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ABSTRACT

KNOTS (http://knots.mit.edu) is a web server that
detects knots in protein structures. Several protein
structures have been reported to contain intricate
knots. The physiological role of knots and their
effect on folding and evolution is an area of active
research. The user submits a PDB id or uploads a 3D
protein structure in PDB or mmCIF
format. The current implementation of the server
uses the Alexander polynomial to detect knots.
The results of the analysis that are presented to
the user are the location of the knot in the structure,
the type of the knot and an interactive visualization
of the knot. The results can also be downloaded and
viewed offline. The server also maintains a regularly
updated list of known knots in protein structures.

INTRODUCTION

Interest in the topological properties of biological systems
was greatly accelerated with the discovery of knots in
single-stranded DNA in 1976 (1). Subsequently, knots in
DNA were investigated extensively (2–5) and even created
artificially in polymeric materials (6), but it took another
20 years before the first systematic studies of protein
knots appeared (7–11). Topology is particularly relevant
for proteins because the 3D structure of a protein directly
determines its functionality. Recently, we performed a
comprehensive analysis of the Protein Data Bank (11) and
demonstrated that knotted structures tend to persist
across species and kingdoms. However, when a knot
appears or vanishes in the course of evolution,
the function of the protein is also altered accordingly
(11–13). We uncovered some knotted proteins that have
significant biomedical importance, such as the Parkinson’s
disease-associated ubiquitin hydrolase UCH-L1 (14) or its
structural homolog UCH-L3 (10,15), which contain
the most complicated knots found in proteins so far.

Other challenges include understanding the folding and
unfolding of knotted proteins. The underlying mecha-
nisms are not yet well understood and are the subject
of active research (16,17).
Surprisingly, most discovered knots were not reported

at the time the structure was solved, since finding knots in
protein structures by naked eye is virtually impossible.
Moreover, widely used protein structure verification tools
like WHATIF (18), VERIFY3D (19) and PROCHECK
(20) do not have the capability to detect knots. We
hope that with our contribution, the discovery of knots
in newly solved protein structures becomes part of
the standard routine, similar to identification of second-
ary structure elements or classification of protein’s
architecture.
To address this challenge, we developed a web server

that allows a user to check a new or a known protein
structure for knots by entering its PDB id or uploading a
coordinate file.

MATERIALS AND METHODS

How knots are determined

Mathematically, knots are only well defined in closed
(circular) loops (21). However, both the N- and C-termini
of open proteins are typically located close to the surface
of the protein and can be connected unambiguously:
We reduce the protein to its backbone and draw two lines
outward starting at the termini in the direction of
the connection line between the center of mass of the
backbone and the respective ends. The two lines are joined
by a big loop, and the structure is topologically classified
by the computation of its Alexander polynomial (21,22).
To determine an estimate for the size of the knotted core,
we successively delete amino acids from the N-terminus
until the protein becomes unknotted (11). The procedure
is repeated at the C-terminus starting with the last
N-terminal deletion structure that contained the original
knot. For each deletion, the outward-pointing line
through the new termini is parallel to the respective lines
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computed for the full structure. Unfortunately, the size of
a knot is not always precisely determined by this
procedure, so reported sizes should only be regarded as
approximate.
To speed up calculations, the KMT reduction scheme is

used (9,11,23,24). This algorithm successively deletes
amino acids that are not essential to the topological
structure of the protein. It is also employed to create a
reduced representation of the knot (Figure 1).
In the course of our investigations (11) we came up with

a number of stringent criteria that a structure should
satisfy to be classified as knotted:

(i) The Alexander polynomial should yield a knot.
(ii) There should not be any gaps in the polypeptide

backbone. (See below.)
(iii) The knot should persist if two amino acids are

removed from each end. (This prevents knots

formed by just a few residues at the end of the
chain passing through the loop—‘shallow knots’ and
knots which only appear due to our specific loop-
closure procedure.)

Unfortunately, there are some structures contain-
ing regions of the backbone that were not resolved
and for which coordinates are not reported in PDB
(a gap in the structure). Mobile loops may not be resolved
by X-ray crystallography unless they are stabilized by
a ligand or by protein engineering, for example. If the
polypeptide chain contains a gap, the knot is reported if
(i) a knot is present in at least one fragment of the chain
and (ii) the structure that results from gaps being bridged
with straight lines contains a knot. These criteria form the
basis of our list of known knots. We have also included
knotted structures with gaps if at least one homolog is
knotted.

A

B

Figure 1. The output of the Knots server for H. influenzae TrmD (PDB id 1uam). (A) Page one: the summary table. (B) Page two: Jmol interactive
visualization. The 1uam structure is displayed in the left window with a knot highlighted in rainbow colors and the rest of the protein hidden. In this
case, the trefoil knot spans a relatively small region of the protein and can be easily seen by eye in the protein structure. In many cases, this is
difficult and the right panel offers the view of a simplified (reduced) representation of the knot. These visualizations can also be viewed offline using
Rasmol scripts provided in the downloadable package.
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Server: input and output

As an input, the server accepts a structure file (in PDB or
mmCIF format) or a PDB ID. The structure is tested for
knots as described above. An option allowing a user to
decide how to deal with the unresolved part of the
structure is provided. The user may choose to connect
unresolved parts by straight lines or to treat them as
described above.

Figure 1 presents a typical output of the server—the
summary page reporting a knot. If a knot is found,
the server reports the type of the knot (e.g. 31- the
trefoil knot, 41- the ‘figure eight’ knot, 52, etc.), its location
in the protein structure, and a simplified representation
of the knot (Figure1A). At this point, a user may choose
to download results of the calculation as a collection of
Rasmol/Jmol scripts or to proceed to the second page that
has Jmol visualization of the knot on our server.

An option to download the tabulated results, the original
structure file, and simplified structure and visualization
Rasmol/Jmol scripts in one zip package is provided. This
also can be used in cases when Jmol fails to start due to
structure size or web browser-Java incompatibility issues.

The second page (Figure1B) has a two-window GUI to
examine, rotate and further analyze the structure of the
knot. The left window visualizes the protein structure with
the knot using a Jmol Java applet. The knotted part is
colored in rainbow colors to facilitate following the chain
and visualizing the knot. The right window presents
a simplified representation of the knot obtained by the
reduction algorithm, making it easier to see that the
protein structure is indeed knotted. The structures in both
windows can be rotated, magnified and further analyzed
using the tools of Jmol applet. Two buttons below (i) hide
or show the rest of the protein structure in the left
window, thus allowing a user to focus on the knot or to
examine it in the context of the structure; and (ii) to spin
structures in both windows simultaneously. An expert user
familiar with Rasmol/Jmol commands can further analyze
the structure using the command-line interface by entering
individual commands or a whole script into a field below
the windows.

The front page of the server also provides a curated
list of discovered knots in proteins, classified according
to the type of the knot, as well as a brief definition.

The server is implemented as a CGI Perl script, while
the algorithmic part is written in C. The results of the
calculation are stored for 20min on the server, after which

they have to be recomputed. Knot detection typically
takes one to a few seconds.

Example of using the server

The bacterial tRNA(m1G37)methyltransferase (TrmD) is
an enzyme that transfers methyl group from S-adenosyl-L-
methionine (AdoMet) to a G nucleotide in the anti-codon
region of certain bacterial tRNA species. The methylation
of anti-codon nucleotides is essential for reducing the
error rate in anti-codon binding to the complementary
codon on mRNA during translation. The crystal structure
of the enzyme from Haemophilus influenzae has recently
been solved and is known to have a trefoil knot in the
AdoMet-binding pocket (26). The specific configuration of
the pocket allows AdoMet to adopt an unusual strongly
bent conformation with its methyl group protruding from
the pocket and accessible for transfer reaction (26).
The Knots output for a PDB entry 1uam, H. influenzae

TrmD protein, is shown in Figure 1. A trefoil knot has
been correctly identified for residues 86–130A in the 1uam
structure. Clicking on ‘Jmol visualization’ link leads to
the second page showing a protein ribbon diagram
(Figure 1B, left), and the simplified representation of the
knot. The knot can be easily seen in the protein structure
by eye if the surrounding structure is hidden from view
using the button provided.
The reduced representation of the knot (Figure 1B,

right panel) is generated by the KMT reduction algorithm.
The first and the last segments in this representation are
not part of the protein but represent the connection lines
to ‘infinity’, which are required to circularize the structure
and calculate the Alexander polynomial (see the Section
‘How knots are determined’).
To ensure that the knot is not an artifact of connecting

a gap in the structure, one may want to test for knots in
each protein fragment separately. This option is provided
on the front page of the server. In the case of the 1uam
structure, the knot is found in one of the fragments.
More examples of knot in protein structure and their

analysis can be found in our recent publication (11).

New protein knots discovered in 2006

Table 1 lists all novel protein knots that were discovered
with our software in 2006. A complete list with all knotted
proteins is available online.

Table 1. Protein knots discovered in 2006

Protein Species PDB code Length Type Knotted core

a/b knot Homo sapiens 2ha8 159 31 103–148 (30)
Porphyromonas gingivalis 2i6d 231 31 177–222 (9)

S-Adenosylmethionine synthetase Homo sapiens 2p02 380 31 59–302(21)
Ubiquitin hydrolase UCH-L1 Homo sapiens 2etl 219 52 10–216 (7)

Length refers to the size of the protein in amino acids. The knotted core is the minimum configuration that stays knotted after a series of deletions
from each terminus; in parentheses we indicate how many amino acids can be removed from each side before the structure becomes unknotted. Note
that unlike in our previous work (11), PDB residue numbers are used to describe the location of the knots.
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CONCLUSION AND OUTLOOK

In this article, we presented our knot detection server and
an illustration of its use. The server is easy to use, accurate
and fast. In future, we plan to add automatic modeling of
unresolved parts in the structures by using homology.
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