The Endless Square? [SOLUTION]

Code with loop and Wait statements

```
with Lego;
use Lego;
procedure Turnrover is
 Left_Wheel : constant Output_Port := Output_A;
 Right_Wheel: constant Output_Port := Output_C;
 Left_Rot : constant Sensor_Port := Sensor_1;
 Right_Rot: constant Sensor_Port := Sensor_3;
begin
 Config_Sensor(
   Sensor => Left Rot,
   Config => Config_Rotation);
 Config_Sensor(
   Sensor => Right Rot,
   Config => Config_Rotation);
   Output_Power(
   Output => Left Wheel,
   Power => Power_High);
 Output Power(
   Output => Right_Wheel,
   Power => Power_High);
 Output Power(
   Output => Left_Wheel,
   Power => Power_High);
 Clear_Sensor(Left_Rot);
 Clear_Sensor(Right_Rot);
                                                   Use of enclosing loop (1 pt)
 loop
                                                   Motors turn in same direction (1 pt)
   Output_On_Reverse(Left_Wheel);
   Output On Reverse(Right Wheel);
   Wait(1000); -- Timing may have to be adjusted
   Output_On_Forward(Left_Wheel);
                                                  Motors turn in opp. direction (1 pt)
   Output_On_Reverse(Right_Wheel);
   Wait(500); -- Timing may have to be adjusted
 end loop;
end Turnrover;
```

Code with loops, exit when, and rotation sensors.

There are many ways to implement this, here is one way. Replace the loop in the code above with this loop:

```
loop
 loop
                                           Motors turn in same direction (1 pt)
   Output On Reverse(Left Wheel):
   Output_On_Reverse(Right_Wheel);
   exit when (Get_Sensor_Value(Left_Rot)<-500); -- Timing may have to be adjusted
 end loop;
                                                 Use of conditional (if or exit statement) (1 pt)
                                                 Use of "Get Sensor Value" (1 pt)
 Clear Sensor(Left Rot);
 Clear_Sensor(Right_Rot);
                                       \rightarrow Use of nested loop (1 pt)
 loop
   Output On Forward(Left Wheel):
                                           Motors turn in opp. direction (1 pt)
   Output_On_Reverse(Right_Wheel);
   exit when (Get Sensor Value(Left Rot)<300); -- Timing may have to be adjusted
 end loop;
 Clear_Sensor(Left_Rot);
                                 Clear Sensors (1 pt)
 Clear_Sensor(Right_Rot);
end loop;
```

Pre/Post Conditions, Inputs & Outputs

Precondition: Rover placed on the ground with certain orientation. (1 pt)

Postcondition: Rover will continuously drive in a square like shape. (1 pt)

Inputs*: Rotation Sensor Values from port 1 and port 2. (1 pt)

Outputs*: Motor Power to ports A and B. (1 pt)

* Since this is a physical system, the inputs and outputs here have been described as measurements from the world. In a more typical program that only runs on a computer, the inputs would be the parameters passed into the procedure and the outputs are the values returned. You will be learning about parameters for procedures and return functions soon.