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In this study, we estimate the statistical significance of structure
prediction by threading. We introduce a single parameter « that
serves as a universal measure determining the probability that the
best alignment is indeed a native-like analog. Parameter « takes
into account both length and composition of the query sequence
and the number of decoys in threading simulation. It can be
computed directly from the query sequence and potential of
interactions, eliminating the need for sequence reshuffling and
realignment. Although our theoretical analysis is general, here we
compare its predictions with the results of gapless threading.
Finally we estimate the number of decoys from which the native
structure can be found by existing potentials of interactions. We
discuss how this analysis can be extended to determine the optimal
gap penalties for any sequence-structure alignment (threading)
method, thus optimizing it to maximum possible performance.

Protein structure prediction is a complex problem that requires
significant approximations and simplifications both in models

involved and in search strategy. Currently a popular and reasonably
successful method is threading. In threading, a new sequence is
mounted on a series of known folds with the goal of finding a fold
(a sequence-structure alignment) that provides the best score
(lowest energy). A standard quasienergetic scoring scheme assigns
energy Es to an alignment s in the hope that the lowest energy
alignment bears structural similarity to the native fold of the query
sequence. In this regard, threading is similar in spirit to sequence
alignment (1). An essential part of all sequence alignment proce-
dures is the evaluation of the statistical significance of obtained
scores (2, 3). More recently, the problem of the statistical signifi-
cance of structural alignments was addressed (3).

Despite the development of numerous approaches and appli-
cations (4–10), the statistical significance of predictions from
threading calculations has not been systematically analyzed. An
empirical approach was proposed by Bryant and coworkers (5,
6), who compared the best threading alignment with the thread-
ing of reshuffled random sequences. Bryant and coworkers
assumed that scores (energies) of realigned random sequences
are normally distributed. This approach is computationally
demanding, as it requires realignment of all reshuffled random
sequences with all target proteins in the database. Furthermore,
the assumption of Gaussian distribution of threading scores of
realigned random sequences was not justified in refs. 5 and 6.

In this study, we show that, in contrast to earlier assumptions
(5, 6), the probability of successful prediction in threading
calculations follows an extreme value distribution (EVD) (11).
Furthermore, our analysis identifies a simple parameter that
provides a fast and computationally inexpensive clue as to
whether the actual threading calculation resulted in a reliable
prediction or in a false positive.

Theory Development
As a theoretical background, we use the random energy model
(REM). The REM was originally introduced by Derrida (12) to
describe a class of spin-glass models. Later Bryngelson and
Wolynes postulated (13) and Shakhnovich and Gutin showed
[using replica mean-field theory (14)] that the REM provides an

adequate description of equilibrium properties of random het-
eropolymers. Subsequently the REM was successfully applied to
various aspects of the protein-folding problem (15–18) as well as
to analysis of the protein-structure prediction problem (19, 20).
The general applicability and limitations of the REM in describ-
ing the energy landscape of heteropolymers have been addressed
in refs. 14, 21, and 22.

Here we will formulate the REM and its underlying assump-
tions by using the language of threading calculations.

The energy of each threading alignment is usually taken as a
sum energy of all pairwise contacts:

Es 5 O
i ,j 5 1

L

U~ji, jj!D~ri
s, rj

s!, [1]

where L is the length of a query sequence, s denotes alignment,
and ri

s is a coordinate of the ith group (usually the Ca or Cb
atom) in this alignment. D denotes the cutoff distance for contact
potential that determines which groups are interacting (usually
taken 7.5–9 Å between the Ca or Cb atoms). ji denotes the type
of amino acid at position i of the query sequence. U is a 20 3 20
matrix of interaction energy parameters between all types of
amino acids. Summations here and below are taken over all
residues that are farther apart than two units along the sequence,
i.e., j . i 1 2.

The REM formulation for threading is as follows:

Y The set of alignments consists of the ‘‘native’’ alignment
having energy EN and a set of M decoys.

Y The energies of decoys take statistically independent random
values.

Y The most common form for the probability density of energies
of decoys is Gaussian:

f~Es! 5
1

Î2pS2 expF2
~Es 2 Eav!

2

2S2 G [2]

Eav is the average energy, and S is the standard deviation of
energies of all decoys. The assumption that energies of decoys
are independent random values is validated if contacts in the
alternative conformations (decoys) are distributed indepen-
dently and uniformly. Physically this means that polymer con-
nectivity that may cause correlation between contacts plays a
relatively minor role, i.e., long-range (along the sequence)
contacts provide dominant contribution to the energy of an
alignment. This was shown to be generally true for three-
dimensional compact polymers (23, 24).

Abbreviations: EVD, extreme value distribution; REM, random energy model.
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Assuming independence and identical distribution of contacts
in the decoys, we can make a simple estimate for the average
energy of alignments Eav and standard deviation of alignment
energies S. These estimates were made in our earlier publication
(equations 8–14 of ref. 25); here we provide the results

Eav
REM 5

C
Ctotal

O
i ,j 5 1

L

U~ji, jj! [3]

SREM 5 ÎCS 1
Ctotal

O
i ,j 5 1

L

U2~ji, jj!

2
1

Ctotal
2 S O

i ,j 5 1

L

U~ji, jj!D 2D 1/2

, [4]

where C is the number of contacts in the native conformation
(we assume here that all decoys have the same number of
contacts) and Ctotal is the total number of possible pairwise
interactions between residues (i.e., Ctotal 5 (i,j51

L 1'L(L23)y2).
The estimates (Eqs. 3 and 4) are potentially very useful because
they permit evaluation of the average energy of decoys and their
standard variation directly from interaction matrix U and query
sequence j. No explicit decoys are necessary. Importantly, the
Z-score that is used as a common criterion of the quality of
discrimination of the native state can be estimated:

ZREM 5
EN 2 Eav

S
[5]

Because Eav and S depend only on the composition of the query
sequence (and U), one can think of ZREM as a ‘‘correction’’ for
sequence composition.

However, the REM estimates for Eav and S are obtained under
certain assumptions, and the validity of the Z-score must be
assessed by comparison with threading calculations (see below).

The density of states (i.e., the number of decoys found in an
energy range from E to E 1 dE) is w(E)dE 5 Mf(E)dE. We also
define a very important threshold energy Ec as

w~Ec!S 5 1. [6]

This threshold energy Ec corresponds to the bottom of the
continuous part of the energy spectrum when the system ‘‘runs
out’’ of decoys. This threshold energy determines qualitatively
the features of the density of states:

at E . Ec, the density of states w(E) is very high;
at E , Ec, the density of states w(E) is very low; and
the commonly accepted estimate for Ec is given in refs. 14

and 18,

Ec 5 Eav 2 SÎ2 logS M

Î2p
D . [7]

In other words, according to the REM, at E . Ec, there are many
decoys in any energy interval S whereas at Ec the system runs out
of states and the spectrum becomes discrete: one can find only
occasional and rare decoys with E , Ec.

In threading calculations, native (or near-native) alignment is
obtained with energy EN. It is clear that EN needs to be below
Ec to make a successful prediction with native-state ranking first.
More specifically, we can determine within the REM approxi-
mation the probability that native alignment ranks first. To this
end, we require that all M decoys have an energy higher than EN.
The probability of this event is

PREM~EN, rank 5 1! 5 SE
EN

`

f~E!dEDM

. [8]

The analysis of Eq. 8 simplifies when the number of decoys M is
large (..1), which is always the case in threading calculations.
Straightforward calculations result in

PREM~EN, rank 5 1! 5 exp~2exp~2a~«N 2 u!!!, [9]

(see ref. 26 for more details), where

«N 5
EN 2 Eav

Ec 2 Eav
[10]

is the deviation of EN from Ec, and u and a are unitless ‘‘center’’
and ‘‘width’’ of the distribution:

a 5 2 logS M

Î2p
D [11]

u 5 1 2

logS2 logS M

Î2p
DD

4 logS M

Î2p
D . [12]

The parameter «N is also related to the predicted Z-score ZREM
via a simple relation:

«N 5
ZREM

Î2 logS M

Î2p
D [13]

The result in Eq. 9 represents an EVD (11), which is valid for a
broad range of distributions f(E) that can be converted to
exponential distribution by linearization of the logf(E) at large
deviations from the mean (11). However, the specific expressions
for parameters u and a given by Eqs. 11 and 12 are valid for
Gaussian distribution f(E) (Eq. 2) and large M.

Because for any sequence-structure pair M depends only on its
length, one can consider transformation from ZREM to « as a
‘‘correction’’ for the length of the template and the query
sequence.

It is very instructive to examine the qualitative features of the
probability distribution (Eq. 9). When the number of decoys is
very large, u31 and a3`, which means that « serves as a very
good predictor of success in the threading simulations: when «
. 1, the native fold ranks first with a very high degree of
certainty, whereas at « , 1, the native fold will surely not rank
first. The results become less clearcut when the number of decoys
is small. It is crucial to note that one does not need to know the
native fold to evaluate Ec. Eq. 7 suggests that the number of
decoys M and the standard variance define Ec completely. Both
M and Ec can either be estimated (by using Eq. 4) or obtained
directly from threading calculations (see below). Importantly,
the computation of Ec does not require costly runs of threading
with ‘‘shuffled’’ sequences, a method widely used to estimate the
statistical significance of threading (27). Given a query sequence
and a potential, one can compute Ec and use it as a cutoff for
assessing the significance of structure prediction.

Comparison with Gapless Threading
Now we compare the predictions from the REM model with the
results of ‘‘gapless threading.’’ In gapless threading, one takes an
amino acid sequence and mounts it in every possible way
(without gaps) onto known protein structures of greater length.
If the sequence has a length L and the structure it is mounted
onto has a length Lstr, the total number of decoys generated by
gapless threading is Lstr 2 L 1 1. Hence a database of about 103

protein structures allows generation of about 105. . . 106 decoys.
Decoys obtained in this way are sorted by energy. The goal is to
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recognize the native structure, i.e., to have it rank first in the
sorted list. Importantly, gapless threading is inappropriate for
real structure prediction because native structure is not present
among the set of decoys, and structures similar to the native
(analogues) cannot be recognized in gapless threading for the
vast majority of proteins (L.A.M. and E.I.S., unpublished re-
sults). However, gapless threading is a useful tool for generating
decoys and for testing the recognition abilities of the energy
function.

To construct a database, we selected a representative set of
nonhomologous proteins from the FSSP database (28). From this
set, all structures that have no coordinates for side chains and
those that are longer than 500 residues were removed. The final
database contained 1,011 nonhomologous proteins. We per-
formed all-against-all recognition by gapless threading of every
sequence through all proteins of greater length. Energy was
computed by using an optimized potential of interactions U(s,h)
taken from ref. 25. Of 1,011 sequences, the native structure was
recognized as having rank 1 for 763 (75%) proteins. The native
structure had rank 5 2 for 30 other proteins. For 13 sequences,
a structure similar to the native (root-mean-square deviation ,
5 Å) ranked first. A small fraction of proteins in the dataset are
not stable by themselves but are stabilized only in larger com-
plexes (e.g., protein rop is tetrameric) or by metal ions, large
numbers of disulfides, etc. For those proteins, gapless threading
is not expected to recognize their native structure correctly
based on interactions within a monomer, and it does not (see
below).

First, we test the main REM assumption that energies of all
decoys are normally distributed. In Fig. 1, we plotted the energy
distributions of decoys for 10 proteins and fitted each of them
into Gaussian distribution. Clearly, the fit is very good through-
out the whole range of energies except the lowest energies, which
show a deviation from Gaussian distribution in the form of a
characteristic ‘‘shoulder.’’ Such a ‘‘shoulder’’ is a typical feature
of the density of states of nonrandom protein-like sequences that
fold into its native conformation with low (compared with a
random sequence) energy (see also figure 3 of ref. 29). The
existence of this ‘‘shoulder’’ suggests that potentials are good
enough to distinguish the native structure from the set of decoys
generated in gapless threading. Furthermore, Fig. 1B confirms
the condition « 5 1 for the boundary of the density of states for
decoys that are structurally unrelated to the native state. Decoys
with « . 1.2 are likely to be structurally similar to the native state
(see below and Fig. 4 Inset).

We then test another important REM assumption of the
independence of contacts. To this end, we compare the ZREM
estimated in Eq. 5 based on this assumption with the Z-score
obtained directly from threading:

Zgapless 5
EN 2 Eav

gapless

Sgapless , [14]

where Eav
gapless and Sgapless are obtained for each protein directly

from the threading calculation as average energy and its stan-
dard deviation over all decoys. Comparison of Zgapless with ZREM
is the first test of the REM applied to fold recognition. Fig. 2
compares Zgapless with ZREM for every protein in the database.
The correlation between the two measures is 0.95. Notice there
is no bias or nonlinearity in the plot. This comparison indicates
that ZREM is a very good estimate of Zgapless. Note that the major
assumption in estimating ZREM is the statistical independence of
frequencies of interresidue contacts, which is fundamental for
the whole REM analysis. The good correlation shown in Fig. 2
supports the applicability of the REM to threading.

The next question we address is how well the rank of the native
structure (which is the measure of success in fold recognition)

Fig. 1. (A) Normalized distribution of energies f(E) 5 w(E)yM for decoys
obtained by gapless threading (red lines). Ten red lines correspond to the
distributions obtained for 10 different proteins (153 l, 1aa0, 1aa8, 1aac, 1aaf,
1aay, 1ab3, 1ab8, 1ab9, and 1aba), each threaded against the full database.
Blue broken line shows standard normal distribution. Notice deviation from
normal distribution at the low energy tail. (B) Same data shown not normal-
ized [w(E)] as a function of 2« (red lines). Notice that Gaussian approximations
(blue lines) all cross w(E) 5 1 at 2« 5 21, where the actual number of decoys
at this point (red lines) is of the order of 10.

Fig. 2. Comparison of Z-scores computed by Eq. 5 ZREM and obtained by
gapless threading (Zgapless). the correlation coefficient is 0.95. Solid line: best
linear fit by 0.87ZREM 2 0.30.
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can be predicted by the value of « [defined in Eq. 10 and
computed as « 5 Zgaplessy=2 logMy=2p.

Fig. 3 presents a number of important results. It shows that «
is a very good predictor of success in fold recognition, particularly:

Y Two distinct regions can be seen: « . 1 and « , 1. As expected
from the REM, when « , 1, the rank of the native structure
is .1 in 95% of the cases, i.e., the native structure is not
recognized.

Y When « . 1, the native structure ranks first for 94% of the
sequences but not for all of them. However, even when the
native structure is not recognized (rank . 1) for « . 1, in the
vast majority of cases (41 of 43'95%), it is located among the
10 top-scoring decoys (i.e., rank # 10). According to the
REM, this happens when the native structure is below the
bottom of the continuous spectrum (EN , Ec) but is inter-
mixed with rare low-energy decoys that also have E , Ec.
However, there are only few such decoys, and the rank of the
native structure stays low.

Y When « . 1.5, the native structure has the first rank in 99%
of the cases. In 3 of 490 cases, the native structure has rank 5
2, and in 1 case, it has rank 5 3. Most importantly in these four
cases, the top-scoring decoy has a structure similar to the
native one (root-mean-square deviation , 5 Å).

Y The color code of squares in Fig. 3 indicates the degree of
similarity between the native structure rN and the structure
that ranks first r1. This quantity is defined as

Q 5
SijD~ri

N, rj
N!D~ri

1, rj
1!

min$SijD~ri
N, rj

N!, SijD~ri
1, rj

1!%
, [15]

the overlap between contact maps of the two structures. Clearly,
when the native structure has rank 5 1, then Q 5 1, and the
square on Fig. 3 is colored red. More important are the cases
when the native structure is not recognized but a similar
structure (analogue) comes with rank 5 1. One would expect an
analogue to have energy similar to the native one. Hence, when
the native structure is intermixed with low-energy decoys (i.e.,
has a low, but not the first, rank), an analogue can rank first

instead. In agreement with this expectation, we observe the
following:

Y When the native structure is not recognized but is not very
high in rank (#10) (i.e., still below the continuous part of the
spectrum), then in about 10% of the cases a native-like
structure (Q $ 0.7) ranks first.

Y In the opposite case, when the rank of the native structure is
high (.10) in only 1 case of 173, the decoy with the first rank
has Q $ 0.7.

These results bring us to the conclusion that when « , 1, the
native structure is not recognized, and the top-scoring decoy is
very unlikely to have a native-like structure.

We also notice that when « . 1, the energy of the native state
belongs to the discrete spectrum (see Fig. 1). However, that does
not guarantee the recognition of the native structure, because an
occasional low-energy decoy belonging to the discrete spectrum
can still rank first. However, the probability of finding a random
decoy with energy E well below Ec is small (see Fig. 3 Inset).

Now we come to the central point of our study: estimating the
probability of the native fold (with energy EN) ranking first
among its decoys.

The result is shown in Fig. 4. It can be seen that the EVD (Eq.
9) provides the perfect functional form for the observed prob-
ability P(EN, rank 5 1). However, there is some quantitative
disagreement between the parameters of the EVD predicted by
Eqs. 11 and 12 [black lines in Fig. 4 and parameters ufit and afit
obtained by fitting the data into the EVD (9) (green line in Fig.
4)]. Although the predicted u and fitted ufit are close to each
other, the discrepancy in parameter a is more substantial, close

Fig. 3. Rank of the native structure in gapless threading against « of this
structures. The color of each point shows the similarity Q between the struc-
ture ranking first and the native structure. The high value of Q indicates
structural similarity. To emphasize points with higher Q, we plot them on the
front; those with lower Q (which dominate at low «) are on the background.

Fig. 4. Probability P(e . «, rank 5 1) of having Rank 5 1 for a structure with
normalized energy above «. Black lines correspond to the probability expected
for a Gaussian distribution (Eqs. 8, 12, and 11). Because the number of decoys
M is different for different proteins, each of 1,011 proteins has its own line
(i.e., different u and a). Black squares show the same probability as obtained
from gapless threading. (P(e . «, rank 5 1) 5 1 2 Pdecoy(e . «), where
Pdecoy(e . «) 5 *«

`fdecoy(e) de was obtained by threading). The green line is the
best fit of the observed probability by Eq. 9. The best fit is achieved at ufit 5
1.01,afit 5 8.03. Corresponding values for a Gaussian distribution are uG 5 0.92
and aG 5 18.8 (see text for details). (Inset) Distribution of energies of the
lowest-energy decoys fdecoy(«). Notice the typical EVD shape of the distribu-
tion. Red and blue histograms correspond to the lowest-energy decoys that
are native like (Q $ 0.7) and nonnative (Q , 0.7), accordingly. Histogram of
native-like decoys stretches till « ' 2.5, whereas nonnative decoys are not
observed above « 5 1.8.
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to a factor of 2. This discrepancy indicates that the actual
distribution fdecoys(E) for the energy of the decoys deviates from
the Gaussian on the tails. In fact, fdecoys(E) have a Gaussian form
for E close to Eav (E 2 Eav , 3S) but decays exponentially at
larger deviations (see Fig. 1).

However, the form of the distribution (Eq. 9) does not depend
on the Gaussian form of f(E) and thus is more generally
applicable. Parameter a then can be viewed as an empirical
parameter or can be obtained directly from the form of the
distribution of energies of decoys.

The results presented in Figs. 3 and 4 address the crucial issue of
‘‘false positives’’ in protein threading: a comparison of the lowest-
energy predicted alignment with Ec makes it possible to assess with
a high degree of certainty whether the threading calculation re-
turned a native-like structure or a ‘‘false-positive’’ misfold.

It is clear from Fig. 4 that « . 1.2 almost guarantees that the
native structure ranks first in threading calculations. As can be
seen from Fig. 4 Inset, most of the decoys at « . 1.2 are native
like. Parameter « depends on two factors: (i) the quality of the
model and the potential U (good model and precise potential
provide low EN); and (ii) the number of decoys M that affect «
via Ec. Having established « as a powerful criterion of success in
threading prediction, we can now address the next question:
among how many decoys can existing models and potential
functions select the native state as first ranking (30). To this end,
we solve the inequality « . 1.2 vis à vis the number of decoys by
using the definitions of « (10) and Ec from Eq. 7.

Fig. 5 shows the maximal number of decoys Mmax that can be
distinguished from the native state for the protein model we use.
Different data points correspond to different proteins. Each
protein has its own value of EN and «, and therefore the criterion
« . 1.2 determines a different limiting number of decoys for
different proteins. Nevertheless, we come to an estimate that
present models and potential functions can select the native state
out of about 1012 decoys for a protein of 150. . . 250 amino acids.

Is this sufficient for a realistic threading calculation? Such a
calculation should allow for the possibility of gaps and insertions
both in the target structure and in a sequence. This is a key
requirement to make threading strategy capable of recognizing
analogs. The ability to recognize analogs is crucial because in
real life, threading application native structure is not available,
and the only hope is that there will be a structure in the database
that is not identical but is similar to the native state of the query
sequence.

Practical Implications for Protein Structure Prediction
Although gapless threading is used in this paper to illustrate the
important points of our analysis, our results are not limited to it.
Rather they may be applicable to any threading calculation for
which energies of decoys can be considered as independent
random values. This assumption is clearly corroborated in the
present study for gapless threading (see Fig. 2). An advanced
Monte Carlo threading technique that allows gaps and insertions
in both sequence and target was reported recently (8). The
energy landscape of decoys generated by this threading tech-
nique was analyzed with the conclusion that the REM may be
adequate to describe it (8).

We showed that parameter « can serve as a reliable and
computationally inexpensive predictor of success in threading
calculation. This parameter is related to stability gap or ‘‘TfyTg,’’
which was shown in protein folding theory to be good a deter-
minant of sequence stability and fast folding (13, 29, 31–33).

The estimate of « for gapless threading is straightforward and
does not require sequence reshuffling and realignment, a com-
putationally costly procedure. The main difference in the eval-
uation of « for realistic gapped threading comes from the fact
that the length of an alignment now varies. S and Eav depend on
alignment length so that the full distribution of alignment scores
cannot be described by a single Gaussian. However, the analysis
of gapped threading (L.A.M., W. Chen & E.I.S., unpublished
work) suggests that the distribution of scores for each alignment
length l can be described by its own Gaussian with alignment-
length dependent S(l) and Eav(l). Then the density of states can
be generalized to gapped threading:

w~E! 5 O
l

M~l!fl~E!, [16]

where fl(E) is the Gaussian probability density corresponding to
an alignment of length l with its own Eav(l) and S(l). M(l) is the
number of decoys for alignments of length l. This number can be
determined from combinatorics. The average energy of all
alignments is determined from w(E), and Ec can also be found
from w(E) by using Eq. 6 [where maximal S(l) can be used]. Then
« for gapped threading can be determined from Eq 10. Note that
the evaluation of « does not require sequence reshuffling. This
provides a fast way to recognize false positives in realistic
threading calculations. In cases when lowest scoring threading
alignment features « # 1, such alignment is most likely to be a
false positive that is structurally unrelated to the native state.
Alignments featuring « . 1.5 are most likely to be correct
predictions. A more detailed quantitative estimate of the prob-
ability of correct prediction in the range 1 , « , 1.5 requires
evaluation of the EVD of «. Parameters a and u can be
determined from the fitting of distribution of « for the threading
of many reshuffled random sequences of various lengths into the
EVD with subsequent tabulation of the results for the range of
lengths. (Each reshuffled random sequence ‘‘EN ’’ entering the
definition of « in Eq. 10 corresponds to the lowest-scoring
alignment.) These procedures will be discussed in detail in
subsequent publications.

Although gaps and insertions in realistic threading calcula-
tions are crucial, their introduction comes at the cost of a

Fig. 5. The maximal number Mmax 5 Ï2p exp((Zy1.2)2y2) of decoys a
protein structure calculation can sustain while having the correct native
structure recognized (i.e., « . 1.2) vs. the length L of the protein. Blue dots:
Mmax vs. L for proteins whose native structure has been recognized in gapless
threading. Red crosses: Mmax vs. L for proteins whose native structure has not
been recognized. Solid line: the actual number of decoys M obtained by
gapless threading as a function of protein length. Notice how well the solid
line separates regions of recognized and nonrecognized proteins. This indi-
cates that Mmax is a very good predictor of whether a protein is recognized
among a pool of M decoys.
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serious increase in the number of decoys, to the point that even
the best potentials for the present models are unable to find
analogs with lowest energy Eanalog , Ec (or « . 1) (25). Our
results suggest a constructive way to address this problem. The
allowed length of an alignment and the gap penalty may be
chosen in such a way that the total number of decoys M
generated by threading would not exceed a ‘‘recognition
threshold’’ Mmax (see Fig. 5).

Generally the number of allowed gaps and insertions (and
hence the number of allowed decoys) should be chosen to
achieve a maximum value of «. This corresponds to maximizing
the probability of a correct prediction (34). Indeed, when
gapsyinsertions are not restricted, « may be small because the
number of decoys M is large. On the other hand, restrictions on
gapsyinsertions that are too severe may lead to elimination of

native-like conformations from the threading set of alignments
leading to lower « because of loss of alignments with low energy
(higher apparent EN). Note that achieving maximal « does not
reduce the number of decoys to simple minimization: their
restriction carries the risk of eliminating analogs of the native
structure of the threaded sequence from the ensemble. Thus the
strategy of setting optimal threading simulations adjusts gap
penaltiesynumber of fragments to achieve the maximal number
of decoys that still allows recognition of the native structure by
existing potentials.
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