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Concepts of orthology and paralogy are become increasingly important
as whole-genome comparison allows their identification in complete
genomes. Functional specificity of proteins is assumed to be conserved
among orthologs and is different among paralogs. We used this assump-
tion to identify residues which determine specificity of protein–DNA
and protein–ligand recognition. Finding such residues is crucial for
understanding mechanisms of molecular recognition and for rational
protein and drug design. Assuming conservation of specificity among
orthologs and different specificity of paralogs, we identify residues that
correlate with this grouping by specificity. The method is taking advan-
tage of complete genomes to find multiple orthologs and paralogs. The
central part of this method is a procedure to compute statistical signifi-
cance of the predictions. The procedure is based on a simple statistical
model of protein evolution. When applied to a large family of bacterial
transcription factors, our method identified 12 residues that are presumed
to determine the protein–DNA and protein–ligand recognition specificity.
Structural analysis of the proteins and available experimental results
strongly support our predictions. Our results suggest new experiments
aimed at rational re-design of specificity in bacterial transcription factors
by a minimal number of mutations.
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Introduction

The concepts of orthology and paralogy were
originally introduced by Walter Fitch in 19701,2

and recently became a subject of active
discussion.3 – 6 Briefly, orthologs are genes in dif-
ferent organisms which are direct evolutionary
counterparts of each other. Orthologs were
inherited through speciation, as opposed to para-
logs which are genes in the same organism which
evolved by gene duplication.6,3,2 After duplication,
paralogous proteins experience weaker evolution-
ary pressure and their specificity diverges leading
to emerging of new specificities and functions.
Orthologous proteins, on the contrary, are believed
to be under similar regulation, have the same
function and usually the same specificity in close

organisms.7 – 9 In other words, both paralogs and
orthologs are assumed to have similar general
biochemical functions, while orthologs are also
believed to have the same specificity. Although
the validity of these assumptions is yet to be
verified experimentally, numerous case studies
support such views.6,10 Several methods have been
developed to find orthologous proteins in complete
genomes.8,11 The assumption of similar regulation
of orthologous proteins was productively used by
several groups to identify common regulatory
motifs upstream of orthologous proteins.9,12 – 15 In
this study we exploit another property of ortho-
logs: similar specificity, as contrasted by different
specificities of paralogs.

If the above assumption is correct, grouping by
orthology becomes grouping of proteins by speci-
ficity. Here we developed a method, which uses
such grouping to identify amino acid residues
that determine the protein specificity. Specificity-
determining residues can be very hard to find
even when the structure of a protein or a complex
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is available, since very few amino acid residues
provide specific recognition (see below). Extensive
site-directed mutagenesis is used to find such
residues, though frequently complicated by a need
to discriminate between specific and non-specific
effects of a mutation. Computational prediction of
the specificity determinants can substantially
reduce experimental efforts and provide guidance
for rational re-design of protein function.16,17

Our method relies on the above assumption
that binding specificity is conserved among

orthologous proteins and is different in paralogous
proteins. The idea of our method is (1) to start from
a family of paralogs in one genome, find orthologs
for each member of the family in other genomes
and (2) identify residues that can better dis-
criminate between these orthologous (specificity)
groups.

Assumption of specificity conserved among
orthologs is not necessarily true.18 However, mis-
labeling of orthologs and paralogs and errors
in specificity assignments may mask some

Figure 1. Observed I (blue) and the mean expected I exp (thick red) mutual information in DNA-binding (a) and
ligand-binding (b) domains of the LacI family. Thin red lines show Iexp ^ 2sðIexpÞ: P(I ) is statistical significance of
mutual information. Filled circles indicated residues with I . 1:0: Positions with filled circles and low P(I ) are pre-
dicted specificity determinants. The number along the sequence are according to 1wet PDB structure.
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specificity-determining positions, but will not lead
to spurious predictions of specificity determinants.
Thus any noise decreases sensitivity of the method,
but does not lead to appearance of false positives.
In the case considered here, the orthology relation-
ships were simple to resolve. Given the increasing
amount of genomics data and the emergence of
genome analysis techniques such as positional
clustering and regulon identification, the possi-
bility to analyze more complicated cases will
increase steadily.

In its second part the method is similar to
techniques of hierarchical analysis of residue
conservation,19 PCA in the sequence space,20 evolu-
tionary trace analysis21,22 and prediction of
functional sub-types.23 All these techniques use
multiple sequence alignment (MSA) to group
proteins into sub-groups based on sequence simi-
larity and then identify residues that confer the
unique features of each sub-group. Lapidot et al.24

compared the variability of positions in aligned
olfactory receptors of human and mouse, and
identified positions conserved in orthologs, but
varying in paralogs. A complementary structure-
based approach was developed by Johnson &
Church to predict protein function using a prior
knowledge of the binding-site residues.25 In
contrast to other methods, our method relies
on the definition of sub-families based on gene
orthology and a rigorous statistical procedure
to predict specificity-determining residues. Our
statistical procedure determines whether positions
in the MSA can discriminate between functional
sub-families better than the sequence similarity.
Residues that satisfy these criteria are predicted to
be specificity-determining. Primarily, our method
does not require the knowledge of the protein
structure and can tolerate certain substitutions
within a sub-family.

Here we present results of our analysis applied
to the LacI/PurR family of bacterial transcription
factors. The main result of this study is that
among 12 identified specificity-determining resi-
dues, three are binding the DNA and eight are
binding the ligand in the ligand-binding domain.
The available experimental information supports
the critical role of the identified DNA-binding
residues in determining the specificity of the DNA
recognition. Analysis developed here is not limited
to DNA-binding proteins and can be applied to
any family of proteins where the clear orthology
or functional grouping can be established.

Results

Specificity determinants of the LacI family

We have chosen the LacI family for our analysis
because (1) it is one of the largest families of
bacterial transcription factors, (2) the availability
of complete bacterial genomes has allowed us
to resolve orthology by positional analysis (see
Materials and Methods), and (3) available
experimental26 – 28 and structural29,30 information
can be used to assess our predictions.

Figure 1 presents the mutual information Ii; the
expected mutual information Iexp and the proba-
bility P(I ) computed for the LacI family using
Model 1. Model 2 produces very similar results.
This plot reveals several important features: First,
it shows high correlation r ¼ 0:97 between Ii and
I

exp
i : Very good agreement between Ii and I

exp
i

demonstrates that the statistical model used to
compute Iexp succeeded in explaining r2 ¼ 94% of
variation in mutual information and is able to
reproduce naturally higher mutual information
due to high intra-family similarity of orthologs
(see Methods). Second, the vast majority of amino
acid residues in the LacI family exhibit weak
association with the specificity as indicated by
PðIÞ < 1: Third, very few positions have both low
PðIiÞ and high Ii (shown by arrows in Figure 1).
Amino acid residues in these positions have strong
association with functional grouping (stronger
than sequences on average), indicating the role of
these positions in determining different specifici-
ties of different groups of orthologs.

Table 1 presents predicted specificity-determin-
ing amino acid residues. Importantly, although
methods to estimate statistical significance are
very different, sets of residues found by them are
very similar. The specificity determinants are: 15,
16, 50 and 55, in the first domain; and 98, 114, 122,
146, 147, 160, 221 and 249 in the second domain
(here and below the numbering is according to
PurR; the PDB code 1wet).

Table 2 shows the pattern of conservation of pre-
dicted specificity determinants. As expected, most
of these residues are conserved within orthologous
groups and are different between different groups.
Importantly, there are some exceptions from this
rule in all specificity-determining positions (see
Discussion).

To better understand the role of specificity-deter-
mining residues we map them onto the structures

Table 1. Lists of specificity-determining residues as predicted by different methods

Method DNA-binding domain Ligand-binding domain

Model 1, equation (3) P , 1025 I . 1.0: 15, 16, 50, 55 P , 1025 I . 1.5: 98, 114, 122, 146, 147, 160, 221, 249
Model 1, equation (4) P , 1024 I . 1.0: 15, 16, 50, 55 P , 1024 I . 1.5: 98, 114, 146, 160, 221
Model 2 P , 1022: 15, 16, 55 P , 1022: 85, 98, 122, 146, 160, 221, 246, 249

Numbering is according to 1wet PDB file.
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Table 2. Specificity determinants in the proteins of PurR/LacI family

Residue 15 160 146 55 98 16 114 221 249 122 50 147
P(I ) 3 £ 10211 2 £ 10210 4 £ 1029 6 £ 1029 1 £ 1028 2 £ 1028 2 £ 1027 6 £ 1027 4 £ 1026 4 £ 1026 6 £ 1026 9 £ 1026

I 1.79 1.86 1.57 1.60 1.86 1.38 1.55 1.56 1.77 1.82 1.43 1.71

AraR P V N I N H H S E E Q A
P L N V N D Q T E E Q A

KdgR K T D N N T L T W Q V S
K T D N N T L T W Q A S

CcpA M I G A D A K Y E M V T
M I G A D A K Y E M V T
M I A A D A K Y E M V S
I I E K D A K L E M V T

M I A A D A K Y E M V S
M I G A D A K E E L V T
M I G A D A K Y E M V T
M I G A D A K Y E M V A
M I G A D A K Y E M V S
M I G A D A K P E M V S
M I G A D A K Y T M V T
M I A A D A K Y E L V S

DegA . S D Q E . N S L S L R
P S D Q E T N S L S L R
P S D Q E T N S L G L R
P S D Q E T N S L G L R

YjmH H A N V I T K Y D V N R
H S N A I T M Y D M N R

RbsR T D D K E S K F M M L W
T D D K E S K F A L L W
T E D K G S K F T M V W
F I D K D T K F M A V R

PurR T D D K H T K F I M V W
T D D K W T K F I M V W
T D D K K T K F V M V W
T D D K G T K F T M V W

CytR T I A K A A K F V L L N
T I A K A A K F V L M N
T I A R G A K F T L L C

GalS V L I A Y A K P S H N N
V L I A Y A Q P N H N N
V L I A Y A H P S H N N
V L I A Y A H P S H N N

AscG R F L A H S L Y E H I D
R F L A R A L Y E H A D
K L N A K A Q N D Y L R
K C N S K A L W D Y L R

LacI Y F D V E Q Q W Q N L V
Y F D A R Q Q W Q N V V

TreR K Y A R Q S R L T F S R
K Y A R Q S R L T F S R

(continued)



Table 2 Continued

Residue 15 160 146 55 98 16 114 221 249 122 50 147
P(I ) 3 £ 10211 2 £ 10210 4 £ 1029 6 £ 1029 1 £ 1028 2 £ 1028 2 £ 1027 6 £ 1027 4 £ 1026 4 £ 1026 6 £ 1026 9 £ 1026

I 1.79 1.86 1.57 1.60 1.86 1.38 1.55 1.56 1.77 1.82 1.43 1.71

K Y A R Q S R L T F S M
GntR K F M S G M Y S D S A D

K F M S G M W S D T A D
K M M S G M Y S D T A E

IdnR K F M L N M C S D T E E
K F M L N M Y S D S A D

FruR · A D R E . R Y Q S V R
R A D R E T R Y A S V R
K E D R D T R F T A A R

I, mutual information; P(I ), statistical significance of mutual information. Proteins are grouped by paralogous specificity as indicated in the first column. Residues are sorted by P(I ).



of the PurR and LacI–DNA complexes. Figure 2
shows the structure of the PurR–DNA complex
with specificity-determining residues shown by
space-filling atomic models with atoms of van der
Waals radii. Clearly, these residues form two
clusters in the structure: one around the DNA and
other around the ligand. This result comes as no
surprise, since proteins of the LacI family act as
transcription repressors (activators) upon presence
or absence of particular small molecules (sugars,
nucleotides, etc.). Hence, paralogous proteins
differ in specificity of both DNA and small
molecule (ligand) recognition. The two identified
spatial clusters supposedly determine this
specificity.

Examination of the structure brings us to the
following conclusions. (1) First four specificity-
determining residues in PurR Thr15, Thr16, Val50
and Lys55 (Tyr17, Gln18, Val52 and ALA57 in
LacI) are located in the DNA-binding domain.
Three of them (15, 16 and 55 in PurR; 17, 18 and
57 in LacI) are deeply buried in the DNA grooves
forming a dense network of interactions with the
bases (see Figure 3(d) and (e)). Val50 (Val52 in
LacI) forms a hydrophobic contact with its counter-
part on the other chain. (2) Six more specificity-
determining residues (out of eight) Met122,
Asp146, Trp147, Asp160, Phe221 and Ile249
(Asn125, Asp149, Val150, Phe161, Trp220 and
Gln248 in LacI) are located in the ligand-binding

Figure 2. Structure of PurR bound to the DNA. Two chains of the dimer are shown semi-transparent in light green
and pink. Predicted specificity determinants are shown by space-filling and colored red in the pink chain and green
in the light green chain. The ligand (guanine) and the DNA are shown in blue. Notice deep penetration of some
specificity-determining residues into the DNA and formation of the ligand-binding pocket by most of the others.
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pocket. Five of them (Met122, Asp146, Asp160,
Phe221 and Ile249) are within 8 Å from the ligand
in PurR and within 5 Å in LacI (Asn125, Asp149,
Phe161, Trp220 and Gln248) (see Figure 3(a) and
(b)). The observed clustering of the identified
amino acid residues around the ligand is striking,
since the structure of the protein was not used in
our analysis.

Such structural location indicates that identified
residues are indeed involved in the specific recog-
nition. While the DNA-binding residues deter-
mine motifs recognized on the DNA, the residues
located close to the ligand determine the ligand-
binding specificity of the protein. Since different
orthologs have different ligands, these residues
change from sub-family to sub-family, but stay the
same within most sub-families. Phe221 in PurR
and corresponding Trp220 in LacI are of a special
interest as their aromatic rings directly interact
with aromatic ligands. Two other residues (Trp98
and Lys114 in PurR; Arg101 and Gln117 in LacI)
do not belong to either of the clusters, as they are
located far from the DNA and the ligand. They
either are “false positives”, or have some special
role in the allosteric regulation.31 Indeed, Val50,
Trp98 and Lys114 of one chain interact tightly
with the other chain, specifically, Val50 and Lys114

interact with side-chains of Lys114 and Val50 from
the other chain. These residues can be important
for correct dimerization and hence exhibit sought
covariation with functional grouping. In summary,
the structural location of identified residues sup-
ports our findings that they serve as specificity
determinants in proteins of the LacI family. This
includes the specificity of the DNA recognition
and the ligand-binding specificity.

Although putative specificity determinants are
located close to the DNA and the ligand, few resi-
dues that are contacting the ligand or the DNA
exhibit the conservation pattern of specificity
determinants. Figure 3(c) and (f) shows residues
located within 6 Å from the DNA (Figure 3(f)) and
the ligand (Figure 3(c)). The residues are colored
by their sequence entropy, S, which is traditionally
used to estimate the degree of evolutionary
conservation.32

This picture demonstrates that specificity deter-
minants constitute only a small fraction of all
residues located on binding interfaces. It is also
clear that the value of sequence entropy cannot
discriminate specificity determinants from other
residues. There observations emphasize challenges
in identifying specificity determinants by tra-
ditional evolutionary and structural analysis.

BA C

D E F

Figure 3. Detailed picture of the ligand binding pockets ((a)–(c)) and protein–DNA interface ((d)–(f)) in PurR ((a)
and (d)) and LacI ((b), (c), (e) and (f)). Predicted specificity determinants are shown in space-fill on (a), (b), (d) and
(e). (c) and (f) represent residues at 6 Å proximity from the ligand (c) and DNA (f). These residues are colored by
their conservation sequence entropy (S ) in LacI family from most conserved in blue to most variable in red. Note
that it is impossible to predict specificity determinant by proximity or conservation.
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Discussion

In this study we suggested a method to identify
specificity-determining residues in proteins. We
applied it to one of the largest family of bacterial
transcription factors and obtained a set of putative
specificity-determining residues. Mapping of these
residues onto a protein structure showed that
most of identified residues belong to two spatial
clusters. Residues of one cluster bind the DNA,
while residues of the other cluster form a ligand
pocket of the protein. This finding is consistent
with the function of transcription factors of this
family: they repress transcription by binding the
DNA and release transcription when a particular
ligand is present. (Conversely, some proteins in
the family, e.g. PurR, bind the DNA only when
the ligand is present.) Paralogous proteins of this
family differ from each other in the ligands they
recognize and in the DNA sites they bind. Hence,
two clusters of residues found by our method
presumably determine specificity of these two
recognition processes.

Our analysis suggested residues 15, 16 and 55 as
primary determinants of the DNA-binding speci-
ficity. The role of positions 15, 16 and 55 in specific
DNA recognition is evident from a series of mutant
experiments.26,27,28 Extensive site-directed muta-
genesis of the second helix of LacI showed that
residues 15 and 16 are essential for DNA-binding
specificity.33 When Tyr15 and Gln16 of LacI were
mutated to the residues present in these positions
in the paralogs (MalI, RafR, CytR, etc.) the mutants
were preferentially binding operators of the
respective paralogs. Similarly, when GalR was
mutated to have the residues of LacI in positions
15 and 16, mutant GalR was specifically binding
sites of LacI.26,27 These experiments strongly sup-
port our result that positions 15 and 16 are respon-
sible for determining DNA-binding specificity in
proteins of the LacI family. Another residue found
by our analysis is residue 55. Although residue 55
is binding DNA in the minor groove, this residue
was shown to be critical for the DNA recognition
by PurR.28 Our results suggest that a triple mutant
(15, 16 and 55) should have a higher specificity
and affinity to paralogous operators.

To the best of our knowledge, residues identified
in the ligand-binding domain (except for 146) have
not yet been the subjects of protein engineering
studies. Although mutations of several other
residues were shown to interfere with the ligand
binding, it is not clear how they influence speci-
ficity (as opposed to affinity) of the ligand recog-
nition. Most of mutations in the region were
shown to drastically reduce the affinity. Our analy-
sis suggests ways to do rational re-design of the
ligand binding specificity. One can “transplant”
some or all of the outlined residues from a paralog
to LacI and measure the mutant’s binding
constants for various ligands normally bound by
this paralog. The main question posed by our

study is whether the specificity can be re-designed
by changing a small set of the predicted residues.

Another possible application of the putative
specificity determinants is in more focused pre-
diction of the DNA-binding specificity. Instead of
considering all interactions between the DNA and
the protein, one can focus on the interactions
formed by the specificity determinants. This
approach is a subject of our current research.

The most important part of the presented algor-
ithm is the procedure used to calculate statistical
significance of the mutual information. Specificity
determinants were selected as residues having
both high I and very low P(I ). Note, that selection
by high I alone would yield a very different (and
very large) set of residues (see Figure 1, filled
circles). Most of such residues do not have statis-
tically significant association with grouping
(PðIÞ < 1). This observation emphasizes the
importance of statistical test in our analysis.

Although promising, our analysis has its limi-
tations. It relies heavily on the grouping of proteins
by orthology. To resolve orthology, one needs to
have (almost) complete genomes of several closely
related organisms. This makes our analysis signifi-
cantly data demanding. Even if complete genomes
are available, orthology may not be easily resolved
when very similar paralogs are present or when
genomes are too diverged from each other. Our
analysis also assumes that orthologs have the
same function and specificity. This is likely true
for evolutionary close organisms, where orthologs
had not enough evolutionary time to diverge in
specificity. One way to avoid these pitfalls is to
use proteins where conserved specificity has been
experimentally verified or confirmed by indepen-
dent genomic positional or regulatory analysis.
Using genomicly resolved orthologs one has to
rely on the statistical significance, P(I ). If a dataset
is “contaminated” with false orthologs or orthologs
with diverged specificity, no residues would have
low P(I ).

Our analysis also relies on the assumption that
the same residues determine specificity of para-
logs. Little is known about the spatial location of
the specificity determinants. Active site residues,
however, are known to have very conserved spatial
location in the families of homologous proteins.
Active sites have the same spatial location, even
when similarity between the sequences is as low
as 10%. For example, proteins of the TIM-barrel
and flavodoxin folds have “super-sites”, i.e. active
sites in the same spatial location, although
amino acid residues forming the sites and the bio-
chemical function of these proteins have widely
diverged.34,35 This extreme conservation of the
spatial location of functionally crucial residues
supports the assumption of common location of
the specificity determinants. Since most orthologs
and close paralogs have high sequence similarity,
residues matched in the MSAs are likely to have
common spatial location. However, recognition
of molecules of various shapes (ligands, protein
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interfaces) may involve different interactions and
therefore variable spatial location of the specificity
residues cannot be ruled out. The most direct
test of our assumption would be to perform the
experiments suggested above. Calculation of
statistical significance also constitutes an internal
test of our method. If sets of residues which deter-
mine specificities of paralogs differ, our method
will identify an overlap between these sets as
having low P(I ). If the sets do not overlap, no
residues would have substantially low P(I ).

As can be seen from Table 2 our method, in con-
trast to evolutionary trace analysis,21 can tolerate
certain substitutions within a group of orthologs.
All amino acid residues, however, are assumed to
be equally distinct in their properties. In other
words, substitutions I ! L and I ! H are treated
equally, while in reality the change of the physical
properties of amino acid residues depends on the
type of the substitutions. We are currently develop-
ing a method to identify specificity determinants
with different spatial locations, which will also
take into account physical properties of amino
acid residues.

Here we have suggested a method to find resi-
dues that determine the specificity of the protein
recognition. The method is based on discrimi-
nation between orthologous and paralogous
proteins, taking advantage of several complete
bacterial genomes to identify them. The method
does not require a solved 3D structure of a protein
to predict specificity determinants. Analysis of a
large LacI family of bacterial transcription factors
found two groups of residues as the putative
DNA-binding and ligand-binding specificity deter-
minants. Predictions of the DNA-binding residues
are strongly supported by the earlier experimental
results. Results of our analysis suggest targeted
protein engineering experiments aimed at rational
re-design of the protein specificity.

Materials and Methods

The key idea of this method is to compare paralogous
and orthologous proteins from the same family. As a
rule, all paralogous and orthologous proteins have the
same biochemical function. Paralogous proteins, how-
ever, usually have different specificity as they act on
different targets, e.g. bind different ligand or different
sites on the DNA. Orthologous proteins, in contrast,
have the same specificity in different organisms, e.g.
bind the same ligand and similar DNA sites in related
genomes. Hence, orthologous proteins carry the same or
similar specificity-determining residues, whereas para-
logous proteins carry different ones. On the basis of this
idea, our analysis is looking for residues that are con-
served among orthologs and different in paralogs. More
generally, we are looking for residues that can discrimi-
nate between different paralogs, while grouping
orthologs together. We call these residues specificity
determining.

The analysis works as following: First, in a group of
homologous proteins, paralogs from one organism are
selected. Second, for each of the paralogs we find its

orthologs in related organisms and build a MSA using
ClustalW.36 Third, we compute the mutual information
for each position of the MSA. The mutual information
determines how well a residue in the MSA can discrimi-
nate between orthologous groups. The forth, and the
most important step is to compute the statistical signifi-
cance of the discrimination and to select residues that
can discriminate significantly better than the others.
These residues are the specificity determinants.

Selection of orthologs

A list of complete and almost complete bacterial
genomes used in this study and a full list of orthologs is
provided below. Homologs of LacI and PurR of
Escherichia coli were identified using GenomeExplorer37

and supplemented by proteins from SwissProt.38 Then
phylogenetic trees were constructed using the neighbor-
joining procedure implemented in ClustalW.36

Only unambiguous groups of orthologs were selected
and identified by (1) absence of duplications in the corre-
sponding sub-branches of the tree (in two cases dupli-
cations in one genome were allowed where the proteins
were known to have the same ligand and DNA-binding
specificity); (2) coinciding functional annotation when
known (no proteins with different specificity were
included in one group) and (3) genomic positional
analysis (genes encoding candidate orthologs should
belong to orthologous loci, that is, have orthologous
neighbors).

Mutual information

To identify residues that can discriminate between
paralogous proteins (different specificity), merging
orthologs (same specificity) together we use the mutual
information as a measure of association with the
specificity. Mutual information is frequently used in
computational biology for co-variational analysis in
RNA and proteins.39,40

If x ¼ 1;…; 20 is a residue type, y ¼ 1;…;Y is the
specificity index which is the same for all proteins of
the same specificity group and is different for different
groups, and Y is the total number of specificity groups,
then the mutual information at position i of the MSA is:

Ii ¼
X

x¼1;…;20
y¼1;…;Y

fiðx; yÞ log
fiðx; yÞ

fiðxÞf ðyÞ
ð1Þ

where fiðxÞ is the frequency of residue type x in position i
of the MSA, f ðyÞ is the fraction of proteins belonging to
the group y, and fiðx; yÞ is the frequency of residue type
x in the group y at position i. Mutual information has
several important properties: (1) it is non-negative; (2) it
equals zero if and only if x and y are statistically inde-
pendent; and (3) a large value of Ii indicates a strong
association between x and y.41 Unfortunately, a small
sample size and a biased composition of each column in
the MSA influences Ii a lot. For example, positions with
less conserved residues tend to have higher mutual
information. Hence, we cannot rely on the value of Ii

as an indicator of specificity association, instead we
estimate the statistical significance of Ii:
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Statistical significance

Since mutual information can be biased due to the
small sample size or biased amino acid composition,
we cannot rely on the value of mutual information to
identify the specificity determinants. Instead, we
compute the statistical significance P(I ) of the mutual
information and use it together with I to predict the
specificity-determining residues. Calculation of statis-
tical significance is the most important component of
the method. We present two different approaches,
which, however, produce very similar results.

A standard way of computing P(I ) is by shuffling.42

However, this method is unacceptable for the following
reason. Naturally, proteins within each specificity group
(orthologs) are much more similar to each other than
proteins from different groups (paralogs). Hence, amino
acid residues at every position are somewhat associated
with the functional grouping, producing I higher than
the mutual information obtained by shuffling (see Figure
4). Developing a statistical test we have to take into
account the naturally higher similarity between ortho-
logs in comparison to paralogs. In other words, we need
a statistical test to identify positions that are stronger
associated with the functional grouping, than the whole
proteins on average.

To accomplish this task, we developed two statistical
models. The first model uses linear transformation to
take into account a bias introduced by higher intra-
group similarity of orthologs. The second model simu-
lates the actual evolutionary process of duplication
followed by further accumulation of mutations.

Model 1

In outline, we first compute Ish using shuffling, then
transform it to Iexp using the maximum likelihood esti-
mator to take into account higher similarity between
orthologs and finally compute the desired statistical
significance P(I ).

We need to take into account the fact that orthologs
are more closely related than paralogs. Due to this fact,
sequence similarity between orthologs is higher than

between paralogs (see Figure 5(a)). As a result, any
position in the MSA has certain association with
grouping by orthology. Specificity determinants, how-
ever, must have stronger association with this grouping
than any position on average. To compute P(I ) we start
from a null-hypothesis that amino acid residues in all
positions of the MSA have the same association with
grouping by orthology.

Consider the MSA am
i ; i ¼ 1;…; L; m ¼ 1;…;M; where

am
i is the residue in position i of the mth protein, L is the

length of the alignment and M is the total number of
aligned proteins. For each position i we take a column
ai of the MSA and randomly shuffle this column. Next
we compute the mutual information of the shuffled (ash

i )
grouping: Ish ¼ IðashÞ: This procedure is repeated 104

times to get the distribution of the mutual information
for a shuffled column.

As explained above, Ish is systematically lower than I
due to the higher intra-group similarity between ortho-
logs. We assume that the systematic bias introduced by
this similarity is position-independent and linear. Figure
4 shows Ish versus I for each position. Linear correlation
coefficient of 0.97 and the lack of noticeable non-linear
trends justify the use of linear transformation for Ish:

To compute expected mutual information Iexp we
make transformation:

I
exp
i ¼ aIsh

i þ b ð2Þ

Note that parameters a and b do not depend on i. a and
b are obtained by either minimizing the deviation
between the observed and mean of expected mutual
information:

D ¼
X

i

ðIi 2 kIexp
i lÞ2 ¼

X
i

ðIi 2 akIsh
i l2 bÞ2 ð3Þ

or by a maximal likelihood estimator which maximizes
the likelihood of observed mutual information:

L ¼
Y

i

PðIiÞ ,
X

i

Ii 2 kIexp
i l

sðI
exp
i Þ

 !2

,
X

i

Ii 2 akIsh
i l2 b

asðIsh
i Þ

 !2

ð4Þ

kIsh
i l and sðIsh

i Þ are the mean and the variance of Ish
i

obtained by 104 random shufflings. The later equation is
obtained assuming normal distribution of I 2 Iexp; and
analysis of the residuals shows that it is in fact normal
even at very large deviations from the mean (checked
by 105 shufflings, data not shown). To obtain a and b
using equation (3) we make linear regression Ii ¼
akIsh

i lþ b: To obtain a and b using equation (4) we use
reverse regression:

kIsh
i l

sðIsh
i Þ

¼ A
Ii

sðIsh
i Þ

þ B
1

sðIsh
i Þ

Þ

and then obtain a ¼ 1=A and b ¼ 2B=A: To avoid poss-
ible bias introduced by irrelevant positions with low Ii,
we compute a and b using positions with Ii . 0:5.

Figure 4. Observed mutual information I and mutual
information Ish obtained for amino acid residues shuffled
in each column of the MSA (circles). The correlation coef-
ficient between I and Ish is 0.97. Note that Ish is
systematically lower than I due to closer relations
between orthologs than paralogs. The line shows x ¼ y:
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After a and b are computed, we obtain the desired
probability:

Pi ¼ PðIiÞ ¼
1ffiffiffiffiffiffiffiffiffi

2ps
p

ðI
exp
i Þ

ðþ1

Ii

exp 2
ðI 2 kIexp

i lÞ2

2s2ðI
exp
i Þ

 !
dI

¼
1ffiffiffiffiffiffi
2p

p

ðþ1

Zi

exp 2
z2

2

� �
dz

where:

Zi ¼
Ii 2 kIexp

i l
sðI

exp
i Þ

ð5Þ

Very low Pi indicates that the null-hypothesis does not

hold for position i and residues in this position are in
fact stronger associated with the specificity grouping
than the whole proteins. Thus positions in the MSA that
exhibit low Pi and high Ii are the specificity determinants.

Iexp and Pi obtained using either equations (3) or (4)
lead to very similar results (see Table 1). However, the
MLE (4) is a more general way of deriving parameters
of the model and in our analysis we relied on Iexp and
Pi obtained this way.

Model 2

This model does not utilize shuffling to compute Iexp:
Instead we model evolution of the protein family and

Figure 5. Sequence identity
between the proteins of LacI family.
Color diagram of the fraction of
identical residues (sequence iden-
tity) between all pairs of sequences,
i.e. cell (i, j ) shows the identify
between sequences i and j of the
MSA. (a) Continuous lines separate
orthologous groups. Notice higher
sequence identity within the groups
(near-diagonal squares), than
between them (blue background).
(b) Sequence identity between
pseudo-random sequences gener-
ated to compute P(I ) capturing
higher intra-group identity. Aver-
aged over 20 sets of pseudo-
random sequences.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B

Identification of Specificity Determinants 17



generate a set of pseudo-random protein sequences such
that (i) sequence entropy Si (see below) of each column in
the MSA of pseudo-random proteins is preserved; (ii)
generated sequences have intra- and inter-group simi-
larity similar to those of the studied proteins. These
simulations explicitly take into account the fact that
orthologs are more closely related than paralogs. Using
obtained pseudo-random proteins we compute mutual
information Irnd: Finally, we compute Pi ¼ PðIiÞ as the
probability of observing mutual information above Ii for
the pseudo-random proteins.

We start from a null-hypothesis that all positions in
the MSA have the same association with specificity
grouping. To compute Pi; we need to generate sequences
that have the same intra-group and inter-group simi-
larity as the orthologs and the paralogs, respectively.
This is achieved by simulating evolution of these
proteins in the following manner:

(i) Generate a “parent” sequence by ¼ b
y
i ; i ¼ 1;…; L

for each group of orthologs y ¼ 1;…;Y: An amino acid
residue b

y
i is generated randomly from the distribution

of amino acids at position i fiðxÞ. This step simulates
evolution of paralogous proteins by duplication.

(ii) Generate a sequence of the mth protein cm
i from

the “parent” sequence of its group y. We assume that
during speciation, that followed duplication, some
amino acids did not get substituted. We simulate this
by introducing the probability m of inheriting an
amino acid from the “parent” protein without a substi-
tution. Hence cm

i ¼ b
y
i with probability m, and cm

i
is taken randomly from fiðxÞ with probability 1 2 m.
This step simulates evolution of orthologs through
speciation.

Parameter m controls the intra-group similarity: for
m ¼ 1 all generated orthologs are identical, whereas for
m ¼ 0 they are as different as paralogs. We set m ¼ 0.85
to get the intra-group similarity close to that of the
studied natural proteins (see Figure 5).

After pseudo-random correlated sequences are gener-
ated, we compute Irnd

i . for them using equation (1) The

sequences (including “the parents”) are generated in 103

independent runs yielding the distribution of the mutual
information fiðI

rndÞ: Assuming normal distribution of Irnd

we get Pi as:

Pi ¼ PðIiÞ ¼
1ffiffiffiffiffiffiffiffiffi

2ps
p

ðIrnd
i Þ

ðþ1

Ii

exp 2
ðI 2 kIrnd

i lÞ2

2s2ðIrnd
i Þ

 !
dI

¼
1ffiffiffiffiffiffi
2p

p

ðþ1

Zi

exp 2
z2

2

� �
dz

where:

Zi ¼
Ii 2 kIrnd

i l
sðIrnd

i Þ
ð6Þ

Alternatively one can get Pi as the fraction of runs in
which Irnd

i exceeded Ii: Both estimates give very similar
results, but equation (6) allows us to estimate Pi even
when Irnd

i , Ii in all runs.
To make sure that Model 2 correctly reconstructs

higher sequence similarity between orthologs, we calcu-
lated sequence identity between every pair of sequences
in the LacI family and in the simulated pseudo-random
proteins. Figure 5 shows these results. Clearly pseudo-
random sequences have desired higher intra-group
similarity.

Sequence entropy

The degree of sequence variability in position i of the
MSA is measured by the sequence entropy:

Si ¼ 2
X20

x¼1

fiðxÞ log fiðxÞ ð7Þ

Sequence entropy can be used as an estimator of the
evolutionary substitution rate. Figure 6 presents P(I ) as
a function of S. The plot shows that most of the selected
amino acid residues (low P(I ) points) have medium to
high substitution rates. However, few positions with the
medium substitution rate have low P(I ) (see Figure 3(c)
and (f)).

List of organisms and proteins

List of complete and almost complete genomes used
in this study: Bacillus subtilis43 Clostridium acetobutylicum44

Streptococcus pyogenes45 Streptococcus pneumoniae46

Enterococcus faecalis (DOE-JGI, www.jgi.doe.gov) Vibrio
cholerae47 Escherichia coli48 Yersinia pestis49 Haemophilus
influenzae50 Pseudomonas aeruginosa51

The list of orthologs includes: AraR from B. subtilis
and C. acetobutylicum; KdgR from S. pneumoniae and
S. pyogenes; CcpA from B. subtilis, Bacillus megaterium,
Staphylococcus aureus, Listeria monocytogenes, E. faecalis,
S. pneumoniae, S. pyogenes, S. pneumoniae, Lactococcus
lactis, Q48518_LACCA; Q9ZHP7_thE97; DegA from
B. subtilis, E. faecalis, S. pneumoniae, and S. pyogenes;
YjmH from B. subtilis and C. acetobutylicum; RbsR from
E. coli, V. cholerae, H. influenzae, and P. aeruginosa; PurR
from E. coli, Y. pestis, V. cholerae, and H. influenzae; CytR
from E. coli, Y. pestis, and V. cholerae; GalS/GalR E. coli,
Y. pestis, and H. influenzae; AscG/AscG1 from E. coli,
Y. pestis, and V. cholerae; LacI from E. coli and Y. pestis;
TreR from E. coli, Y. pestis, and V. cholerae; GntR from
E. coli, Y. pestis, and V. cholerae; FruR from E. coli, Y. pestis,
and V. cholerae; and IdnR from E. coli and Y. pestis.
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Figure 6. Statistical significance P(I ) versus sequence
entropy S for each position in the MSA. Sequence
entropy indicates the rate of amino acid residue substi-
tution. Specificity determinants (low P(I )) have high
substitution rate, but not vice versa.
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