
1

Runtime Checking for Program 
Verification Systems

Karen Zee, Viktor Kuncak, and Martin Rinard
MIT CSAIL

Tuesday, March 13, 2007
Workshop on Runtime Verification



2

Background

Jahob program verification system
Statically show program corresponds to specification
Specification

Higher-order logic (HOL) using Isabelle syntax

Implementation
Sequential, memory-safe subset of Java
Compile (run) under standard Java compilers (runtimes)
Not full Java (currently not supported: exceptions, 
inheritance, concurrency, Java 1.5 features)
Supports dynamic allocation and arrays
Sufficient to express data structures and client programs



3

Data Structures Verified using Jahob
Data Structures

Singly- and doubly-linked lists
Array list
Association list
Binary heap
Binary search tree
Hash table

Functional and imperative implementations
Various interfaces

set, relation, list, map, priority queue

“Using First-Order Theorem Provers in the Jahob
Verification System” [VMCAI07]



4

Motivation

Verifying programs is difficult
What does it mean when the prover fails?

Lemma is too difficult for prover
Error in specification and/or implementation

Runtime checking helps find problems due to 
incompleteness of theorem provers
How to check logic formulas?
Similar to executing declarative program



5

Outline

Background
Quantifiers and Set Comprehensions
Specification Variables (Model Fields)
Old Expressions
Related Work
Conclusion



6

Quantifiers and Sets

Universal quantification: ALL (x : int). x > 0 P(x)
Existential quantification: EX (x : int). x > 0 P(x)
Set comprehension: { x. x > 0 & P(x) }
FO quantification over bounded domain

Not: ALL (j : int). x[j] : content
ALL (j : int). 0 ≤ j & j < x.length x[j] : content

Not: ALL (x : obj). x.next ≠ head
ALL (x : obj).

x : allocatedObjects & x : Node x.next ≠ head



7

However…

ALL (x : obj).
x : allocatedObjects & x : Node x.next ≠ head

Do we really want to look at every Node object 
in the heap?
What if we had (doubly-linked list):
ALL (x : obj) (y : obj). 

x : allocatedObjects & x : Node & 
y : allocatedObjects & y : Node & x.next = y 
y.prev = x



8

Optimizations
ALL (x : obj) (y : obj). 

x : allocatedObjects & x : Node & 
y : allocatedObjects & y : Node & x.next = y y.prev = x

Notice:
If we know x, we know y.
Quantification over y is for the purposes of naming

Conclusion:
If we have an equality defining the quantified variable, 
we can avoid enumerating over the domain
Other opportunities:
ALL (x : obj).

x : allocatedObjects & x : content P(x)



9

Outline

Background
Quantifiers and Set Comprehensions
Specification Variables (Model Fields)
Old Expressions
Related Work
Conclusion



10

Specification variables

Specification variables and ghost variables
JML terminology: model fields and ghost fields
Specification variables

Defined by an HOL formula

Ghost variables
Updated by the programmer
Can have types other than standard Java types

Sets, tuples, sets of tuples, etc.

Support for infinite sets



11

Deferred Evaluation Example
//: private ghost specvar InfSet :: int set = {};
int x = 0;
//: InfSet := { y . y > 0 };
//: assert “x ~: InfSet”;
x = x + 1;
//: assert “x : InfSet”;

Use deferred evaluation + formula simplification
x : { y . P(y) } rewritten into P(x)
Formula simplification can also evaluate
x : { y . y > 0 }



12

Outline

Background
Quantifiers and Set Comprehensions
Specification Variables (Model Fields)
Old Expressions
Related Work
Conclusion



13

Old Expressions

Used in postconditions and assertions
Refer to the value of expression in pre-state
In JML, fully evaluated in pre-state

Restricted syntactically
Illegal: (\forall int i; 0 <= i && i < 7; \old(i < y))

Unrestricted in Jahob
ALL (x : obj). P(x) x.f = (old x.f)

More flexible, but need to track pre-state
Recovery (recursive) cache



14

Recovery Cache
Horning et al. [1974] (fault-tolerant computing)
Stack of frames: push on entry
On first write: record location of write + original value
On subsequent writes: no update to cache needed
To access pre-state:

Look up original value in cache, if any
If not in cache, then heap holds current value

On procedure exit, merge frames
Implications

No overhead on reads except of old values
Greatest overhead on initial write
Smaller overhead on subsequent writes



15

Extension for Labels

JML: \old(expr, label)
Syntactic restriction to evaluate expr at label
Extend recovery cache mechanism for labels

Use global clock (counter)
Increment time at each label
Cache entries contain time of write
Add new entry if value in cache is older
To read value, find entry with same or later time
Merge frames by taking earliest entry in top frame



16

Outline

Background
Quantifiers and Set Comprehensions
Specification Variables (Model Fields)
Old Expressions
Related Work
Conclusion



17

Related Work
High-level

Specifications similar to implementations
Specifications in logic

More difficult to execute
Easier to understand semantics, proofs
More expressive

JML (tool-dependent)
Quantifiers: domain restricted using range predicate
Set comprehension: function of an existing set
Old expressions: evaluated in pre-state

Spec#
Quantifiers and comprehension: restricted syntactically
Old expressions: evaluated in pre-state



18

Conclusion
Runtime checker for logic formulas

Debugging programs and specifications
Loop invariant inference

Quantifiers and set comprehensions
Optimizations to avoid enumeration

Specification variables
Deferred evaluation of some formulas
Can talk about infinite sets

Old expressions
Supported using recovery (recursive) cache
Extension to support labels

Prototype implementation
Interpreter



19

Future Work

Compile checks
Modular checking using constraint solving
Higher-order quantification



20

The End



21

HO Quantification

Currently not supported, but...
120 classes with quantification, none HO
When might someone use HO quantification?

Isomorphism: EX (f : obj obj). f x = y
Shortest path: 
ALL (r : obj obj). path(r) dist(sp) ≤ dist (r)

Why don’t we see it?
Different types of programs



22

More Jahob Background
Expected usage scenario

Verify, using shape analysis and theorem proving, that an 
implementation conforms to its specification in HOL

Specifications
Specification variables (model fields)

HOL formula definitions
Ghost variables (ghost fields) updated by programmer

//: gv := {x . g(x)}

Class invariants
Requires clause (precondition)
Ensures clause (postcondition)
Modifies clause (frame condition)
Assertions


