed bimodal distribution is a clear indication
of the ®rst-order transition.

As in the case of self-alignment, the optimal
alignment dominates over the alternative align-
ments in the ensemble (see Figure 4A). Positional
entropy, however, reveals a region of alignment
(residues 50 to 60), which has a high degree of
uncertainty in placing a gap and a fragment (see
Figure 4C). The rest of the alignment has very low
entropy and, hence, high certainty.

As with self-alignment, the ubiquitin-cRaf1 pair
exhibits a ®rst-order-like transition, which is associ-
ated with high accuracy and is manifested by a
high peak in Cu and a bimodal energy distribution.

Figure 5. Ubiquitin-G-protein. Equilibrium ensemble of alignments for structure-structure (A and C) and sequence-
structure alignments (B and D) obtained at Tf . A and B, Distribution of matches wij in the alignments. The continuous
line shows the optimal alignment. C and D, Positional entropy Si.

Figure 6. Distribution of alignment energies at Tf .
A, Self-alignment of ubiquitin; B, ubiquitin-cRaf1;
C, ubiquitin-cRaf1 protein. Bimodal distribution is a
clear indicator of cooperative ®rst-order-like transition.
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Does every pair of aligned proteins exhibit the
®rst-order transition or is it an indicator of a good
``match'' between the two structures (or a sequence
and a structure in the case of threading)? To
address this question we consider two other pairs
of proteins with a moderate structural similarity
and a control case with no structural similarity.

Low structural similarity: ubiquitin-G-protein
and ubiquitin-ferrodoxin

Both pairs of proteins share a common fold, but
do not exhibit a great deal of similarity. According
to the FSSP database (Holm & Sander, 1997) the
ubiquitin-G-protein pair has dRMS � 2.8 AÊ for 46
atoms providing very moderate Z � 2.8, and the
ubiquitin-ferrodoxin pair has dRMS � 3.6 AÊ for 63
atoms, providing a better Z � 3.6.

Both of these proteins exhibit no ®rst-order tran-
sition in structural alignments with ubiquitin as
can be seen for small Cu peaks (Figure 2) and a
monomodal distribution of energies in the equili-
brium ensemble at Tf (see Figure 6C). As expected,
moderate similarity between structures leads to the
absence of cooperative transition.

Importantly, accuracy of the alignment also suf-
fers a lot, as ¯uctuations in several positions of
alignment increase. There is a substantial degree of
uncertainty in placing every residue. A fuzzy pat-
tern of wij shows that in most suboptimal align-
ments every residue is shifted two or three
positions from its optimal match (see Figure 5A).
These alternative alignments are very frequent in
the equilibrium ensemble and have an energy only
slightly above the optimal energy. A higher level
of Si is another indicator of this uncertainty (see
Figure 5C).

No structural similarity: ubiquitin-plastocyanin

To consider the limiting case when proteins have
almost no structural similarity we make an align-
ment of ubiquitin and plastocyanin structures. The
transition in this case is very smooth and the peak
in Cu is smaller than for all other cases (see
Figures 1 and 2). Alignment exhibits a great deal of
uncertainty in several places (data not shown).
This case represents a ``reference point'' opposite
to that of self-alignment. For any pair of aligned
proteins we can measure the peak of Cu and com-
pare it with two other peaks: the peak of Cu for
self-alignment and the peak for this reference, poor
alignment.

Summary

Pairs of proteins, which are similar to each other,
exhibit cooperative transition and provide the opti-
mal alignment with a high reliability. In contrast,
proteins which share a smaller degree of similarity
have substantial uncertainties in alignments and
exhibit no ®rst-order transitions.

Absence of the ®rst-order-like transition can be a
sensitive indicator of a moderate similarity
between the native structure of a protein and the
structure used for threading. What is more import-
ant, it indicates that there is a huge number of sub-
optimal alignments which are different from the
optimal alignments, but have the energy very close
to the optimal one. This represents a very dif®cult
case for threading. In fact, small (inevitable!) errors
in the potential can decrease the energy of subopti-
mal alignments and increase the energy of the opti-
mal alignment making it a non-optimal one. We
consider this effect in more detail below.

Threading with a real potential

No residue-residue potential is able to provide
an ``ideal'' pattern of interactions, where all native
contacts are attractive and all non-native are
ambivalent (see equation (7).) In fact, a potential
assigns interaction energies to residue types, not
positions! Here we study how threading alignment
changes when we use a full residue-residue poten-
tial instead of an ``ideal'' one. In other words,
instead of making structure-structure alignment
we make a sequence-structure alignment with a
real potential. We, however, chose a residue-resi-
due potential U(xZ), x, Z � 1, . . . ,20 to provide a
pattern of interactions Bjj0 � U(aj, aj0), which
resembles the ``ideal'' pattern as closely as possible.
Essentially, we use the ``best'' potential in place of
an ``ideal'' one and study changes in alignments
associated with this minimal change in potential.
In other words, we introduce a minimal inevitable
``noise'' in the ``ideal'' potential and study the stab-
ility of the optimal alignment to this noise.

The ``best'' potential is obtained by an optimiz-
ation procedure described by Mirny &
Shakhnovich (1996) and, brie¯y, in Methods. We
optimize the residue-residue potential (20 � 20
matrix) for a single protein (ubiquitin in this case)
in order to make as many native contacts attractive
and non-native contacts repulsive as possible. This
optimal potential provides the lowest energy to the
ubiquitin sequence in the native structure of ubi-
quitin and maximizes the energy gap between this
structure and the bulk of alternative ones (Mirny &
Shakhnovich, 1996). Using this potential we make
MC threading of the sequence of ubiquitin through
the four alternative structures (ubiquitin itself,
cRaf1, G-protein and ferrodoxin). Optimal align-
ments obtained in this way are then compared
with the optimal alignments obtained by structure-
structure comparison (see above).

Self-alignment

Self-alignment of ubiquitin using residue-residue
potential shows that the native structure remains
at the global energy minimum and the optimal
alignment does not change. Although seven
matches are lost from the optimal alignment (see
Table 3) there are no displacements in the align-
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ment. A low level of positional entropy Si (see
Figure 3B and D) demonstrates domination of the
optimal alignment over the alternative ones.

Ubi-Gua

The optimal structure-structure alignment is no
longer the lowest energy. Another alignment
becomes the optimal one when we make threading
with the ``best'' potential. This optimal threading
alignment is slightly different from the optimal
structure-structure alignment (see Table 3). Particu-
larly, the alignment gets shorter as some matches
are lost. More important, the last fragment of
threading alignment (eight residues) shifts by one
residue (compare continuous lines in Figure 4A
and B). This shift leads to a slight increase of
dRMS, but still yields absolutely accurate mount-
ing of the ubiquitin sequence on the cRaf1 for the
rest 87% � (62 ÿ 8)/62 of the residues.

Comparing the density of matches wij for struc-
ture-structure (Figure 4A) and structure-sequence
alignments (Figure 4B), we observe an increased
contribution from wrong alignments in the
sequence-structure case. The major part of the opti-
mal alignment, however, sustains this competition
brought about by deviation from ``ideality'' in the
residue-residue potential.

Ubi-Igd

For this case, the best structure-structure align-
ment is by far not the lowest one in energy.
Threading with the ``best'' residue-residue poten-
tial changes the optimal alignment drastically.
Three out of six fragments are misplaced. All
boundaries of the fragments are changed. Only
53% of the matches in the optimal threading align-
ment are present in the structural one. Alignment
gets shorter and provides RMS � 4.17 AÊ for 46 Ca

atoms, compared to RMS � 3.01 AÊ for 46 best
matching Ca atoms for the structure-structure
alignment.

Importantly, threading suboptimal alignments
becomes very different from the optimal one and
are present with substantial frequency in the equili-
brium ensemble (Figure 5B). These lead to low
reliability of the optimal alignment (Figure 5D).

Note that this result is obtained using the ``best''
residue-residue potential, optimized for the
sequence of ubiquitin.

Threading with a knowledge-based potential

We showed that when a minimal possible
``noise'' is introduced into potential, the optimal
alignment with a distant template changes substan-
tially, yielding RMS > 5 AÊ . In contrast, alignments
with close templates sustain minimal possible
``noise'' in the ``best'' potential. How does an opti-
mal alignment with different templates change
when a realistic knowledge-based potential is
used?

Table 3 presents the results of threading with the
potential derived by Miyazawa & Jernigan (Table 4,
upper half of Miyazawa & Jernigan, 1996) (MJ96).
As expected, the accuracy of alignment decreased
dramatically yielding RMS > 5 AÊ for all pairs. Even
self-alignment of ubiquitin becomes inaccurate
with RMS(Ca) � 2.36 AÊ over 74 residues. Impor-
tantly, threading with the close template (Ubi-Gua)
was rather accurate with the ``best'' potential but
broke down with MJ96.

In other words, while threading through a dis-
tant template becomes inaccurate, even under a
minimal possible ``noise'', threading through a
close template can sustain minimal ``noise'', break-
ing down under a higher level of ``noise'' in poten-
tial.

However, there is a possibility that an accurate
enough potential can provide rather good align-
ment on a very close template.

We conclude that further deviation of potential
from the ``ideal'' one leads to the situation that
low-energy decoys become energetically optimal
rather than the structurally optimal alignment. To
understand this phenomenon more deeply we
study the energy landscape of threading.

Energy landscape of threading

The aim now is to study the general properties
of the alignment energy landscape, i.e. how the
energy of an alignment changes as it approaches
the optimal one. The degree of similarity between
two alignments is measured by Qalg (see Methods).

Table 3. Comparison of the optimal structure-structure and optimal sequence-structure alignments for ubiquitin

Structural alignment
(``ideal'' potential) Threading the ``best'' potential Threading MJ96 potential

Proteins Lalg RMS dRMS Lalg RMSa dRMSa Qalg Lalg RMSa dRMSa Qalg

Ubi-Ubi 76 0.00 0.00 69 0.00 0.00 0.92 74 1.83 1.79 0.82
Ubi-Gua 69 2.00 1.80 62 2.76 2.65 0.75 74 5.16 4.21 0.33
Ubi-Igd 52 3.01 2.49 46 4.17 3.40 0.53 55 6.92 4.98 0.36
Ubi-Frr 66 3.03 2.68 64 4.49 3.96 0.61 71 5.42 4.87 0.26
Ubi-Plc 65 5.62 6.07 54 10.23 10.62 0.09 ± ± ± ±

RMS is computed over Ca atoms after optimal superposition of the matched residues. dRMS is computed over Cb atoms. RMSCa

is a better measure of the distance between the backbones, whereas dRMSCb is better in characterizing similarity between folds.
a For fair comparison of three alignments (structural, ``best'' and MJ96) dRMS and RMS were computed over the same length (the

length of the shortest alignment). Qalg is the distance between the threading and structural alignments. It measures the degree of suc-
cess in threading.
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In order to study the energy-similarity relationship
for each case we perform a long MC run at the
transition temperature. Alignments sampled every
1000 MC steps constitute the equilibrium ensemble.
We compute the number of alignments in the
ensemble which have the energy in the interval
[E, 2 E � dE} and similarity to the optimal
alignment Qalg 2 {Qalg,Qalg � Qdalg].

Structure-structure alignment

Figure 7A, B and C present logarithms of the
number of alignments in each energy-similarity
interval for different cases.

These results clearly demonstrate the fundamen-
tal difference between the cases which exhibit ®rst-
order transition (self-threading and Ubi-Gua) and
those which do not (Ubi-Igd and Ubi-Frr). In the
case of the ®rst-order transition (see Figure 7A and
B) we observe a well-focusing landscape, i.e. a
pronounced correlation between the degree of
similarity Qalg and energy. Two states are predomi-
nantly populated: ``folded'' low E, high Qalg; and
``unfolded'', high E, low Qalg. In contrast, when no
®rst-order transition is observed, the landscape is
much less focusing, i.e. there are several low
energy alignments different from the optimal one

(low E, high Qalg). These decoy low-energy align-
ments constitute a serious danger for the success of
a threading procedure. As explained above struc-
ture-structure comparison is equivalent to thread-
ing with an ``ideal'' potential. Then, a potential
different from an ``ideal'' one can decrease an
already small energy difference between the opti-
mal and the decoy alignments and, hence, make
one of the decoys the optimal one. As shown
above, that is exactly the case when the residue-
residue potential is used for threading.

Sequence-structure alignment

Figure 7D, E and F present logarithms of the
number of alignments in each energy-distance for
threading with the ``best'' residue-residue poten-
tial. Comparing these with corresponding ones for
structure-structure alignment (A, B and C) we
observe the following. (i) Both Ubi-Ubi (self-align-
ment) and Ubi-Gua energy landscapes sustain the
change of the potential and both have focusing
landscape. (ii) The threading of Ubi-Igd, however,
suffers a lot from the application of a non-ideal
potential (compare Figure 7C and F). The optimal
alignment becomes very different from the struc-
tural one. As expected, one of the former low-

Figure 7. Energy landscapes of threading. The gray level shows the number of alignments in each E, Qalg interval.
A, B and C, Structure-structure alignments. D, E and F, Sequence-structure alignments. Pairs of proteins used are
shown as the title of each column. All for the equilibrium ensembles of alignments obtained at Tf .
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energy decoys becomes the optimal alignment,
while the structural alignment obtains a rather
high energy. (iii) The nicely focusing landscape of
Ubi-Gua is deformed and several low-energy
decoys with Qalg � 60% appear (compare Figure 7B
and E). We expect that further changes in the
potentials can make one of the decoys the optimal
alignment.

These results bring us to the conclusion that the
optimal alignment may be sensitive to the noise in
the potential. The degree of this sensitivity
depends on the degree of structural similarity
between the native structure and the template
structure used for threading. The closer the tem-
plate structure is to the native structure, the less
sensitive the optimal alignment. It is crucial to
establish the generality of this conclusion and
make it as quantitative as possible. To achieve that,
other threading examples should be considered. In
the following subsection we brie¯y discuss thread-
ing experiments for two more proteins folds:
immunoglobulins (all b) and globins (all a).

Examples of threading with other proteins

In order to generalize conclusions drawn from
the study of proteins with a ubiquitin-like fold (ab
class) we repeated the analysis for proteins of
immunoglobulin (b class) and globin (a class)
folds. For each fold we make structural alignments
and threading alignments with both ``best'' and
MJ96 potentials. Tables 4 and 5 summarize the
results of these experiments.

Consistent with our results for ubiquitin, the
further the template is from the native structure,
the more sensitive the alignments are to the noise
in potential.

By choosing templates of increasing distance
(RMS) from the native structure we can see how
alignment accuracy depends on the distance. The
structure of ®bronectin (Fnf) is very close to the
structure of tenascin with RMS < 2 AÊ . Threading of
tenascin's sequence through the structure of ®bro-
nectin gives very accurate alignment for both
``best'' and MJ96 potential. A template that is close
to the native structure can provide good structure
predictions, even with an available knowledge-
based contact potential (of course, if the threading
algorithm is good enough to ®nd alignments of the
lowest energy!). A bit more distant structure of
human growth hormone (HhrB) provides a good
alignment with the ``best'' potential (Qalg > 0.75,
RMS < 3 AÊ ), but it misses the right alignment with
a more ``noisy'' MJ96 potential (Qalg < 0.5,
RMS > 4 AÊ ). More distant from HhrB template
structure of tenascin provide RMS > 3 AÊ even for
the ``best'' potential and yields totally wrong align-
ments with MJ96 (see Table 5).

For a single domain of hemoglobin (Ash) even
the closest available structure (Fal) gives a poor
alignment with RMS > 4 AÊ when the ``best'' poten-
tial is used. Colicin A, a well-known structural ana-
log of hemoglobin yields completely incorrect
alignments even for the ``best'' potential. We see
that as in the other cases, the templates that are
distant from the native structure can not allow suc-
cessful in threading with any potential.

Table 4. Comparison of the optimal structure-structure and optimal sequence-structure alignments for the immuno-
globulin fold

Structural alignment
(``ideal'' potential) Threading the ``best'' potential Threading MJ96 potential

Proteins Lalg RMS dRMS Lalg RMS dRMS Qalg Lalg RMS dRMS Qalg

Ten-Ten 89 0.00 0.00 84 0.00 0.00 0.94 84 3.27 3.24 0.60
Ten-Fnf 89 0.97 1.00 82 0.94 0.90 0.93 88 2.64 2.86 0.57
Ten-HhrB 80 4.41 3.25 82 2.74 2.26 0.77 87 4.26 3.98 0.47
Ten-Hnf 73 2.88 3.02 73 3.95 3.73 0.53 84 16.89 11.75 0.13
Ten-Cid 74 2.73 2.78 69 3.67 3.31 0.23 82 13.96 8.66 0.17
Ten-Tit 80 5.34 3.52 75 4.83 4.42 0.34 80 5.39 5.05 0.34

Notation as for Table 3. Proteins codes used in the Table and sequence identity with 1ten: Ten, tenascin (100%); Fnf3, ®bronectin
(3-d domain) (22%); HhrB, human growth hormone (19%); Hnf, CD2 (8%); Cid, CD4 (11%); Tit, titin (9%).

Table 5. Comparison of the optimal structure-structure and optimal sequence-structure alignments for globin fold

Structural alignment
(``ideal'' potential) Threading the ``best'' potential Threading MJ96 potential

Proteins Lalg RMS dRMS Lalg RMS dRMS Qalg Lalg RMS dRMS Qalg

Ash-Ash 147 0.00 0.00 141 0.00 0.00 0.93 146 0.77 0.82 0.95
Ash-Fal 140 1.91 1.76 123 4.19 3.44 0.62 143 3.44 3.02 0.81
Ash-Hbg 137 3.16 2.60 115 5.77 4.36 0.51 138 5.87 4.62 0.31
Ash-ColA 114 4.24 3.43 102 7.44 6.05 0.42 146 15.30 8.68 0.00

Notation as for Table 3. Protein codes used in the table and sequence identity with 1ash; Ash, hemoglobin (domain one) (100%);
Fal, myoglobin (12%); Hbg, hemoglobin(deoxy) (14%); ColA, colicin a (6%).

Monte Carlo Threading 519



MC threading versus ``frozen'' approximation

Finally we compare the performance of Monte
Carlo threading with the widely used ``frozen''
approximation (Flockner et al., 1997). Under this
approximation the energy of a target sequence
aj, j � 1, . . . ,J of protein J threaded into a structure
of protein I is assumed to be a sum of energies of
single mutations needed to make sequence J out
of the sequence bi, i � 1, . . . ,I of protein I . If the
energy of protein I after a single mutation bk! ak

is:

e�bk ! ak� �
X

i

U�bi; ak��ik

then the energy of the whole alignment pi under
``frozen'' approximation is:

E �
XI

i0�1

e�bi0 ! ap0
i
� �

XI

i<i0�1

U�bi; ap0
i
��ii0

The ``frozen'' approximation essentially turns a
problem of sequence-structure alignment into a
sequence-sequence alignment with a position-
dependent substitution matrix, allowing appli-
cation of fast and exact sequence alignment algor-
ithms (Smith & Waterman, 1981; Needleman &
Wunsch, 1970). This approximation, however, is
very crude, since all interactions between residues
of the target sequence J are replaced by an exter-
nal ®eld acting on the sequence from the residues
of protein I .

We implemented the ``frozen'' approximation
using local sequence alignment (Smith &
Waterman, 1981) and linear gap penalty function.
To get the best results from the ``frozen'' approxi-
mation we varied the values of the two gap penal-
ties trying 500 different values for each. An
alignment which produced the lowest dRMS was
selected for further comparison. The results for the

``frozen'' approximation applied to ubiquitin
threaded through its three analogs with the MJ96
potential are presented in Table 6.

Clearly, the alignments obtained with the ``fro-
zen'' approximation are very far from the structur-
al ones. The only example where alignment was
close to the optimal is tenascin threaded through
the third domain of ®bronectin. This result comes
as no surprise, since the two proteins have
extremely close structures (RMS < 1.0 AÊ ) and
some sequence and evolutionary homology
(SeqID � 20%). For all other cases the alignments
obtained by MC threading with the same potential
were much more accurate than alignments
obtained using the ``frozen'' approximation.

Discussion

Here we presented a systematic approach to the
problem of protein structure prediction by thread-
ing. As in folding, the problem of threading has
two components: (i) a search strategy, which is
able to ®nd the optimal alignment of sequence and
a structure; and (ii) a potential, which provides the
lowest energy to the native and similar structures
of a protein. First, we developed a Monte Carlo
algorithm to search through the space of align-
ments for the optimal one. To test the algorithm
we applied it to structure-structure alignments
using a Dali potential. For each case studied our
algorithm successfully found the optimal align-
ments which another heuristic algorithm (Holm &
Sander, 1993) failed to ®nd. We also showed that
for proteins with similar structures, the optimal
alignment is not substantially changed when the
distance-dependent potential is replaced by a
much simpler contact potential. Then we con-
sidered structure-structure alignments as sequence-
structure threading with an hypothesized ``ideal''
potential, which makes all native and only native
contacts attractive (so-called ``Go-model'' in pro-
tein folding).

Although no residue-residue potential can pro-
vide this ``ideal'' pattern of interaction, one can
build a potential which provides an interaction
pattern as close to the ``ideal'' one as possible
(Mirny & Shakhnovich, 1996). Using an optimiz-
ation technique (Mirny & Shakhnovich, 1996) we
built this potential for a single protein, ubiquitin,
and then threaded its sequence through different
protein structures. Comparison of the optimal
alignments obtained by threading and correspond-
ing structural alignments brought us to the follow-
ing conclusions. (i) Although the used residue-
residue potential reconstitutes an ``ideal'' pattern
of interactions in the best possible way, optimal
threading alignments are different from optimal
structural alignments. (ii) The degree to which an
optimal alignment changes depends strongly on
the degree of similarity between the native struc-
ture and the template structure used for threading.
Particularly, threading through the native structure

Table 6. Results of threading with ``frozen'' approxi-
mation using the MJ96 potential

Proteins SeqID (%) Lalg dRMS Cb Qalg

Ubi-Ubi 100 76 0.00 1.00
Ubi-Gua 14 76 6.00 0.59
Ubi-Igd 4 61 7.11 0.04
Ubi-Frr 6 76 6.61 0.13
Ten-Ten 100 89 0.00 1.00
Ten-Fnf 22 89 1.79 0.90
Ten-HhrB 19 80 7.23 0.11
Ten-Hnf 9 89 18.21 0.08
Ten-Cid 11 89 8.87 0.00
Ten-Tit 9 89 6.06 0.07
Ash-Ash 100 147 0.00 1.00
Ash-Fal 12 146 4.87 0.01
Ash-Hbg 14 147 6.49 0.17
Ash-ColA 6 147 8.49 0.00

Gap penalties were chosen to minimize the dRMS. As
expected, dRMS values are much higher for all proteins with
no distinct sequence homology (compare dRMS with Tables 3
to 5). The only pair that yields an accurate alignment (Ten-Fnf)
has a distinct sequence homology.
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and a highly similar one yields an optimal align-
ment very similar to the structural one. In contrast,
for proteins sharing a moderate similarity with the
native one, the optimal threading alignment is very
different from the structural one and provides a
poor model of the native structure (RMS Ca > 4 AÊ ).
These results and detailed analysis of the threading
landscape brought us to the major conclusion that
in order to get an accurate threading alignment
one needs, most importantly, a very similar tem-
plate structure. If this is not present, even an
incredibly accurate residue-residue potential is use-
less.

Threading versus folding

In folding, the problem is to ®nd the native con-
formation, whereas threading aims at ®nding a
conformation similar to the native one. The funda-
mental difference is that in threading the native
conformation is not present in the space of possible
conformations and only an approximate (``native-
like'') conformation can be found. The native con-
formation of a protein has an energy much lower
than the energy of other (random) conformations,
where a ``native-like'' conformations is less stable
and not that much below other conformations in
energy. This makes threading a much more
challenging problem as one needs to ®nd a confor-
mation that is not as distinct in energy from others
as the native. When one threads a sequence
through its native structure, the optimal alignment
is separated from dissimilar decoys by a large
energy gap, whereas when one uses a structure
similar to the native as a template for threading,
the gap is much smaller. The further the template
structure is from the native one, the smaller the
energy gap between the optimal alignment and the
random ones. Figure 8 presents a schematic of
energy spectra for folding and threading.

From the physical point of view, threading using
a template close to the native structure is similar to

folding to the structure which has a moderate
energy gap. This situation was studied extensively
with model proteins (Mirny et al., 1996; Abkevich
et al., 1996), where different energy gaps between
the native conformation and the bulk of unfolded
ones are responsible for different regimes of fold-
ing. When the energy gap is large (folding of
designed, evolved sequences), the native confor-
mation is stable relative to changes in temperature
and to mutations (Pande et al., 1995; Vendruscolo
et al., 1997), and folding is fast and exhibits a coop-
erative, ®rst-order-like transition. When the energy
gap is small (poorly designed, random sequences;
Mirny et al., 1996; Abkevich et al., 1996) the native
conformation is much less stable with respect to
temperature and, importantly, is very unstable
to mutations (Shakhnovich & Gutin, 1991) and to
errors in the potential (Vendruscolo et al., 1997;
Pande et al., 1995; Bryngelson, 1994). Folding in
this case is slow because thermodynamic stability
requires a low temperature at which a protein gets
trapped in several misfolded low-energy confor-
mations. Stability with respect to changes in poten-
tial and mutations have the same nature: both raise
the energy of the ground state, decreasing the gap.
If the gap is large enough it sustains destabilization
of the native state and it remains the ground state.
If the gap is small, the destabilizing decrease in the
gap can eliminate the gap completely and make
another (random!) conformation the state with the
lowest energy (see the cartoon in Figure 8).

In this study we observed similar regimes for
threading. When the template is close to the native
structure (self-threading, Ubi-Igd) the optimal
alignment is separated by a large energy gap and
we observe: (i) cooperative transition; (ii) focusing
energy landscape; (iii) high reliability of alignment
(low Si, similar suboptimal alignments); and, most
importantly (iv) stability of the optimal alignment
to the changes in potential. Alternatively, when the
template is moderately close to the native structure
(Ubi-Gua, Ubi-Frr) the gap is small and we

Figure 8. Schematic cartoon of the density of states for folding and threading. See Discussion.
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observe: (i) smooth transition; (ii) poorly focusing
energy landscape; (iii) low reliability of alignment
(high Si, dissimilar suboptimal alignments); and,
most importantly (iv) low stability of the optimal
alignment to the changes in potential.

Factors affecting the accuracy of alignment

These results suggest that there are two major
factors affecting the accuracy of threading align-
ment: (i) the degree of similarity between the tem-
plate structure and the native one; (ii) the accuracy
of the potential. Both factors are responsible for
providing a large energy gap between the right
alignment and the bulk of decoys. The gap is
essential to guarantee the lowest energy and high
reliability for the right alignment.

The crucial role of the degree of similarity for
the success of threading became evident after the
recent experiment in ``blind'' structure prediction,
CASP2 (Moult et al., 1997; Levitt, 1997; Marchler-
Bauer & Bryant, 1997; Eisenberg, 1997; Shortle,
1997; Dunbrack et al., 1997). Several predictors
Jones, 1997; Marchler-Bauer & Bryant, 1997) noted
that success in threading could be attributed more
to target proteins rather than methods. Only those
proteins that have a globally similar (more than
60% of residues superimposable) structure in the
database were modeled accurately (Marchler-Bauer
& Bryant, 1997; Levitt, 1997). The degree of simi-
larity between the two structures (dRMS, fraction
of matched residues, fraction of common contacts,
etc.) required to provide high accuracy of thread-
ing using currently available potentials is still to be
estimated.

Earlier we showed (Mirny et al., 1996) than an
``individual'' potential optimized for a single pro-
tein is not transferable to others. On the other
hand, a ``universal'' potential optimized simul-
taneously for all proteins in the database works
worse for every single individual protein than the
``individual'' potential. Hence, alignments obtained
with any realistic ``universal'' potential should be
much worse than those obtained with the ``individ-
ual'' one used in our threading tests. This is indeed
the case as seen in Tables 3 and 5.

While our analysis is carried out only on a lim-
ited set of examples (three folds) the consistency of
the results between them makes it possible to
make a preliminary quantitative conclusion of
what degree of success in sequence-structure align-
ment can one expect from threading calculations.

When the RMS between the template and the
native structure is less than 2 AÊ the sequence-struc-
ture alignment is likely to be accurate with any
available and reasonably good potential function.

When the RMS between the template and the
native structure is greater than 3.5 AÊ , the sequence-
structure alignment is expected to be grossly inac-
curate, independent of the potential function used.

The RMS between 2 AÊ and 3.5 AÊ represents a
``twilight zone'' where the results may depend

strongly on the potential used as well as particular
proteins.

The analysis of more examples using the MC
threading procedure will allow us to make the
quantitative estimates of expected threading accu-
racy more precise.

We are planning to carry our this research in the
near future.

Fold recognition versus alignment recognition

How does the accuracy of threading alignment
affect the accuracy of fold recognition? Why are
current threading algorithms able to ®nd the right
template structure, yet fail to produce accurate
alignments (Marchler-Bauer & Bryant, 1997; Levitt,
1997; Jones, 1997)?

The major difference between fold recognition
and sequence-structure alignments is in the num-
ber of alternatives to choose from. Fold recognition
is aimed at ®nding a structure in a representative
fold database which contains about 1000 folds
(Holm & Sander, 19970. In contrast, the threading
algorithm applied to two proteins of length 100
needs to ®nd the optimal in the space of 2100 � 1030

alignments (Waterman, 1995). Clearly, fold recog-
nition is much less demanding of the accuracy of
potential and the power of a search strategy. Fold
recognition can tolerate errors in threading align-
ment. In fact, to distinguish a structure close to the
native one from a distant structure one needs to
®nd any low energy alignment of the close struc-
ture. Only a tiny fraction of alignments has the
energy low enough to distinguish the close struc-
ture, but because of the huge alignment space this
fraction numbers in the millions of alignments and
any of them is equally good for the purpose of fold
recognition. In contrast, here we show that align-
ment recognition requires much more accurate
potential and a more powerful search strategy.

To be successful in fold recognition, one need
not send the arrow right to the apple; one just
needs to shoot in the right direction.

Future directions

One of the possible ways to overcome this fun-
damental problem in threading is to use some
extra information about the query sequence. Evol-
utionary information can be of great importance
for structure prediction and has already been taken
into account (explicitly or implicitly) in different
ways (Fischer & Eisenberg, 1996; Gerloff et al.,
1997; Russell et al., 1996; Defay & Cohen, 1996;
Goldman et al., 1996; Ortiz et al., 1998). A popular
way of using evolutionary information is to predict
a secondary structure or the degree of solvent
accessibility from multiple sequence alignments
(Rost & Sander, 1995) and then use this prediction
to re®ne threading. Use of intrinsically inaccurate
predictions, however, should not necessarily
improve folding or threading, (Rost et al., 1997) but
instead can derail them. Rational utilization of
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evolutionary information clearly requires deeper
structural understanding of the evolutionary traces
observed in homologous proteins (Shakhnovich
et al., 1996b; Mirny et al., 1998).

Another substantial improvement may come
from building more complicated (but still compu-
tationally tractable!) models of proteins. Taking
into account side-chains, their sizes and shapes,
can eliminate from the search some threading
alignments that produce unfeasible side-chain
packing and thus focus the landscape to the native
state.

Methods

Alignment representation

An alignment between two proteins of length I and J
is represented by a matrix Aij, where i � 1, . . . ,I and
j � 1, . . . ,J:

Aij � 1 if i is aligned with j
0 otherwise

�
�10�

Another way of presenting an alignment is by a pointer
pi:

pi � j if i is aligned with j
0 if i is not aligned to any residue

�
�11�

In this study we do not allow double matches
(i.e. �i�1, . . . ,I Aij 4 1). The reverse of any fragment in the
alignment is also forbidden, i.e. if Aij � 1, then for any
i0 > i and j0 < j Ai0 j0 � 0. (In general, reverse of protein
fragments in sequence structure alignment might make
sense and improve performance (Finkelstein, 1997).)
Under these constraints, matrix Aij should have the form
shown in Figure 9A, i.e. an alignment composed of
runs of aligned residues separated by gaps in either or in
both proteins. These runs are referred to below as frag-
ments of alignment. Each fragment is a set of matches

(Aij � 1 for (ij) � (i0, j0), (i0 � 1, j0 � 1), . . . ,(i0 � L, j0 � L))
framed into gaps Ai0 ÿ 1,j0 ÿ 1 � Ai � L � 1,j � L � 1 � 0. These
fragments are used in the move set as elementary build-
ing blocks.

Move set

Each move in the move set is designed to change the
alignment preserving most of the matches and, hence,
leading to a small change in energy. Another important
feature of the proposed move set is that it allows easy
introduction of constraints on the minimum length of a
fragment or maximum length of a gap. This ¯exibility is
achieved by making moves on fragments, rather than
creating and destroying single matches. Here we con-
strain the fragment length to be greater or equal to
Lmin � six residues. Moves used in the current implemen-
tation are shown in Figure 10.

Shift

A whole fragment is shifted in any of four directions.
The distance fragment shifted is chosen randomly and
uniformly between 1 and M, where M is the space avail-
able to the next fragment in the direction of the shift.

Shrink/expand

A fragment is shrunk (expanded) on either end on n
residues. The value of n is chosen randomly from the
exponential distribution, i.e. P(n) � a � b � exp(ÿn/5).
Parameters a and b set the limits on n. Limits are chosen
to provide the length of the obtained fragment L 5 Lmin

and not overlap with another fragment.

Figure 9. Representation of a protein-protein align-
ments. A, Example of the alignment; B, its matrix
representation.

Figure 10. Move set. A, Shift; B, shrink/expand; C,
split/merge; D, jump.
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Split/merge

Fragments which happen to be located head-to-tail of
each other are merged into a single fragment. Fragments
are merged every ten steps (starting from step 5), a ran-
domly chosen fragment is split into two fragments at a
random point, providing that lengths of both fragments
L1, L2 5 Lmin.

These moves are suf®cient for successful MC align-
ment. However, we use one extra move which makes
sampling more ef®cient.

Jump

A piece of one fragment is deleted and joined to the
next fragment. The length of the piece is chosen ran-
domly and uniformly so that the length of the remaining
part of the fragment L 5 Lmin.

Although we do not have an explicit move for the cre-
ation (destruction) of a fragment, new fragments can
appear (disappear). In fact, a new fragment can appear
by expansion of an existing one and further splitting.
Similarly, a fragment can disappear by merging with an
existing one followed by shrinking. At least one frag-
ment is present in the alignment. These moves can ef®-
ciently sample all possible alignments between two
proteins. Note that in contrast to other work (Lathrop &
Smith, 1996) the lengths and number (Bryant, 1996) of
fragments can vary.

This move set provides an acceptance ratio for
Monte Carlo steps of about 0.6 at transition tempera-
ture Tf . A typical simulated annealing protocol requires
20-50 temperature levels with 106 steps on each. It
takes about four minutes of CPU time on a Pentium
233 for each 106 MC steps for proteins of approxi-
mately 100 residues.

Measures of similarity

Distance between protein conformations

We use three different measure of distance between
protein structures. Consider proteins I and J which
have length I and J residues, respectively, and alignment
between them given by pi (see above). Then:

dRMS �
����������������������������������������������������������������������������

1

�Nalg ÿ 1��Nalg ÿ 2�
XI

i;i0>i�2

�rJpi;p0i
ÿ rIii0 �2

vuut �12�

where rIii0 and rJjj0 are distances between residues in each
protein. In this study we use distances between Cb atoms
as distances between corresponding residues.

Another measure based on distance matrices rij0 was
introduced by Holm & Sander, 1993) and is used in Dali
structure comparison program:

Dali �
X

i;i0>i�2

0:2ÿ
rIii0 ÿ rJri;p0i

d

 !
exp�ÿd=20� �13�

where:

d �
rIii0 � rJpi;p0i

2

The Dali measure is much more useful for structure com-
parison as it ``weights'' matches between closely located
residues much more than between distant ones (see
Model for details).

A much simpler measure of protein similarity is the
overlap of contact maps to the two proteins:

Q � 1

min�NI ;NJ �
XI

i;i0>i�2

�Jpi;p0i
��Iii0 �14�

where:

�ii0 �
1 if i and i0 are in contact: rii0 < Rcut

0 otherwise

(
�15�

Nw is the number of contacts in protein w. In this study
we use contact cutoff Rcut � 8 AÊ between Cb atoms. Con-
tact overlap Q, in contrast to dRMS and Dali, is focused
on contacts between residues and, hence, it completely
ignores residues that are far from each other and might
not contribute to the energy of the conformation.

Distance between alignments

To measure distance between alignments we intro-
duce overlap Qalg between alignment pi and qi:

Qalg � 1

Nalg

XI

i�1

sign�pi � qi� � jpi ÿ qij �16�

where sign(0) � 0 and sign(x > 0) � 1, (qi, pi 5 0 for all i).

Random alignments

To generate a random alignment we make 104 steps of
the MC procedure at T �1, i.e. accepting all moves.
Alignments randomized in this way are used as starting
points for optimization runs.

Optimization of potential

The aim of this procedure is to ®nd a potential
U(x, Z), x, Z � 1, . . . ,20 that provides the pattern of inter-
actions between residues Bjj0 � U(aj, aj0) as close to an
``ideal'' pattern Bideal

jj0 � ÿ�jj0 as possible. This is achieved
by maximizing the correlation between Bjj0 and ÿ�jj0:

r�U� � r�B�U�;ÿ�� � ÿ hB�i ÿ hBih�i������������������������
s2�B�s2���

p �17�

as a function of potential U. Averages h � i are taken over
all j < j0 elements. Optimization is performed by a Monte
Carlo procedure, where at each step a randomly chosen
element U(x,Z) is increased (decreased) by d � 0.01 and
the increase is accepted or rejected according to the
Metropolis scheme (Metropolis et al., 1953). Since
equation (17) does not change upon linear transform-
ation of U, we set hUi � 0 and s(U) � 1 (see Mirny &
Shakhnovich (1996) for details).

Importantly, r(U) de®ned above is a linear function of
the Z-score, which measures the energy gap between the
native conformation and the bulk of alternative
conformations:

Z � EN ÿ hEiconf

s�E�conf

�18�

where EN is the energy of the native conformation;
hEiconf and s(E)conf are the mean and the variance of
energy of alternative conformations. When hEiconf and
sconf(E) are computed as described by Mirny &
Shakhnovich (1996):
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r � Z�������������������
ntotal ÿ n
p �19�

where n is the number of native contacts in J and ntotal

is the total number of possible contacts J �J ÿ 2�=2.
Then, by maximizing r we maximize Z and make the
native conformation of the proteins a pronounced energy
minimum (Mirny & Shakhnovich, 1996).
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