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What are the forces that shape the structure of prokaryotic ge-
nomes: the order of genes, their proximity, and their orientation?
Coregulation and coordinated horizontal gene transfer are be-
lieved to promote the proximity of functionally related genes and
the formation of operons. However, forces that influence the
structure of the genome beyond the level of a single operon remain
unknown. Here, we show that the biophysical mechanism by
which regulatory proteins search for their sites on DNA can impose
constraints on genome structure. Using simulations, we demon-
strate that rapid and reliable gene regulation requires that the
transcription factor (TF) gene be close to the site on DNA the TF has
to bind, thus promoting the colocalization of TF genes and their
targets on the genome. We use parameters that have been mea-
sured in recent experiments to estimate the relevant length and
times scales of this process and demonstrate that the search for a
cognate site may be prohibitively slow if a TF has a low copy
number and is not colocalized. We also analyze TFs and their sites
in a number of bacterial genomes, confirm that they are colocalized
significantly more often than expected, and show that this obser-
vation cannot be attributed to the pressure for coregulation or
formation of selfish gene clusters, thus supporting the role of the
biophysical constraint in shaping the structure of prokaryotic
genomes. Our results demonstrate how spatial organization can
influence timing and noise in gene expression.

diffusion � genetics � genomics � protein–DNA interactions � spatial effects

The colocalization of prokaryotic transcription factor (TF)
genes and their binding sites is known from the pioneering

work of Jacob and Monod (1) on the lactose operon and has been
shown to be widespread (2–4) and essential for the formation of
regulatory motifs (5). Some have hypothesized that TF-binding
site colocalization is advantageous, in part, because it could
expedite a TF’s search for its site (2, 5–7) (the rapid search
hypothesis). In prokaryotes, this speed-up by colocalization is
possible because transcription and translation are coupled spa-
tially and temporally. Therefore, TFs are synthesized near their
genes and can rapidly bind colocalized sites (Fig. 1A). The arrival
time of a TF to its site ultimately controls the timing of gene
regulation, whereas fluctuations in the arrival time can lead to
bursts of gene activity and noise in gene regulation. The rapid
search hypothesis suggests that colocalization is favorable be-
cause expediting TF arrival makes regulation faster and more
reliable.

Both experimentally (see ref. 8 for an overview) and theoret-
ically (9–13), many have studied the broader question: how can
a TF find its cognate site on DNA among �107 decoy sites in a
fraction of a minute while moving in the crowded environment
of the cell and hampered by other DNA-bound proteins? The
general model of the process includes 3D spatial diffusion of the
TF through the cell volume and 1D sliding of a TF along DNA.
According to this model, the search process consists of multiple
rounds of search, alternating between 1D sliding and 3D spatial
diffusion, leading to the expression for the mean search time, ts,
obtained (in different forms) by several groups (9–13):

ts �
M
s

��1D � �3D� , [1]

where M is the total length of DNA in the cell, s is the sliding
length, i.e., the mean number of base pairs scanned in a single
round of sliding, and �1D and �3D are the mean durations of a
single round of 1D sliding and 3D diffusion, respectively. How-
ever, it is not intuitively clear why colocalization would cause a
speed-up, because in Eq. 1, as in traditional reaction rate theory,
the search (reaction) time is distance-independent. The distance
(and time) independence of the reaction rate is characteristic of
3D systems, whereas reactions in 2D and 1D systems are
distance-dependent (14).

Here, we systematically investigate the rapid search hypothesis
and assess it against the alternative but complementary views
that colocalization is due to coregulation or self-regulation or to
enable horizontal transfer of functionally coupled genes (the
selfish gene cluster hypothesis) (15, 16). We approach the prob-
lem by taking the following three steps: we (i) estimate the TF
search time in bacteria and determine the degree of acceleration
provided by TF-binding site colocalization, (ii) estimate the
extent of colocalization in bacterial genomes, and (iii) consider
and rule out alternative explanations of colocalization. We
demonstrate that the requirement for rapid search imposes a
significant constraint on the evolution of gene order, an inter-
esting case where a biophysical mechanism influences genome
organization.

Results
How Much Acceleration Can Be Achieved by Colocalization? To
connect the search time calculations to DNA conformation, we
note that Eq. 1 implicitly assumes that each round of sliding is
independent: the rounds of 3D diffusion between the slide
completely randomize the position of the TF. To relax this
assumption, we considered two types of 3D motion: small
hops and large-scale jumps (Fig. 1B). Hops are rapid reasso-
ciations of a TF to the same region of DNA. Elegant bio-
chemical experiments have demonstrated hopping of DNA-
binding proteins on DNA (17). We found that hops results
from the geometry of the problem: Once a TF dissociates from
DNA, it is much more likely to associate again to the same
region of DNA than to other remote strands. We also dem-
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onstrated that hops are short and can be accounted for by
replacing the sliding length s by an effective sliding length se �
s��nhops, where nhops is the mean number of hops a TF makes
before a jump (Fig. 1C). Using simulations of spatial diffusion
through a realistic geometry and density of nonspecific DNA,
we estimated nhops �5–6 (46).

Using simulations, we calculated search time as a function of
the initial distance between a TF and its site (L). Here, we
observe two types of searches. When released from the ribo-
some, a TF can bind DNA near the 3� end of its gene and start
sliding and hopping along DNA. If the cognate site is reached
this way, the average search time is fast (�0.3 sec; Fig. 2C).
Alternatively, if a TF dissociates from DNA and jumps before
binding its site, then it must sample the whole genome to find its

site, and the search is slow (�150 min; Fig. 2C). The choice
between these scenarios is controlled by a single length scale, the
effective sliding length se � s��nhops � 660 bp, with a range
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Fig. 1. We propose the rapid search hypothesis as an explanation for
colocalization of transcription factor genes and their targets and model the
search process with hops, jumps, and slides. (A) The rapid search hypothesis. In
prokaryotes, transcription and translation are coupled; therefore, transcrip-
tion factors (TFs) are released from the ribosome near their encoding gene,
enabling a TF to rapidly search the DNA nearby. The rapid search hypothesis
suggests that TF genes and their binding sites may be colocalized on the
chromosome because this enables newly synthesized TFs to rapidly find their
binding sites. (B) Model of the transcription factor search process. We define
three types of movements for TFs: slides, rounds of 1D diffusion along the
DNA; hops, short rounds of 3D diffusion where the TF dissociates from the
DNA and rebinds at a site very nearby; and jumps, longer rounds of 3D
diffusion where the TF dissociates from the DNA and binds a site that may be
quite far away. Mathematically, the dissociation and association sites of hops
are correlated, whereas those of jumps are uncorrelated. We then model the
search process as alternating rounds of 3D and 1D diffusion; the TF ends the
slide with either a hop or a jump. (C) We find the hops are so short that they
can be accounted for by rescaling the sliding length, s, the number of base
pairs scanned in a slide by the number of hops per jump, nhops, to get se, the
number of base pairs scanned in between jumps: se � s��nhops.

A

B

C

Fast Runs Slow Runs

Fig. 2. Simulations of the transcription factor search process show that its
length depends on starting point. (A) Search time for a group of 10 TFs versus L.
Here, we simulated a group of 10 TFs searching for a binding site and plot the
mean search time, ts, of the first TF to reach the site versus initial distance L. Here,
se � 660 bp, and 500 runs were simulated for each L. (B) The probability of fast
runs.Here, theprobabilityofafast run,aruninwhichtheTFstartsnear itsbinding
site and finds it by hopping and sliding but without jumping, is plotted versus the
initial distances between the TF and its site, L. The main plot shows L in base pairs,
and the value of se � s��nhops � 660 bp. (Inset) L in units of se and the different
symbols correspondtodifferentvaluesof s (bluetriangles, s�270;greensquares,
s � 50; yellow circles, s � 100; red diamonds, s � 500). Each data point is the mean
of 1,000 trials. The overlap in Inset shows that the behavior is parameter-
independent when L is expressed in units of se, confirming that se is the only
relevant parameter in this simulation. (C) Distribution of run times for fast and
slow runs. The distribution of search times, ts is plotted for fast and slow runs,
where fast runs are defined as above and slow runs are searched where the TF
uses hopping, sliding, and jumping to find its binding site. The box has lines at the
lower, median, and upper quartile values. The whiskers extend from the box to
1.5 times the interquartile range, the difference between the lower and upper
quartiles. Data points beyond the whiskers are noted as circles. Each plot includes
the data from 30,000 runs. This plot clearly shows that (i) fast runs are much faster
than slow runs (fast runs have a median of 0.2 s, whereas slow runs have a median
of 100 min) and (ii ) fast runs are much less variable than slow runs.
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between 70 and 2,000 bp, for a typical TF. Sites at distance L �
se are likely to be found quickly, whereas more distant site
require a slow global search. Fig. 2 A shows the average search
time (ts) for 10 TFs, Fig. 2B shows the probability of a fast search
(pfast) as a function of L, and Fig. 2C shows the distribution of
times of fast and slow runs (46).

Connecting back to the theory, our slow searches are described
by Eq. 1. But why are they so slow? Although the form of Eq. 1
is intuitive, it does not show how the value of ts depends on the
physical properties of the system. The sliding length s determines
the number of rounds of search needed to find the slide. The
search time also depends on the ratio of the time spent on the
DNA to the time spent in the cytoplasm: �1D/�3D. This ratio is
controlled by the affinity of a TF for nonspecific DNA, Kd

NS, and
the total concentration of nonspecific DNA in the cell, [DNA].
Although sliding can increase the rate of search by reducing the
number of rounds of search, it requires a TF to have an affinity
for nonspecific DNA, which in turn can slow down search. The
balance between these factors controls the global efficiency of
search. To show these dependencies, Eq. 1 can be written in the
following form [see supporting information (SI) Text]:

ts �
M

kon�DNA	
�

� 1 �
�DNA	

Kd
NS �

s
, [2]

where the first term is the search time in the absence of sliding and
nonspecific binding, whereas the second term provides the balance
between the speed-up due to sliding (1/s) and the slow-down due to
the nonspecific binding (the ratio of Kd

NS and [DNA]). Note that 3D
and 1D diffusion coefficients are agglomerated into kon, the on rate
of a TF to bind DNA by a spatial diffusion [the Smoluchowski rate
(18)], and s, respectively. As we showed earlier (10), search time is
minimized when equal time is spent on DNA and in the solvent
(i.e., �1D � �3D). However, in vivo, the strong affinity for nonspecific
DNA [Kd

NS � 10
3 to 10
6 M (19)] and the high concentration of
DNA inside the cell [[DNA] � 10
2 M (20)] cause TFs to spend a
significant amount of their time on nonspecific DNA (�1D/�3D �
[DNA]/Kd

NS � 101 to 104). This nonoptimal time partitioning leads
to search times from 15 to 500 min for a single TF.

Clearly, having multiple copies of a TF significantly speeds up
the search (linear with the number of copies). However, avail-
able in vivo measurements suggest there are only �10 copies of
lactose repressor per cell (21), whereas there are �200 copies of
ArcA per cell (22), a global regulator with �50 targets in the cell.

Therefore, the acceleration of binding provided by colocal-
ization can have a significant effect on gene regulation for
low-copy-number TFs. If the TF is a repressor, rapid binding
leaves little time for a polymerase to bind a promoter and start
transcription, so bursts of gene activity are short and rare,
consistent with recent single-molecule experiments (23, 24).
However, if it takes �15 min for a pool of �10 repressors to bind
a site (Fig. 2A), the bursts of gene activity are long, making
repression leaky and inefficient. Slow searches make the time
required for transcription regulation comparable with the du-
plication time of bacteria, thus putting slowly regulating bacteria
at significant disadvantage.

To summarize, simulations show that TF binding is slow if TFs
are not colocalized and have low copy number. Rapid search can
be achieved by either colocalization or by increasing the copy
number of each TF, arguably a more costly solution. Therefore,
colocalization provides a significant advantage for low-copy-
number TFs.

How Widespread Is Colocalization That Cannot Be Attributed to
Co/Self-Regulation in Bacteria? To unravel the extent of colocal-
ization, we examined the distances between LacI/GalS family

TFs and their binding sites. We grouped TFs into two categories:
global TFs (25, 26), which are pleiotropic and regulate more than
four operons (FruR, PurR, and CcpA), and local TFs, which
regulate fewer than four operons. To focus on colocalization
because of rapid search, we excluded from consideration all sites
that can have a role in coregulation of the TF and its regulated
transcription units (TUs) or self-regulation of the TF (Fig. 3A).

Fig. 3 presents the distribution of the distance between TFs
and their TUs for local and global TFs. Each distribution is
compared with expected distribution of distances between ran-
dom locations on chromosomes. The distribution for local TFs
(Fig. 3B) is strikingly different from those of global TFs (Fig. 3C)

A

B

C

Fig. 3. We show that local transcription factors are colocalized with their
targets. (A) Possible orientations of a TF gene, its BS, and the regulated TU. In
this diagram, the TF gene encodes a TF that regulates the expression of the TU
by binding the BS. In our study, we aimed to determine the extent of colo-
calization that cannot be explained by co- or self-regulation. Therefore, we
excluded the third orientation, because the TF and TU may be coregulated
through a shared promoter region (coregulation), and the fourth orientation,
because the TF may be part of the same operon as the TU (self-regulation). (B)
Distances between local TFs and their binding sites. Here, TF–TU distances for
local regulators are shown as bars, and the distances expected from random
TF–TU assignments are shown by the blue line. Here, we can see that local TFs
are significantly colocalized with their binding sites on length scales compa-
rable with se � 103 bps, suggesting that the rapid search hypothesis is feasible.
(C) Distances between global TFs and their binding sites. Here again, TF–TU
distances for global regulators are shown as bars, and the expected distribu-
tion for the random TF–TU assignment is shown by the blue line. For global TFs,
there is no significant colocalization, suggesting that rapid search may be
achieved by high copy number instead.
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and the expected random distribution; there is a significant
excess of local TF-site pairs at distances below se � 1,000 bp. This
result clearly demonstrates that widespread colocalization of TFs
and their sites cannot be explained solely by requirements for co-
or self-regulation (2, 5, 27). Global regulators exhibit no signif-
icant colocalization, suggesting that they must achieve a
speed-up in recognition by being present in high copy numbers,
a claim supported by experimental evidences. For example,
under normal growth conditions, the estimated transcript num-
ber of the global regulator crp is two orders of magnitude greater
than that of lacI (28). (See SI Fig. 6 for systematic analysis of
expression levels for local and global TFs.)

Thus far, we have demonstrated that the rapid search hypoth-
esis is biophysically feasible and that colocalization is wide-
spread, even when coregulation effects are excluded, but we have
not shown that the selfish gene cluster hypothesis does not
explain colocalization. To test this, we considered the relative
orientation of a TF gene and the TU it regulates. We compared
two TF–TU orientations: downstream unidirectional and con-
vergent (Fig. 4). Other orientations are not considered because
they can be due to co/self-regulation (Fig. 3A). Although both
orientations provide the same recombination distance (i.e., both
orientations are equal under the selfish gene cluster hypothesis),
rapid search favors the unidirectional orientation because it
provides a smaller travel distance (Fig. 4B). In case of the
convergent orientation, the travel distance is larger because the
site is separated from the TF by a whole TU (�1–5 kbp).

Fig. 4 presents the frequency of TF–TU pairs in these orien-
tations. Remarkably, colocalized TF–TU pairs in the unidirec-
tional orientation are eight times more common than convergent
pairs. For a control, we compared TF–TU pairs located at larger
distances and observed no difference in frequencies of the two
orientations. The strong prevalence of unidirectional arrange-
ments for colocalized TF–TU pairs suggests that the major
driving force behind TF-site colocalization cannot be the pres-
sure to form selfish gene clusters, but may be due to the rapid
search mechanism. Although it is possible that unidirectional
arrangements may be caused by a functional requirement for
read-through, we observed the effect at lengths too long for this
to be the cause. To test a possibility that the observed prevalence
of unidirectional TF–TU pairs is due to a bias toward unidirec-
tional orientation of nearby operons (29), we compared the
frequency of unidirectional and convergent orientations for
pairs of nearby operons (TU–TU pairs) in EcoCyc (Fig. 4C and
SI Fig. 7). This control clearly demonstrates that observed 8-fold
excess of unidirectional TF–TU pairs cannot be explained by a
very mild trend for coalignment of nearby operons. Some
examples of colocalized TF–TU pairs are shown in Fig. 5.

Discussion
Although our analysis above considers only a subset of TFs, the
rapid search hypothesis is quite general. For example, although
we excluded from our analysis TFs that are parts of operons or
share promoters with their regulated TUs, such gene order is
consistent with the rapid search mechanism, because functional
organization and biophysical constraints are met simultaneously.
Moreover, according to rapid search mechanism, self-regulating
operons can benefit from having the TF gene on the first place
in the operon (and thus closest to the target promoter). Indeed,
we found �3-fold enrichment of TF genes among the first genes
in multigene operons (SI Fig. 8).

We also showed that the global (pleiotropic) TFs do not
colocalize with their target sites. Clearly, positioning of several
regulated operons close to their TF gene is nearly impossible.
Pleiotropic TFs are likely to achieve rapid search by being
present in high copy number. We also note that, although TF
genes and their sites may not be close along DNA, they may be
proximal in space because of the organization of DNA in the cell

(4, 30) or looping of DNA (31, 32), thus opening a possibility of
gene regulation by DNA conformation (33, 34). DNA confor-
mation may also play an important role in the search process (11)

A
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Fig. 4. We test the selfish gene cluster hypothesis as a reason for colocal-
ization. (A) Two considered orientations of a TF and its target TU: downstream
unidirectional and convergent. Both orientations have the same recombina-
tion distance and thus are equally favored by the selfish gene cluster hypoth-
esis. But, only downstream unidirectional orientation provides small travel
distance for TF to find its site and therefore is favored by the rapid search
hypothesis. Other TF–TU orientations were not considered as they can play a
functional role to provide self/coregulation (see Fig. 3A). (B) The frequency of
unidirectional (purple) versus convergent (gray) orientations of TF genes and
their target TUs as a function of TF–TU distance. The observed prevalence of
unidirectional TF–TU pairs cannot be explained by the selfish gene cluster
hypothesis but provides evidence to support the rapid search mechanism.
TF–TU distance was measured between the closest ends of the TF and the TU
and thus does not depend on orientation or number of ORFs in the TU. Notice
that both orientations are equally likely at larger separations (�5 kbp), ruling
out an a priori bias toward the unidirectional orientation due to other factors.
TF–TU pairs at distances �100 bp were neglected to exclude the possibility that
TF–TU pairs belonging to the same operon or a read-through locus caused the
prevalence of the unidirectional orientation. (C) Histogram of the number of
TU–TU pair for two downstream TU orientations. This histogram includes data
from Ecocyc for verified Escherichia coli Tus (operons). Here, we see that there
is no general bias toward the unidirectional configuration in the genome (also
see SI Fig. 7).
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because, upon a jump, a TF may associate to DNA in a place that
is likely to be proximal along the DNA sequence and still reach
the site quickly, effectively increasing the distance that provides
faster search up to �103 to 104 bp. This picture is consistent with
observed periodicity in the distances between a TF gene and the
target sites for pleiotropic TFs (4).

The time it takes a transcription factor to find its binding site
is a biologically relevant quantity for both activators and repres-
sors. Prokaryotic activators are often activated by small mole-
cules that diffuse very rapidly through the cell; therefore, the
activation of activators is not the rate-limiting step. (Using a very
conservative estimate, we find that a small molecule can bind its
target protein in �1 sec.) In contrast to many eukaryotic
activators, prokaryotic activators also do not reside on the
promoters while inactive, waiting for activation. Instead, inactive
activators diffuse in the cytoplasm and only upon activation find
their cognate sites on DNA (e.g., catabolite activator protein)
(20). Therefore, the binding of the activator to its binding site
and the subsequent recruitment of RNA polymerase are the
rate-limiting steps for the alteration of gene expression.

The search time of repressors for their binding sites is also
biologically relevant. In many cases, repressors regulate the
production of proteins that are toxic to the cell when produced
at inappropriate times. For example, the production of tetracy-
cline resistance operon (35) or lactose permease when it is not
needed confers a measurable fitness disadvantage (36). Slow
search times lead to leaky repression, which increases the
steady-state level of otherwise repressed toxic proteins in the
cell.

One surprising result of our study is that the global search by
a low-copy-number TF for its site is slow. This result goes against
previous estimates for the search time (10, 13, 37, 38) that
predominantly used either unrealistically high diffusion coeffi-

cients and/or assumed that the fraction of time spent on DNA (or
the sliding length) is optimized for fastest search. Our estimate,
in contrast, relies on the measured affinity for nonspecific DNA,
yielding a much lower rate of binding. As we and others (10, 11)
have shown, strong affinity for nonspecific DNA can make
search slow, even slower than search by 3D diffusion alone.

Why do TFs have an affinity for nonspecific DNA that makes
the search so slow? One possibility is that the affinity for
nonspecific DNA is optimized for an equilibrium binding rather
than for kinetics. This affinity controls the balance between
binding the nonspecific DNA and cognate sites and enables a TF
leave its site when the specific affinity to the cognate site drops
because of binding of a ligand (20, 38). Our result does not
contradict experiments that demonstrate very rapid (faster than
3D diffusion) association of TFs to their sites in vitro, because
these experiments used concentrations of DNA much lower than
that observed in the cell.

Although we have only considered prokaryotes, TFs in eu-
karyotes also need to rapidly recognize their binding sites. In this
case, colocalization will not help because transcription and
translation are uncoupled, so they may compensate by (i) having
a high copy number for global regulators and (ii) keeping local
TFs constitutively bound to their sites and activating them when
necessary [e.g., Gal4 (39)].

Slow spatial diffusion and compartmentalization (40) may
favor colocalization in other cellular processes such as signal
transduction (see ref. 41 for review) or interactions between
receptors on the membrane (42).

In summary, we used simulations to show that the colocalization
of a TF gene and its sites is required for rapid, reliable regulation
of gene expression by low-copy-number TFs. We demonstrated that
widespread colocalization of local TFs and their targets in bacterial
genomes exists and cannot be fully attributed to co/self-regulation
or the selfish gene cluster hypothesis. We conclude that rapid and
reliable gene regulation imposes a biophysical constraint on the
organization of bacterial genomes, encouraging TF genes and their
binding sites to be close.

Materials and Methods
Simulating a Transcription Factor’s Search for Its Binding Site. To
explore the kinetic effects of TF–TU gene colocalization, we
simulated a transcription factor’s search for its binding site and
varied the starting position of the TF. We modeled a typical
prokaryotic genome as a string 107 bp and randomly selected a
binding site. We placed the TF at a given distance along the
chromosome from the binding site and then simulated alternating
rounds of 3D diffusion and 1D sliding until the transcription factor
found its binding site. Sliding along the chromosome was modeled
as an explicit 1D random walk. We simulated 3D diffusion as a
mixture of hops, short correlated motions through the cell volume,
and jumps, long, uncorrelated movements. The details of the
simulation are described in the SI Text and SI Table 1.

Data Acquisition and Preparation. LacI family members were
identified by using several databases and algorithms (SI Text).
The SignalX program (43) was used to identify the binding
motifs for TFs and construct the recognition profiles. Candidate
sites were identified by scanning the genomes with the con-
structed profiles. Only orthologous binding sites, that is, binding
sites occurring upstream of orthologous operons were retained
for further analysis. This resulted in identification of 159 TFs and
647 binding sites from 36 genomes. These data are deposited in
the RegTransBase database (http://regtransbase.lbl.gov). A
summary of the data are presented in SI Table 2.

Because of the reliability of the data, here, we present our
analysis of the LacI data set. However, we carried out a similar
analysis using the EcoCyc data set (44), which provides more

Fig. 5. Examples of colocalized TF–TU pairs. TF genes are shown in red,
regulated TU genes in green, negative regulation (repression) as blue blunt
arrows, and positive regulation (activation) as green arrows, where dotted ar-
rows represent weak regulation. In the first example, GalS represses the adjacent
galactose transport operon mglBAC and itself, forming a negative-feedback
loop. In the presence of galactose, GalS dissociates from its binding sites at the
mglBAC and galS promoters, starting the transcription of these genes. However,
the difference in DNA binding constants between GalS and the GalS–galactose
complex is relatively small, on the order of 2 orders of magnitude. Experimental
data suggest (45) that even in the presence of galactose, when GalS reaches a
sufficiently large concentration, the repressor again shuts down the transcription
of transporter genes encoded in mglBAC operon. It can be speculated that at the
low expression levels typical for local regulators such as GalS and LacI, this is
possible only in cases where a high local concentration of GalS is reached, making
thereleaseofthenewlysynthesizedGalSproteinnearthe3�endofgalSgeneand
the 5� end of mglBAC operon a key factor.
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complete, if slightly less reliable, TF–TU data, and the results are
presented in SI Figs. 9 and 10.

We defined several classes of transcription factors and binding
sites. The global set includes the pleiotropic TFs (FruR, PurR,
and CcpA), which each bind more than four sites on the genome,
and their binding sites (25, 26), and the local set includes all of
the nonpleiotropic TFs and their binding sites. To avoid the
strong but unrelated signal generated by self-regulating TFs, we
excluded binding sites residing within the 5� operator region of
the corresponding TF gene (Fig. 3A).

Measuring Distances Between Genetic Objects. The distance be-
tween two genetic objects was measured in base pairs and was
defined as the distance between the two nearest nucleotides of

the objects, regardless of the direction. In this article, we use
TF–TU distance, the distance between a TF and the nearest
regulated TU gene.

We thank Mehran Kardar, Johnathan Widom, Shamil Sunyaev, Hanah
Margalit, Nir Fridman, Ido Golding, and Alexander Grosberg for useful
discussions. L.A.M. and G.K. are supported by the National Center for
Biomedical Computing, i2b2. O.N.L. and M.S.G. are partially supported
by International Association for the Promotion of Cooperation with
Scientists from the New Independent States of the Former Soviet Union
(INTAS) Grant 05-1000008-8028 and the Russian Academy of Sciences
(program ‘‘Molecular and Cellular Biology’’). M.S.G. is a Howard
Hughes Medical Institute International Research Scholar. Z.W. is a
Howard Hughes Medical Institute Predoctoral Fellow.

1. Pardee AB, Jacob F, Monod J (1959) J Mol Biol 1:165–178.
2. Warren PB, ten Wolde PR (2004) J Mol Biol 342:1379–1390.
3. Korbel JO, Jensen LJ, von Mering C, Bork P (2004) Nat Biotechnol 22:911–917.
4. Kepes F (2004) J Mol Biol 340:957–964.
5. Hershberg R, Yeger-Lotem E, Margalit H (2005) Trends Genet 21:138–142.
6. McFall E (1986) J Bacteriol 167:429–432.
7. Golding I, Cox EC (2006) Phys Rev Lett 96:098102.
8. Widom J (2005) Proc Natl Acad Sci USA 102:16909–16910.
9. Berg OG, Winter RB, von Hippel PH (1981) Biochemistry 20:6929–6948.

10. Slutsky M, Mirny LA (2004) Biophys J 87:4021–4035.
11. Hu T, Grosberg AY, Shklovskii BI (2006) Biophys J 90:2731–2744.
12. Coppey M, Benichou O, Voituriez R, Moreau M (2004) Biophys J 87:1640–1649.
13. Halford SE, Marko JF (2004) Nucleic Acids Res 32:3040–3052.
14. Redner S (2001) A Guide to First-Passage Processes (Cambridge Univ Press,

Cambridge, UK).
15. Lawrence JG, Roth JR (1996) Genetics 143:1843–1860.
16. Lawrence J (1999) Curr Opin Genet Dev 9:642–648.
17. Gowers DM, Wilson GG, Halford SE (2005) Proc Natl Acad Sci USA

102:15883–15888.
18. Smoluchowski MV (1917) Z Phys Chem 92:129–198.
19. Revzin A (1990) The Biology of Nonspecific DNA Protein Interactions (CRC,

London).
20. Ptashne M (1992) A Genetic Switch (Cell, Cambridge, MA).
21. Elf J, Li GW, Xie XS (2007) Science 316:1191–1194.
22. Link AJ, Robison K, Church GM (1997) Electrophoresis 18:1259–1313.
23. Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Cell 123:1025–1036.
24. Yu J, Xiao J, Ren X, Lao K, Xie XS (2006) Science 311:1600–1603.
25. Martinez-Antonio A, Collado-Vides J (2003) Curr Opin Microbiol 6:482–489.
26. Tobisch S, Zuhlke D, Bernhardt J, Stulke J, Hecker M (1999) J Bacteriol

181:6996–7004.

27. Tan K, McCue LA, Stormo GD (2005) Genome Res 15:312–320.
28. Allen TE, Herrgard MJ, Liu M, Qiu Y, Glasner JD, Blattner FR, Palsson BO

(2003) J Bacteriol 185:6392–6399.
29. Price MN, Huang KH, Alm EJ, Arkin AP (2005) Nucleic Acids Res 33:880–892.
30. Wright MA, Kharchenko P, Church GM, Segrè D (2007) Proc Natl Acad Sci
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