
1

Aerospace Software
Development

&
The Mars Rover Problem

Lecture 2
Heidi Perry

Draper Laboratory
Unified Lecture

November 10, 2005

2

Today’s Lecture

• Software Reuse
• Coding Tips: The Data Log
• Software Lifecycle & Supporting Artifacts
• Software Test
• Unified Test Report
• System Problem Logistics

3

Software Reuse in the Real World

• Software Frameworks
• Open Source Development
• Internal code reuse between projects
• Libraries that come with development

environments
• “Hey Joe, do you have any code that does

this?”

4

Levels of Software Reuse

• Some fully reused
• Some calibrated, tweaked
• Some enhanced
• Some is just drawing on experience
• Some is small code snippets

5

Full Reuse Example: Frameworks

• Frameworks are a set of software procedures to support
a particular application area
– Includes main program to invoke the procedures
– Additional software is written to tailor the framework

for each new project
– Often proprietary

• Examples
– Navigation Framework
– Autonomy Framework

6

Simple Navigation Software Framework

GPS
Memory

Scheduler

mem_read

mem_write

Navigation Sensor Processing SW

Clock

Sensors

1 Hz Nav

16 Hz Nav

Epoch Nav
Processing

Navigation Filter SW

1 Hz Inputs

16 Hz Inputs

Navigation System Software

Sensor data
pools

Memory Access SW

Sensor Data Integration SW

Nav Interface
Library

Display SW

ethernet

7

Unified Software Reuse

• How might you draw upon things that
you’ve already done in the homework in
order to solve the system problem?
– Hint: Also look at the homework solutions

when considering areas of reuse, particularly
if your solution didn’t work as well as you had
hoped.

• The most obvious answer is the full reuse
of the rover itself…
– Problem C4: Build the Rover

8

Unified Software Reuse (2)

• The control algorithms from problem C8
will certainly be useful in driving around
the grid.
– Turn_Left_90 & Turn_Right_90

• should be fully reusable (i.e. no change)
– Go_Forward and Go_Backward

• should be reusable by calibrating it: Find an
appropriate calibration constant so that the rover
can go forward and backward by one square at a
time

9

Unified Software Reuse (3)
• The Simple Navigation problem from C10,

though not written for the rover, could certainly
be useful in using an array to store information
about the grid.
– It will be useful to turn the code from C10 into a

procedure that aids in rover navigation. Think about
what information the procedure can provide to the
rest of your algorithm. You may want to consider
using more then one output parameter.

– The algorithm will obviously need to be modified to
use a 5x5 grid instead of a 10x10.

– The homework solution contained a particular concise
way of solving the navigation problem. You will likely
need to draw on this solution (or another concise
solution) in order to make your code fit on the rover.

10

Unified Software Reuse (4)

• Finally, small parts of the code from the
Discrete Rover Problem (C13) will be
useful.
– In particular, the code related to calibrating

and checking the light sensors will be of use,
as you will need to be able to find black
squares as part of the system problem.

11

Coding Tips: Using the Datalog

• There are two procedures defined in the
Ada Mindstorms manual:

procedure Create_Datalog
(Size : in Datalog_Range);

procedure Add_To_Datalog
(Value : in integer);

• These are equivalent to the procedures
documented in the Not-Quite-C manual.

12

Embedded SW Lifecycle
Concept Exploration

Software
Design

Software
Code

Software
Test

System
Test

Software
Rqmts

Design Evolution

SW Unit Testing
SW Component Testing
Incremental Build Test
SW Verification
Model-Based Tests
Formal Methods

Model Driven Architecture / Specification Languages
Functional Decomposition
Object Oriented Design / UML
Draper SW Frameworks (Autonomy, GN&C, C&DH,
Fault Tolerant SW – Design & Code for reuse)

C/C++, Java, Ada
Assembly
MATLAB /
Simulink RTW Autocode

Mathematics Models
Descriptive Models
Requirements DB
MATLAB

Algorithm Development

Embedded Design
Spiral

Mission
Implementation Spiral

SW Validation

SEI Level 3

analysis analysis analysis analysis analysis

simulation simulation simulation simulation simulation

Simulation-based algorithm &
prototype environment

13

Supporting Artifacts (Documents)
Concept Exploration

Software
Design

Software
Code

Software
Test

System
Test

Software
Rqmts

Design Evolution

Algorithm Development

Embedded Design
Spiral

Mission
Implementation Spiral

SEI Level 3

analysis analysis analysis analysis analysis

simulation simulation simulation simulation simulation

Simulation-based algorithm &
prototype environment

SRS
SRS

SDD
SDD

SW
TEST
PLAN

SW
TEST
PLAN

Test
Report

Test
Report

ALGORITHM
DESCRIPTION

ALGORITHM
DESCRIPTION

UNIFIED
Test
Procedures

Test
Procedures

14

Why Test? - Some Real Rover Examples
Mars Pathfinder - a multitasking priority problem

– Successful landing July 4, 1997
– A few days into the mission, not long after

Pathfinder started gathering meteorological data,
the spacecraft began experiencing total system
resets, each resulting in losses of data. The press
reported these failures in terms such as "software
glitches" and "the computer was trying to do too
many things at once".

– Why? Priority inversion in multitasking Real Time
OS. An upload of new software fixed the problem.

15

Why Test? - Some Real Rover Examples
Mars Spirit – a memory allocation failure

– January 2004
– By design, data is collected by Spirit, files are created and stored in

the flash file system until a communications window opens — an
opportunity to transmit the data either directly to Earth or to one of
the two orbiters circling the Red Planet. The data is still held in the
flash system until retrieved and error-corrected on Earth

– Software command sent to Mars Rover to delete files was not
correctly received

– As data collection continued, Spirit attempted to allocate more files
than the RAM-based directory structure could accommodate. That
caused an exception, which caused the task that had attempted the
allocation to be suspended. That in turn led to a reboot, which
attempted to mount the flash file system. But the utility software
was unable to allocate enough memory for the directory structure in
RAM, causing it to terminate, and so on.

– Spirit fell silent, alone on the emptiness of Mars, trying and trying to
reboot

– Software engineers brought back the rover by uploading a series of
low level file manipulation commands

16

SW Testing Techniques
• Black Box Testing

– Only inputs and outputs of functions are considered

– How outputs are generated based on a set of inputs is
ignored

– Run a suite of test cases
• Exhaustive combination of all inputs
• Corner cases (min, max, avg)
• Pathological cases (inputs likely to result in error)

– Disadvantage: Often bypasses unreachable code

17

SW Testing Techniques
• White Box Testing

– Exercises all paths in a module

– Driven by logic

– Static Example: Reviews (i.e. peer reviews)
• Reading the code is a form of test. Code inspection can find a

surprising number of problems.

– Dynamic Example: Test all the links and buttons on a web
page

Loop <= 12 times

18

Profile
• in-flight align
• aircraft flight profile
• etc

Scenarios
• aircraft dynamics

Environment
• frame vibration
• wind profile
• pressure
• temperature
• turbulence
• etc

SW Testing Techniques

A Simulation Test Bed Example

SW
under

test

Simulator common memory

Real Instruments

Simulator
Interface

Sensors
• gyros
• accelerometers
• radars
• etc.

Nav Instruments
• HSI
• ADI

Hardware Models
• Bus Structure
• Discrete Inputs
• Airframe

Simulation Models Control/
Display

Data
Post

Processing

Commands

clock

Display

19

Levels of Real Time Software Testing

• Unit Testing
• Software Integration Testing
• Software Validation and Verification Testing
• Software / Hardware Integration Testing
• System Testing

20

Unit Testing

• Focuses on smallest unit of software (function,
module, method, procedure)

• Important control paths are tested
• Usually developed by the software engineer who

wrote the unit

• Rover Example : Testing Read_Next_Square
Read_Next_Square()

go forward 1 squares
squares_visited = squares_visited + 1
if squares_visited = 4

turn 90 degrees (right)
squares_visited = 1
corners_turned = corners_turned + 1

return check sensor data

21

Software Integration Testing
Testing that occurs when unit tested modules are integrated into

the overall program structure
• Test focuses on the interfaces between software modules
• May be performed by developer or by independent test team
• Black box testing perspective
• Drivers and stubs may be required for external interfaces

• Rover Example : Rover test on the grid

22

Software Integration Testing

• What are drivers and stubs?
– Simple software used to “plug” a complex interface during

test
– To the software under test, a drive or stub will behave

identically to the real software
– The “meat” behind the response is missing
– Real World Example:

• Interface to a real robotic arm takes commands and
provides status response

• Software stub would take a command, look up the right
response in a table and wrap the response back to the
software under test

23

Software Validation and
Verification Testing

• Verification asks, "Is the product being built right?" It is the process of
determining whether or not the products of a given phase of the
software development cycle fulfill the established requirements.*

• Validation asks, "Is the right product being built?" It evaluates software
at the end of the development lifecycle to ensure that the product not
only complies with standard safety requirements and the specific
criteria set forth by the customer, but performs exactly as expected. *

• Rover Example :
– You will verify your rover system prior to demonstration
– You TA will validate the rover software

* From NASA IV&V facility: http://www.ivv.nasa.gov/faq/index.shtml

24

Testing for the System Problem

• Consider Using Inspections
– Pen & Paper testing of your algorithm

• Be the rover…think through your algorithm to try to
break it on different grids without actually building
the grids

• For Integration Testing, Gelb lounge has
the Martian surface
– Movable tiles
– Try various configurations (start with a simple

test, then try more complex configurations)

25

Assignment Details
• Part I: Due 10 November 2005 (75 pts)

– Initial Software Design Document (team)
• Part II: Due 17 November 2005 (75 pts)

– Listing of completed software (team) (also submit code)
– Updated Software Design Document (to match completed

software) (team)
• Part III: 28-30 November 2005 (50 pts)

– Rover Demo (team)
– Test Report (individual)

• Identifies tests performed to develop completed rover
• Includes copy of rover output file
• Includes path reconstruction given rover output

26

Test Report

• Provides context for the item under test,
as well as test results

• Stand-alone document
• Ordinarily really huge…for the system

problem your report can be small (3-4
pages)
– Reminder: Each person must turn in an

individual test report.

27

Test Report Contents
1. Executive Summary
1.1 System Overview
1.2 System Architecture & Software Components
2. Test Environment
2.1 Software Items Under Test
2.2 Components in the Software Test Environment
3. Test Results
3.1 Overall Assessment of the Software Tested
3.2 Detailed Test Results

3.2.1 Rover Maneuver Tests
3.2.2 Sensor Data Tests
3.2.3 Mission Data Transmit Tests
3.2.4 System Tests

28

System Problem Test Report
(Executive Summary)

1.1 System Overview
This paragraph shall briefly state the
purpose of the system and the software to
which this document applies. It shall
describe the general nature of the system
and software; summarize the history of
system development, operation, and
maintenance.

29

1.1 System Overview Suggestions

• Summarize the rover requirements (feel
free to use SP6 system lab write-up
material)

• Identify your team mates

30

System Problem Test Report
(Executive Summary)

1.2 System Architecture & Software
Components
This paragraph shall identify the parts of
the system (i.e. hardware and software)
that were either given or developed as
part of the problem. Include how you
created your software code (for example,
how did you use solutions to the psets?)

31

1.2 System Architecture - Suggestions

• Identify the hardware and its purpose (i.e. lego RCX,
describe the sensors, the batteries)

• Describe the software your team wrote, (most likely a
navigation algorithm with reusable components from
previous psets)
– Identify the components that were reused
– Identify any underlying design decisions (i.e. right-

hand-rule, how your rover retained knowledge of the
black squares, etc.)

32

System Problem Test Report
(Test Environment)

2.1 Software Items Under Test
This paragraph shall identify any software
by name, number and version, as
applicable that was tested and
summarized in this report.

In other words…provide the name of the
file that your team submits. If it has a
version number, provide that as well.

33

System Problem Test Report
(Test Environment)

2.2 Components in the Software Test
Environment

This paragraph shall identify by name, number, and version, as
applicable, the support software items (e.g., operating systems,
compilers, communications software, related applications
software, etc.) necessary to perform the testing activities on the
software identified in paragraph 2.1.

For example, you need AdaGide / AdaMindstorms, a PC running
Windows, etc. Think about what you would need to give
someone to test your system

34

System Problem Test Report
(Test Results)

3.1Overall Assessment of the Software
Tested

This paragraph shall:
(a) Provide an overall assessment of the software as

demonstrated by the test results in this report
(b) Identify any remaining deficiencies, limitations, or

constraints that were detected by the testing
performed.

Basically, describe how the rover worked
or didn’t…

35

System Problem Test Report
(3.2 Detailed Test Results)

3.2.1 Rover Maneuver Test(s)
• This paragraph shall describe the tests performed

and the challenges faced when checking the rover’s
ability to move forward, backward and turn.

3.2.2 Sensor Data Test(s)
• This paragraph shall describe tests performed to

check the rover’s reading of the light sensor data.

3.2.3 Mission Data Transmit Test(s)
• This paragraph shall describe the tests used to

check that the mission data could be transmitted to
“earth.”.

36

System Problem Test Report
(3.2 Detailed Test Results)

3.2.4 System Test(s)
• Summarize what your rover did the first time you tried it

on the 5x5 grid. Did you have to correct your algorithm
after the first test? How did you learn from the rover’s
behavior?

• How did your rover perform during the final
demonstration for credit? What was its path across the
grid? Include a copy of your team’s output from the
rover during the demo.

Here is a good place to indicate if your team performed
any design or code inspections (i.e. paper-and-pen
testing of your algorithm) prior to actual testing on the
grid.

37

Demo Logistics
• Your team will sign up for a demonstration time slot
• C&P Staff will assemble a Martian surface for your lego rover
• Your rover will be loaded with the software turned in on 17

November
• The rover will be placed on square 1 facing east
• The rover will drive to square 25, avoiding black squares as

required, then stop. Meanwhile, the C&P team will observe the
rover and note the path the rover took across the Martian surface.

• The rover will then transmit its mission data to the PC
• The C&P team will retrieve this mission data file and provide it to the

team
• From this data file, the team should be able to determine the path

through the maze.
• Each person should get a copy of the mission data file for

incorporation in his or her individual test report

38

Closing out the Design Phase

• We will grade the team rover design by
tomorrow (Friday) afternoon

• You will have feedback before the
weekend on your rover software design

• There are multiple ways to solve this rover
problem.
– We have implemented one solution that will

be posted once we are completely done with
the system problem.

39

Questions?

	Aerospace Software Development�& �The Mars Rover Problem�Lecture 2
	Today’s Lecture
	Software Reuse in the Real World
	Levels of Software Reuse
	Full Reuse Example: Frameworks
	Simple Navigation Software Framework
	Unified Software Reuse
	Unified Software Reuse (2)
	Unified Software Reuse (3)
	Unified Software Reuse (4)
	Coding Tips: Using the Datalog
	Embedded SW Lifecycle
	Supporting Artifacts (Documents)
	Why Test? - Some Real Rover Examples
	Why Test? - Some Real Rover Examples
	SW Testing Techniques
	SW Testing Techniques
	SW Testing Techniques
	Levels of Real Time Software Testing
	Unit Testing
	Software Integration Testing
	Software Integration Testing
	Software Validation and Verification Testing
	Testing for the System Problem
	Assignment Details
	Test Report
	Test Report Contents
	System Problem Test Report�(Executive Summary)
	1.1 System Overview Suggestions
	System Problem Test Report�(Executive Summary)
	1.2 System Architecture - Suggestions
	System Problem Test Report�(Test Environment)
	System Problem Test Report�(Test Environment)
	System Problem Test Report�(Test Results)
	System Problem Test Report�(3.2 Detailed Test Results)
	System Problem Test Report�(3.2 Detailed Test Results)
	Demo Logistics
	Closing out the Design Phase
	Questions?

