
 1

System Context Overview:

If we want to learn more about our solar system, we have to go out and explore. Today,
we can send satellites into orbit around the earth, we can launch manned spacecraft to
visit the International Space Station, we can send astronauts to the moon and, for
exploration beyond our earth and moon environment, we can send probes to other
planets. An example of the latter is the current mission to Mars which involves a pair of
robotic rovers that are known as the Mars Exploration Rovers (MER). But why are we
sending robotic rovers rather than sending people like we did when we explored the
Moon?

The answer is that we aren't really at the point yet where we can send human beings to
Mars. Different nations have sent more than 30 probes toward Mars, but less than one-
third of those probes have survived the trip. Without higher odds of success, it is not
prudent to replace those robotic probes with human beings. Another reason favoring
robotic exploration is cost. Robots don't need complicated life support systems; they can
tolerate a bumpy ride into the Martian atmosphere and they do not need to ever return to
Earth. They do their work and, if all goes well, they communicate back their scientific
information to ground stations on earth.

A manned mission would also provide additional engineering challenges. Astronauts
need food for the trip, which is heavy and costly to launch into space. Astronauts would
also like to return to earth, meaning they may need to produce fuel for the return mission
from the Martian atmosphere. Nothing like this has ever been attempted, and it would
take a number of test missions to prove the concept. Another big consideration is the
cosmic radiation that astronauts would absorb during such a long mission, and how to
block it. Much of this radiation is blocked on Earth by the Earth's magnetic field, but
Mars has no protective magnetic field.

So for now, we need rovers, and we need a team of engineers who as a group will
understand how to design, build, test and execute a robotic mission to Mars. We need
aerospace, electrical and mechanical engineers. We need guidance, navigation and
control algorithm specialists. We need communication systems engineers. We need
scientists to help understand the sensors and map out the mission needs. And we need
software engineers to architect the flight code so the rover can execute its mission
autonomously, as communication delays between Earth and Mars make it awkward and
inefficient to command a rover directly.

This system problem represents one type of assignment given to such an exploration
rover team.

 2

Problem Introduction:

In this problem your team will design and build a robotic rover to survey a terrain. Your
sample terrain will be composed of an 8 foot by 8 foot square grid of 16 squares. Squares
will contain varying levels of mineral contents, with darker squares containing the most
minerals. Your task will be to design a robotic rover capable of navigating the grid to
collect data from each square in order to create a mineral map of the terrain.

Your rover will be transported to the grid by a delivery device that will choose the grid
coordinates and set the initial alignment of the rover. The delivery device will
manipulate the rover such that it is initially positioned in the center of a single square of
the grid such that it is either perpendicular or parallel to the survey area. However, due to
limitations of the guidance system for landing the delivery device, there is no guarantee
within which square the rover will start its mission.

Once the delivery device has positioned the rover, it will communicate its initial position
and North/South/East/West alignment by command, signaling that the rover should start
its survey. Once the survey is complete the rover will telemeter its mission data for post
processing.

A sample grid is provided below.

NORTH

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 1 – Sample Grid

 3

Problem Part I: Rover Software Design and Hardware (75 pts)

Your team’s objective is to design and build a rover capable of navigating through the
terrain and recording data samples. A hardware design and software requirements are
provided to you in this document. You must build a rover to the provided specifications
and create a software design to implement the task at hand. You will implement the
software design in Part II of this problem.

By October 14th, 2004 your team will be expected to have turned in an initial software
design. Appendix A of this document provides a sample software design for the first
demo_rover shown in class, to give you a sense of the level of detail expected. Appendix
B of this document provides a sample test report to provide you with an outline for what
is expected. If needed you may update the software design as part of Part II, but the
initial design should be a complete design that reflects your initial approach to solving the
problem. See your lecture notes for more information on software design.

Rover Hardware

The hardware for your rover will be composed entirely of the contents of a Lego
Mindstorms Robotics Invention Systems 2 kit that will be provided to each team. In
addition, each team will be provided with an additional two Lego Mindstorms sensors for
measuring wheel rotation. Construction instructions for the rover are available on the
course website (mars_rover.pdf).

Be sure to evaluate the limitations of your hardware before proceeding to the rover
software design. You should pay particular attention to the limitations of your sensors, as
they are responsible for collecting mineral information and for aiding in your navigation
algorithm.

Your rover will need to be able to distinguish between 4 different mineral values (ranging
from white to black). Mineral samples are available in the lab. Your team should write a
small piece of code to initialize the light sensor and experiment with the ‘View’ button on
the RCX for testing the light sensor input under a variety of light sources (This piece of
code is simply recommended, not required). The sensor will achieve the most accurate
readings when it is as close to the ground as possible without actually touching the
surface.

Familiarize yourself with the capabilities of the rotational sensor, as the rover software
will need to control the rover with enough accuracy to navigate the grid. You will likely
find that getting the rover to drive in a straight line and to turn in a controlled manner will
require careful software calibration of the hardware. If you discover that one or both of
the rotational sensors prevent the rover wheels from rotating freely, try lubricating the
sensor axel with WD-40. Consider developing a small library of navigational functions,
similar to those that were provided to you in the previous Lego Mindstorms problems,
early in your design process. This will help you to understand the limitations of your
hardware (something that will necessarily impact your software design), and it will get

 4

you started with some of the software development and integration with the hardware
before you start phase II of the project.

It is recommended, though not required, that you primarily drive the Rover with the
larger wheels to the front. The larger wheels will be considered the front of the rover for
the purposes of describing the rover position.

Figure 2 – Rover Orientation

Rover Software

Your team will be developing the software for the rover in Ada. Ada is a programming
language that was initially developed by the United States Department of Defense for
embedded computer systems. For this project, you will be using the same AdaGIDE
environment with the Ada/Mindstorms API that you used in the previous problem sets.
You will use AdaGIDE to develop, compile, build, and upload your software onto the
RCX. See Appendix C for additional tips and tricks for this problem related to the
AdaGIDE environment and the RCX.

The rover software must work with the rover hardware to accomplish the required
tasks. During the demonstration, your rover will be placed with the center-point in the
center of an arbitrary cell on the grid. You will be provided with the coordinates and
orientation of your rover via an infrared command.

Without receiving any further infrared commands, your rover should then explore the
entire grid and store a mineral level for each square of the grid. This reading should be
written to the datalog on the RCX for download and post-processing once the rover has
completed its mission. You will not be given the initial location and orientation of the

Front of Rover

center-point

 5

rover when asked to post-process the data, so the rover must include in the datalog
sufficient information to construct the terrain map after the mission is complete.

The specific requirements for the rover software are as follows:

1. The rover shall receive an infra-red command communicating the initial grid
position and orientation.

2. The rover shall emit an auditory signal upon receiving this command.

3. The rover shall use the receipt of this command as the signal to start data

collection.

4. The rover shall collect sufficient telemetry to construct a topographical map of the
area investigated, with one data sample for each square of the grid.

5. The rover shall store telemetry data in the data log.

6. The rover shall telemeter the data log data via the infra-red hub when the hub

requests the data (the robot and or hub can be moved to ensure the two are facing
each other).

7. The center-point of the rover shall remain on the grid, where the center-point is

defined as the center of the front axel (see figure 2).

Your software design should be sufficient to meet all of these requirements. Include
information on global data and any interesting algorithms that you will need to solve the
problem. Be sure to include details on how you plan to organize the datalog information
such that you can reconstruct the grid’s mineral deposits levels.

Note: You will be responsible for developing all of the software to complete this
problem. Unlike previous problem sets, you will not be provided with any starting
code.

Command Format
The command format for the initial positioning command to the rover will be a single 8-
bit byte structured as follows:

Orientation (2 bits) Position (6 bits)

The value of the Orientation bits will be 00 to indicate that the front of the rover (see
figure 2) is pointing North, 01 for South, 10 for East, and 11 for West. The position bits
will indicate the numeric placement on the grid. Example commands and interpretations
are provided below (see Figure 3 for the associated placement on the grid).

 6

Command (in binary) Rover Position
00000001 Square 1 pointing North
01000110 Square 6 pointing South
11001100 Square 12 pointing West

NORTH

2 3 4

5 7 8

9 10 11

13 14 15 16

Figure 3 – Sample Rover Initial Positions

Part II: Software Implementation and Test (100 pts)

Write the rover software based on your software design. Once you believe the software
is complete, you will need to test your rover to verify its ability to collect data. Your
rover will only get one chance to scope out the entire demonstration grid, so it is
imperative that any foreseeable issues be resolved before deployment.

A test grid will be available in the lab with a sample mineral configuration. Be sure to
test your rover with different starting positions on this grid, and examine the resulting
data log.

You may find that you need to deviate from your original software design. If you do so,
please update the design document so that it remains an accurate representation of your
code. A copy of the completed software along with a corresponding software design
document is due on October 21st, 2004.

 7

Part III: Demonstrate the Rover (25 pts)

On demonstration day, October 21st, 2004, you will provide your rover, preloaded with
software. A TA will place the robot on the grid in the center of an arbitrary square,
position the USB tower such that it can transmit to the rover, send the start command,
listen for the confirmation beep from the rover, and wait for the rover to complete its
traversal of the grid. Once the rover is done, the TA will remove the rover from the grid
and use the USB tower to request a data dump from the rover memory. You will then be
provided with the resulting data file from the rover for post-processing.

Using the data downloaded from the rover, create a contour plot in Matlab using the
contourf command. Your code should generate a contour plot similar to the one
below.

Mineral Deposit Concentration by Location

1 1.5 2 2.5 3 3.5 4

1

1.5

2

2.5

3

3.5

4

1.5

2

2.5

3

Figure 4 – Sample Contour Plot

You should also create a brief Test Report (1-2 pages) that should include the following:

1. A description of the tests your team performed before demonstrating the
rover. (For example, was the rover tested or calibrated prior to running it in
the Aero/Astro Lab? Were problems encountered in this early testing?)

2. A description of the test results. (This paragraph includes whether or not the
rover worked, how the telemetry data was analyzed, etc.)

3. A discussion on the challenges faced. (Detail any problems that you
encountered during the test that may have impacted the accuracy of your data.
If your rover did not work, use this section to describe the approach for fixing
it).

 8

Grading Scheme & Summary of Things to Turn in:

Part I: Due October 14th, 2004 (75 pts)

• Initial Software Design Document
Part II: Due October 21st, 2004 (100 pts)

• Copy of completed software
• Updated Software Design Document (to match completed software)
• Rover pre-loaded with software

Part III: Due October 21st, 2004 (25 pts)
• Raw data from rover (collected by TA)
• Contour plot interpreting data
• Test report

 9

Appendix A: Sample Software Design for Maze Robot Problem (from
demo_rover.adb)

The software design document should capture the critical aspects of your design. This
includes, the packages used by your surveyor the global constants and variables used
within your program, the headers of procedures and functions used within the program,
the control flow within each of the subprograms presented in the algorithm format
discussed in lectures.

Global Data
Left : constant Integer := 0; -- defines left to be 0
Right : constant Integer := 1; -- defines right to be 1

Drive : constant Output_Port := Output_A; -- sets drive to output A
Steer : constant Output_Port := Output_B; -- sets steering to output B

-- straight input comes from sensor 1
Straight : constant Sensor_Port := Sensor_1;

-- bumper input comes from sensor 2
Bumper : constant Sensor_Port := Sensor_2;

Subprograms:

Header: procedure Steer_Left
Purpose: Procedure to steer the rover to the left
Preconditions: Steering motor is turned off
Inputs: none
Outputs: none
Postconditions: rover is steered towards the left, steering motor is
turned off.
Algorithm:
 Move the Rover to the left by turning steer motor on
 Wait for half a second
 Switch off the power to steering motor

Header: procedure Steer_Right
Purpose: Procedure to steer the rover to the right
Preconditions: steering motor is turned off
Inputs: none
Outputs: none
Postconditions: rover is steered towards the right, steering motor is
turned off.
Algorithm:
 Move the Rover to the right by turning steer motor on reverse
 Wait for half a second
 Switch off the power to steering motor

 10

Appendix B. Sample Test Report

The sample test report consist of three sections:
Test Description

Name of Test A simple name that captures the essence of what is being tested such

as Light_Sensor_Calibrartion. Do not use a name like Test_1.
Functionality
being Tested

One or two sentences describing what the test is being used for.

Variables
affected:

List the variables that are exercised/ will be affected because the test
is performed

Values used for
Testing

Detail out the set of values that will be used to carry out the test

Test Results

Name of Test Same as the test description
Expected
Behavior

One or two sentences describing the expected behavior of the system.
Identify any change in variable values that are expected

Actual
Behavior

Detail the actual behavior of the system in terms of variable values and
observed behavior of the surveyor

Challenges Faced

The challenges section consists of a single paragraph that details the challenges that were
faced in carrying out the test. Include in this section, descriptions of design decisions that
made testing easier/harder/impossible.

 11

Appendix C: AdaGIDE, Bricx, and the RCX -- Tips and Tricks

Instructions for Communicating with the Rover using Bricx

To send a message to the rover, use the messaging interface of the Bricx program. First,
let Bricx find your RCX by placing it in front of the USB tower when executing the Bricx
program. Then find the message sending panel under Tools in the menu bar. Locate the
rover to a square in the grid, and transmit the appropriate starting message from the USB
tower.

Upon completion of the mission, the rover’s datalog should be uploaded to the computer
via Bricx. The datalog interface is provided under the Tools in the Bricx menubar.

NOTE: You cannot use AdaGIDE to communicate with the RCX while Bricx is running.
If you have trouble downloading your software into the RCX from AdaGIDE, make sure
Bricx is not running, disconnect and reconnect the USB tower, and try again.

Program Size Limitations and AdaGIDE

It is possible that AdaGIDE will complain about limited memory when you try to
download your software into the RCX. An explanation and work-around are provided
below.

In order to download your software into the RCX, AdaGIDE first calls the ada2nqc.exe
program which translates your Ada/Mindstorms code into Not Quite C (NQC) code.
NQC is a variant of the C language that you may have heard of.

When you tell AdaGIDE to compile and build your Ada/Mindstorms application, a NQC
file is generated in the same directory as the initial Ada source file. The NQC file can be
viewed in Bricx and can also be compiled, built, and downloaded to the RCX from Bricx.
Why is this important, you ask?

The Ada translator only provides a mechanism for the translation of Ada procedures. All
of these Ada procedures are translated into functions in the NQC file. Due to how
functions are treated in NQC, they are all inlined. This means that every time a call to a
particular Ada procedure is made, the code for that procedure is essentially copied
verbatim to the location of the call. This becomes a problem for us since the code for the
RCX is large. However, there is a workaround.

Not Quite C also has provisions for sub-routines. A sub-routine in NQC is the equivalent
of a non-inlined function. This means that your code will not be copied verbatim to the
locations of its calls. Instead, subroutines allow a single copy of some code to be shared
between several different callers. Of course this means the resulting program will not be
as time-efficient. However, it also means we can get our rover software to run on the
RCX in spite of the limited space.

 12

In order to modify a function into a sub-routine, find its definition in the NQC code:

For example, the ‘begin’ line in Ada will look like:

procedure Move_East is

The corresponding line in the NQC file is:

void MOVE_EAST ()

Modify this line to read:

sub MOVE_EAST ()

You must carefully select which functions you turn into subroutines, as there are
significant restrictions places on them:

• Subroutines cannot accept any arguments
• A subroutine cannot call another subroutine
• A maximum of 8 subroutines are permitted for RCX 2.0

You should consider selecting the most basic navigation functions in your application to
turn into a subroutine in order to avoid the second limitation above.

Once you have modified the NQC code it will no longer be exactly equivalent to the Ada
source. You will need to compile, build, and download the modified code to the RCX via
Bricx.

