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A Methods

All analytical expressions were obtained starting from Equation 3, the tQSSA approximation
of the cycle, the derivation of which is discussed in Appendix C. The full mass action kinetics
(MAK) description of the system (again, see Appendix C) was analyzed numerically to obtain
the data used in all the plots. Therefore, although the analytical expressions depend on the
validity of the tQSSA, the general results do not as they have been numerically verified on the
full system.

To analyze the steady state behavior, the cycle equation (Equation 3) corresponding to each
regime was set to zero to obtain A at steady state. The quasi steady state expression for the
phosphatase-protein complex, obtained in the process of deriving Equation 3 was then used to
translate this into the steady state output A (see Appendix D for details).

To obtain the dynamic response O Eq.3 was linearized about a chosen steady state level,
assuming that the deviations in the input from its steady state level are small. The steady
state level of the input for the four cycles was chosen such that the steady state output was
about half-way to saturation, to allow the cycles to respond as much as possible. Choosing other
steady state values where the slope of the steady state response curve is small would lead to
little response. Particular care has to be placed in the ultrasensitive cycle, which has a very
small range of inputs where its slope is non-zero, implying that this cycle needs to be finely
tuned for it to transmit dynamic information.

All numerical analysis was done in Matlab, starting from the full MAK description of the
cycle. The data in Figure 2 was obtained by setting the derivatives to zero and solving the
resulting algebraic relations numerically. The data in Figures 5, 4 and S1 was obtained by
numerically integrating the MAK equations for the given inputs using the ODE23s Matlab
function. Finally, the data in Figure 6 was obtained by integrating the MAK equations using
the Runge-Kotta algorithm on inputs of the form E0(1 + a sin ωti + η(0, 1)) where ti is any time
point in the numerical integration and η(0, 1) is a normal random variable (with unit variance
and zero mean). The code is available upon request.

B Equations for four regimes

Regime 1: both kinase and phosphatase are saturated : ultrasensitive

This regime was first identified [27], where its steady state behavior was analyzed. Equation 3
reduces to

dA

dt
= k1E1 − k2E2,

indicating that in this regime the signaling cycle effectively integrates the difference of its (scaled)
input and a reference level specified by the (scaled) phosphatase level. When the difference
maintains the same sign for long enough, it will become saturated at a low or a high output
level, for a negative and a positive difference, respectively. This regime can be used in feedbacks
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requiring time integration (integral feedbacks), such as the one proposed to operate in bacterial
chemotaxis [62].

Regime 2: kinase saturated, phosphatase unsaturated : signal-transducing

Of the two new regimes that we characterize in this study, the one with a saturated kinase
and unsaturated phosphatase (Figure 2B) is of particular interest. We refer to this regime as
signal-transducing because, as discussed below, it is ideal for transmitting noisy time-varying
signals. Equation 3 for this regime becomes

dA

dt
= k1E1 − k2

E2

K2 + E2
A,

which is linear in A. This has several interesting implications. In particular, it implies that for
slow inputs (relative to the cut-off frequency k2E2/(K2 + E2)) the output A will simply be a
scaled copy of the input. This property, that the output is a scaled but otherwise undistorted
copy of the input, is unique amongst the four regimes of the signaling cycle, which combined
with the fact that quickly varying inputs (noise) are filtered out make this regime ideal for
the transmission of signals. Furthermore, the fact that this cycle is a linear system implies
that pathways (or part of pathways) built of cycles in this regime become highly tractable
mathematically since all the well-developed signals and systems techniques would apply to them.
Available biochemical data and in vivo measurements argue in favor of this regime to be present
in cell signaling cascades (see Discussion).

Regime 3: kinase unsaturated, phosphatase saturated : threshold-hyperbolic

The second new regime has an unsaturated kinase and a saturated phosphatase, and Equation
3 becomes

dA

dt
= k1

E1(S − A)

K1 + E1
− k2E2.

Its steady state output is zero for inputs below a threshold and then increases hyperbolically
with increasing steady-state inputs.

Regime 4: both kinase and phosphatase unsaturated : hyperbolic

This regime was also first identified in [27] and exhibits a hyperbolic steady state response.
Equation 3 becomes

dA

dt
= k1

E1(S − A)

K1 + E1
− k2

E2 A

K2 + E2 + A

for this regime.

C Derivation of Equation 3

We start with the mass action kinetics description of the reactions specified by Equations 1 and
2. There are six chemical species and three conservation relations (the kinase, phosphatase and
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substrate protein are conserved), yielding a total of three variables. Letting C1 (C2) denote the
concentration of the inactive (active) enzyme-substrate complex IE1 (AE1), we write down the
mass action kinetics equations for the enzyme-substrate complexes and for the amount of active
protein A yields

dA

dt
= k1C1 − k2C2 (5)

dC1

dt
= a1

[

(S − A − C1)(E1 − C1) − K1C1
]

= a1
[

C2
1 − (K1 + E1 + S − A)C1 + E1(S − A)

]

(6)

dC2

dt
= a2

[

(A − C2)(E2 − C2) − K2C2
]

= a2
[

C2
2 − (K2 + E2 + A)C2 + E2 A

]

, (7)

where S denotes the total amount of substrate protein, a1 and a2 are the association rate
constants of the two enzymatic reactions and K1 and K2 the Michaelis Menten constants.

To apply the tQSSA, we then hypothesize that the complexes have faster dynamics than
the active protein and that they are always at equilibrium with respect to the active substrate
protein. This allows us to substitute C1 and C2 in Equation 5 with the equilibrium values, which
are in turn found by setting the left hand side of Equations 6 and 7 to zero and solving for the
complexes.

So doing yields

C1 =
K1 + E1 + S − A

2

(

1 −
√

1 − 4r1
)

and C2 =
K2 + E2 + A

2

(

1 −
√

1 − 4r2
)

where

r1 =
E1(S − A)

(

K1 + E1 + S − A
)2 and r2 =

E2 A
(

K2 + E2 + A
)2 .

To further simplify the equilibrium expressions for the complexes, we approximate to first order
in r1 and r2 (which is reasonable when r1 # 1 and r2 # 1), yielding the following expressions
for C1 and C2:

C1 =
E1(S − A)

K1 + E1 + S − A
and C2 =

E2 A

K2 + E2 + A
. (8)

These expressions are finally inserted into Equation 5 to yield the signaling cycle equation
(Equation 3).

In [32], R. Tzafriri describes in full detail how to obtain the same result for a single enzy-
matic reaction in a self-consistent manner. In particular, he finds conditions under which the
complexes indeed reach equilibrium with respect to the substrate, and under which the first
order approximation of the square root is valid. The same argument carries through for each
enzymatic reaction in the signaling cycle. In particular, the tQSSA is expected to hold when

1. Either K1 + E1 $ S or K1 + S − A $ E1, and
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2. Either K2 + E2 $ S or K2 + A $ E2.

As these inequalities are better satisfied, the tQSSA describes the signaling cycle better. Sim-
ilarly, whereas a Michaelis Menten approximation would be valid only at low enzyme concen-
trations, an inspection of the conditions above shows the tQSSA is also valid when the enzyme
concentrations are high. The conditions we use to define the four signaling regimes of the cycle
are consistent with the sufficient conditions for the validity of the tQSSA.

D Steady State

The output of the cycle is the amount of free active protein and may be found from the amount
of active protein A and of active complex C2, since A = A−C2. Analytic approximations to the
steady state response of the signaling cycle may then be obtained by finding expressions for A
and C2. The former can be found by setting the left hand side of Equation 3 to zero and solving

for A, while the latter is taken to be E2 A
K2+E2+A

as discussed in the appendix above.

So doing for the four signaling regimes results in analytic expressions for their steady state
responses. The case of the ultrasensitive regime, however, involves a slightly different method.

Regime 1: ultrasensitive

Setting Equation 3 to zero for this regime results in k1E1 = k2E2, and since for this regime
C2 ≈ E2 then this indicates that C2 ≈ k1

k2
E1. Numerical simulation indicates that as long as

k1

k2
E1 ≤ E2 the previous relation is accurate and furthermore that the switch output is zero. As

the input increases beyond this point, C2 quickly increases to its maximal value E2 (i.e., the
phosphatase becomes fully saturated, while the level of free inactive protein decreases to zero
and the inactive complex C1 ≈ E2

k2

k1
. Together, these observations imply that for E1 ≤ k2

k1
E2 the

output of the cycle is zero and A ≈ C2 ≈ k1

k2
E1, and that for inputs above this level A quickly

saturates at S − k2

k1
E2, and the output level is given by A = S −

(

1 + k2

k1

)

E2. This implies that
no matter how high the input is, the output of the ultrasensitive cycle will never equal the total
amount of substrate protein unless there is no phosphatase.

Regime 2: signal-transducing

Setting Equation 3 to zero for this regime results in k1E1 − k2
E2

K2+E2

A = 0, so A = k1

k2

K2+E2

E2

E1.

At the same time C2 ≈ E2

K2+E2

A so that A = k1

k2

(

K2+E2

E2

− 1
)

E1. This linear relationship between

the output and the input can not hold for high inputs because the output must be less than the
total amount of substrate. We therefore expect the output to saturate when there is not free
inactive protein, i.e., when A + C1 ≈ S. Since C1 ≈ E1 in this regime, the previous expression

implies that the switch will saturate when E1 ≈ S

1+
k1

ω2

, where ω2 = k2E2

K2+E2

. Evaluating the output

at this input level yields the saturation value of the switch in this regime: A =
(

1− ω2

k2

)(

k1

ω2

1+
k1

ω2

)

S.
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Regime 3: threshold-hyperbolic

Setting Equation 3 to zero for this regime results in ω1(S−A)−k2E2 = 0, where ω1 = k1
E1

K1+E1

.

This implies that A ≈ S− k2

ω1
E2 and since C2 ≈ E2, that A ≈ S−(1+ k2

ω1
)E2. This approximation

is not expected to hold at low inputs, where it blows up. Instead, at low inputs the free active
protein is expected to be zero and A ≈ C2 ≈ ω1

k2
(S − A) from the first expression in this

subsection. Solving for A gives A ≈ ω1

k2+ω1
S ≈ A for low inputs. This expression is expected to

break as the input level reaches a level E1
∗

where the expression equals E2. Above that input
the first expression for A is expected to hold. Therefore, for inputs below E1

∗

the output is
approximately zero, and then increases hyperbolically as A ≈ S − (1 + k2

ω1
)E2.

Regime 4: hyperbolic

Setting Equation 3 to zero for this regime results in ω1(S −A)− ω2A = 0, where ω1 and ω2 are
as defined above. Therefore A ≈ ω1

ω1+ω2
S and since C2 ≈ ω2

k2
A then A =

(

1 − ω2

k2

)

ω1

ω1+ω2
S. The

saturation level of this regime is obtained by evaluating the previous expression in the limit as
E1 becomes infinite.

E Quantifying the Quality of the Four Regime Approximations

Taking extreme values of the kinase and phosphatase MM constants allows us to obtain the four
signaling regimes previously discussed. However, the results obtained from these approximations
apply reasonably well to a wide range of MM constants, and not only at the extreme. The quality
of the approximation does increase, however, as the MM constants become more extreme. To
demonstrate this we numerically solved for the steady-state characteristic of Equation 3 for a
wide range of kinase and phosphatase MM constants and compared them to the characteristics
of each of the four regimes. For each set of K1 and K2 values, we set the left hand side of

Equation 3 to zero and solve for A and then subtract E2 A
K2+E2+A

as discussed in the section above

to obtain A. We do so for a range of total kinase values Kt and for each, we compute the
difference from the steady-state of each of the four regime steady states. We finally square these
differences and compute their mean resulting in the mean squared error for each regime. In
Figure 3 we show what we refer to a the relative error, the square root of the squared error
normalized by the total substrate St. This figure again shows that the regime approximations
are each approximately valid over a large part of a quadrant, covering almost the full K1 versus
K2 space when combined.

F Dynamics

To find approximate analytic expressions for the response of the system to inputs of the form
E1 = E0(1 + a sin ωt), we use small signal analysis. This method consists of linearizing the
system about its steady state level, and further assuming that the input deviates from its steady
state level by small amounts. Any results thus obtained are expected to be valid for small E0a,
although numerically we have observed that the results so obtained describe the system better
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than they might have the right to when E0a is not small. The method works as follows: First
let the function f(A,E1) (or just f for simplicity) denote the rate of change of A as described

by Equation 3 (i.e., dA
dt = f(A,E1)), and let Ass be the steady state level of A when the input is

constant and equal to E0, so that f(Ass, E0) = 0. Then define the deviations from steady state
levels δA = A−Ass and δE1 = E1 −E0 = E0a sin ωt. Assuming the deviations are always small
and Taylor expanding f(A,E1) about the steady state levels then yields

dδA

dt
= gδE1 − ωcδA, (9)

where g = ∂f
∂E1

∣

∣

(Ass,E0)
is referred to as the gain and ωc = ∂f

∂A

∣

∣

(Ass,E0)
as the cut-off frequency.

This equation is linear and may be solved for arbitrary inputs δE1 by one of the many useful
techniques to work with linear differential equation (i.e., by Laplace transforms). In particular,
when δE1 = aE0 sin ωt and the initial condition is zero

δA = aE0
g

√

ω2 + ω2
c

cos
(

ωt + tan−1(
−ωc

ω
)
)

+ aE0gωe−ωct,

where tan−1 denotes the inverse tangent. Here, we are only interested in twice the amplitude
of the steady state oscillations in A, from maximum to minima. These are evidently given by
Equation 4, such that for frequencies smaller than the cut-off ωc the oscillations are proportional
to g

ωc
and oscillations for frequencies larger than ωc decay as 1/ω.

Because the output of the system is A = A − C2, we need to translate these oscillations in
A to oscillations in A. In the ultrasensitive and threshold-hyperbolic regimes, C2 ≈ E2 so the
oscillations in A equal those in A. In the hyperbolic and signal-transducing regimes, C2 ≈ ω2

k2
A,

so the amplitude of the oscillations in A is that amplitude of the oscillations in A multiplied by
a factor of 1 − ω2

k2
.

Regime 1: ultrasensitive

For the ultrasensitive regime we do not need to use the method above. This regime needs to be
fine-tuned to transmit signals because, as evidenced by its steady state response curve, is only
responsive to changes in the input close to its inflection point E1 = k2

k1
E2. Choosing E0 by this

expression Equation 3, for the dynamic input becomes dA
dt = k1aE0 sinωt which is identical to

Equation 9 with a gain of k1 and cut-off frequency of zero. This will not hold for small enough
frequencies because then O would become infinite. Instead at some effective cut-off frequency,
the oscillations will cover the full range of values that the ultrasensitive cycle may take. That
is, the effective cut-off frequency satisfies 2E0a

k1

ωc
= S −

(

1 + k2

k1

)

E2, where the right hand side
is the saturation level of the cycle. Solving for ωc in this expression yields the cut-off frequency
in Table 3. The ultrasensitive regime is the only one that achieved oscillations that cover its full
steady state response range, and where the (effective) cut-off frequency depends on the input
amplitude a.
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Regime 2: signal-transducing

Because Equation 3 for this regime is already linear in A and in E1, it already has the same
form as Equation 9 with g = k1 and ωc = ω2. Multiplying the gain by 1 − ω2

k2
to translate to

oscillations in A gives the result in Table 3.

Regime 3: threshold-hyperbolic

Applying the method described above results in the expressions in Table 3 (These results are
not expected to hold when the steady state input E0 is below the regime’s threshold and the
output is zero). For simplicity though, we let ω0 = ω1

∣

∣

(E1=E0)
= k1E0

K1+E0
, which turns out to be

ωc for this regime.

Regime 4: hyperbolic

Applying the method described above results in the expressions in Table 3, where the cut-off
turns out to be ωc = ω0 + ω2.

G Low-pass filtering

Figure S1 summarizes the low-pass filtering behavior for the four regimes. It shows O (color
coded) versus a and ω (i.e., a horizontal cut through this plot would simply be an O versus
ω curve such as those shown in Fig. 5). Some salient features are evident in this figure. (i)
All regimes act as low-pass filters. (ii) Although Equation 4 is obtained using a small signal
approximation and is expected to hold for small a, it provides a good guide for describing O for
all values of a. Perhaps the biggest discrepancy is the fact that O does not increase linearly with
a but saturates (see Fig. S1A,C,D). The signal-transducing regime, however, does seem to have a
response that increases linearly with a so for a given frequency an input with twice the amplitude
of another will result in twice the output O. (iii) Finally, for all regimes except the ultrasensitive
regime (Fig. S1D) the response starts decreasing at about the same frequency, independent of
a, where as for the ultrasensitive cycle smaller a results in smaller cut-off frequency.

The ultrasensitive regime

The ultrasensitive cycle is the only cycle that oscillates between a level close to its saturation
value and zero for a wide range of inputs (red region of Fig. S1D). The cutoff frequency of this
cycle is a function of both the total substrate protein of the cycle, and of the input’s amplitude,
a unique property of this cycle. For all other cycles, the cutoff frequency is independent of total
substrate and of the input parameters.

The signal-transducing regime

The cutoff frequency depends only on the phosphatase level and phosphatase parameters, but
the gain depends on both phosphatase and kinase parameters. Thus the cutoff frequency can be
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tuned by changing phosphatase parameters or level, and the gain can be independently adjusted
by changing the catalytic rate of the kinase via evolution.

The threshold hyperbolic regime

The cutoff frequency depends only on the average kinase level and kinase parameters. Thus the
cutoff frequency may be tuned by changing the kinase level and/or parameters, and the gain
may be tuned independently by adjusting phosphatase levels or parameters.

The hyperbolic regime

This cycle has a cutoff frequency that depends on both the kinase and the phosphatase. Increas-
ing either one increases the cutoff frequency. The gain also depends on both the kinase and the
phosphatase, so adjusting their levels will modify both the gain and the cutoff frequency of the
switch.
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H Supplementary Figures

Figure S1. Magnitude of the oscillations in the output as a response to oscillations
in the input about a background kinase level. Plots A, B, C and D show the out-
put oscillations O of the hyperbolic, signal transducing, threshold-hyperbolic and ultrasensitive
switches, respectively (normalized by the steady-state saturation value of each cycle), shown in
Figure 2, in response to an input of the form E1 = E0(1+a sin wt). The magnitude of O is color
coded and shown as a function of the input amplitude a and frequency ω. Output oscillations
increase with increasing a and decrease with increasing ω as expected. The four cycles, however,
respond very differently to their inputs. The parameters used for the cycles are the same as
those in Figure 2, and E2 = 50 nM except for the threshold-hyperbolic switch, where E2 = 100
nM .
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