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ABSTRACT
We present a new analysis for removing unnecessary write
barriers in programs that use generational garbage collec-
tion. To our knowledge, this is the first static program anal-
ysis for this purpose. Our algorithm uses a pointer analysis
to locate assignments that always create a reference from a
younger object to an older object, then transforms the pro-
gram to remove the write barriers normally associated with
such assignments. We have implemented two transforma-
tions that reorder object allocations; these transformations
can significantly increase the effectiveness of our write bar-
rier removal algorithm.

Our base technique assumes that the collector promotes
objects in age order. We have developed an extension that
enables the optimistic removal of write barriers, with the
collector lazily adding each newly promoted object into a
remembered set of objects whenever the compiler may have
removed write barriers involving the object at statements
that have yet to execute. This mechanism enables the ap-
plication of our technique to virtually any memory manage-
ment system that uses write barriers to enable generational
garbage collection.

Results from our implemented system show that our tech-
nique can remove substantial numbers of write barriers from
the majority of the programs in our benchmark set, produc-
ing modest performance improvements of up to 6% of the
overall execution time. Moreover, by dynamically instru-
menting the executable, we are able to show that for six of
our nine benchmark programs, our analysis is close to opti-
mal in the sense that it removes the write barriers for almost
all assignments that do not, in the observed execution, cre-
ate a reference from an older object to a younger object.
Finally, our results show that the overhead of our optimistic
extension is negligible.
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1. INTRODUCTION
Generational garbage collectors have become the memory

management alternative of choice for many safe languages.
The basic idea behind generational collection is to segregate
objects into different generations based on their age. Gen-
erations containing recently allocated objects are typically
collected more frequently than older generations; as young
objects age by surviving collections, the collector promotes
them into older generations. Generational collectors there-
fore work well for programs that allocate many short-lived
objects and some long-lived objects—promoting long-lived
objects into older generations enables the garbage collector
to quickly scan the objects in younger generations.

Before it scans a generation, the collector must locate
all references into that generation from older generations.
Write barriers are the standard way to locate such refer-
ences. At every statement that stores a reference into an
object, the compiler inserts code that updates an intergener-
ational reference data structure. This data structure enables
the collector to find all references from objects in older gen-
erations to objects in younger generations and to use these
references as roots for the collections of younger generations.
The write barrier overhead has traditionally been accepted
as part of the cost of using a generational collector.

1.1 Analysis
This paper presents a new program analysis that enables

the compiler to statically remove write barriers for state-
ments that never create a reference from an object in an
older generation to an object in a younger generation. The
basic idea is to use pointer analysis to locate statements that
always write the most recently allocated object. Because
such a statement will never create a reference from an older
object to a younger object, its write barrier is superfluous
and the transformation removes it. We have implemented a
sequence of analyses which use this basic approach:
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• Intraprocedural Analysis: This analysis analyzes
each method separately from all other methods. It
uses a flow-sensitive, intraprocedural pointer analysis
to find variables that must refer to the most recently
allocated object. At method entry, the analysis con-
servatively assumes that no variable points to the most
recently allocated object. After each method invoca-
tion site, the analysis also conservatively assumes that
no variable refers to the most recently allocated object.

• Callee Extension: This extension augments the In-
traprocedural analysis with information from invoked
methods. It finds variables that refer to the object
most recently allocated within the currently analyzed
method (the method-youngest object). It also tracks
the types of objects allocated by each invoked method.
For each program point, it extracts a pair 〈V, T〉, where
V is the set of variables that refer to the method-
youngest object and T is a set of the types of ob-
jects potentially allocated by methods invoked since
the method-youngest object was allocated. If a state-
ment writes a reference to an object o of type C into
the method-youngest object, and C is not a supertype
of any type in T, the transformation can remove the
write barrier—the method-youngest object is younger
than the object o.

• Caller Extension: This extension augments the In-
traprocedural analysis with points-to information from
call sites that may invoke the currently analyzed meth-
od. If the receiver object of the currently analyzed
method is the most recently allocated object at all pos-
sible call sites, the algorithm can assume that the this
variable refers to the most recently allocated object at
the entry point of the currently analyzed method.

• Full Interprocedural Analysis: This analysis com-
bines the Callee extension and the Caller extension
to obtain an analysis that uses both type information
from callees and points-to information from callers.

1.1.1 Changing Object Allocation Order
To increase the effectiveness of the write barrier removal

algorithm, we have implemented two transformations that
change the object allocation order to match the direction of
references between the objects. In situations in which the
program allocates a sequence of objects in succession while
creating references between the objects, the transformations
change the object allocation order to ensure that references
always point from younger objects to older objects.

1.1.2 Multiple Threads
In the presence of multiple threads of control, the object

identified by the analysis as the most recently allocated ob-
ject may not be the youngest object. Specifically, parallel
threads may allocate younger objects, then store references
to these younger objects into objects read by the currently
analyzed method. For multithreaded programs, our analy-
sis avoids removing write barriers for statements that may
create references to such younger objects as follows.

Instead of analyzing multithreaded programs written in
standard Java, our algorithm analyzes programs written in a
race-free version of Java [8].1 Race freedom guarantees that

1An alternative approach, the optimistic extension discussed

all interactions between threads are separated by explicit
synchronization primitives such as lock acquire and release.
In particular, for a first thread to obtain a reference to an
object allocated by a parallel thread, the first thread must
either execute a monitorenter primitive or call the wait

method of an object between the time the parallel thread al-
locates the younger object and the time the first thread reads
the reference to that object. Our analysis therefore conser-
vatively assumes that after each monitorenter primitive or
wait method invoked, no variable points to the most re-
cently allocated or method-youngest object. This approach
ensures that the algorithm never removes the write barrier
for a statement that may create a reference to a younger
object allocated in a parallel thread.

1.1.3 Allocation In Older Generations
In some circumstances, some memory management sys-

tems may allocate a new object directly in an older genera-
tion. Our technique can accommodate this action in one of
two ways: 1) by suppressing write barrier removal for such
objects, or 2) by putting such objects in a root set of objects
that may contain references into younger generations.

1.2 Optimistic Write Barrier Removal
So far, our analyses assume that the collector promotes

objects in age order. We extend our technique to work with
collectors that may promote objects out of order as follows.

We first reserve a bit in the object header; this bit is set
whenever the program is executing a region of code that con-
tains statements 1) that write the object, and 2) for which
the compiler has removed the associated write barriers. The
generated code sets the bit when the object is created and
clears the bit when all such statements have completed and
execution leaves the region. When the collector promotes
an object, it checks to see if its header bit is set. If so, it
adds the object to a remembered set of objects that the col-
lector scans for references to objects in younger generations
at the beginning of each collection. It does not remove the
object from this set until the header bit is clear. This ex-
tension ensures that if the compiler removes a write barrier
that would have trapped a newly created reference from a
promoted object to an object in a younger generation, the
promoted object will be part of the root set of objects.

1.2.1 Low Overhead
A major advantage of this extension is that it incurs very

little overhead. The header bit of an object can be set with
no additional overhead when the object is initialized, while
the cost of clearing the header bit is small compared to the
cost of the removed write barriers. And because our anal-
ysis targets the most recently allocated object, the collec-
tor almost never promotes an object that has its header bit
set. The remembered set of objects should therefore contain
very few objects and the overhead of scanning these objects
should be negligible. Our experimental results confirm that
the overhead of this extension is very small.

1.2.2 General Multithreaded Programs
Another advantage of this extension is that it allows the

application of our techniques to general multithreaded Java
programs, not just safe multithreaded programs as discussed

in Section 1.2, enables the application of our technique to
general multithreaded programs.
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in Section 1.1.2. Even if multithreading causes the program
to generate a reference from an older object to a younger
object without a write barrier, the only potential problem
arises when the collector promotes the older object before
1) it promotes the younger object and 2) executes the state-
ment that creates the reference from the older object to the
younger object. And in this case, the collector will add the
older object to the root set, ensuring that it will recognize
the intergenerational reference.

1.2.3 Allocation in Older Generations
Finally, the optimistic extension enables the compiler to

remove write barriers for objects that may be allocated di-
rectly in an older generation when they are created. In this
case, the generated code can simply set the header bit and
place the object in the remembered set of objects. The effect
is the same as if the object was allocated in the youngest
generation, then immediately promoted. Of course, the sys-
tem can also suppress write barrier removal for such objects.

1.3 Experimental Results
We have implemented our techniques in the MIT Flex sys-

tem, an ahead-of-time compiler and program analysis sys-
tem that compiles Java byte codes to C or native code. Our
experimental results show that, for our set of benchmark
programs, the combination of the Full Interprocedural anal-
ysis and the object allocation order transformations is often
able to remove a substantial number of write barriers, pro-
ducing modest overall performance improvements of up to a
6% reduction in the total execution time. Moreover, by in-
strumenting the benchmarks to dynamically observe the age
of the source and target objects at each store statement, we
show that in all but three of our nine benchmarks, the anal-
ysis removes the write barriers at virtually all of the store
statements that do not create a reference from an older ob-
ject to a younger object during the execution on the default
input from the benchmark suite. In other words, the analysis
is basically optimal for these benchmarks. This optimality
requires information from both the calling context and the
called methods—neither the Callee extension nor the Caller
extension by itself is able to remove a significant number
of write barriers. Finally, our results show that the opti-
mistic extension outlined in Section 1.2 imposes very little
overhead.

1.4 Contributions
This paper provides the following contributions:

• Analysis Algorithms: It presents several new static
analyses that enable the compiler to automatically re-
move unnecessary write barriers. To the best of our
knowledge, these are the first algorithms to use static
program analysis to remove write barriers.

• Allocation Order Transformations: It presents
two transformations that change the object allocation
order to enhance the effectiveness of the write barrier
removal algorithm.

• An Optimistic Extension: It presents an exten-
sion to our analysis that allows the compiler to remove
write barriers even in the face of collectors that would
otherwise violate the assumptions of our analysis algo-
rithms. The underlying technique can also be used for

the optimistic removal of write barriers in general; it
allows the compiler to safely remove even write barri-
ers that would otherwise be necessary for the correct
execution of the program.

• Experimental Results: It presents a complete set of
experimental results that characterize the effectiveness
of the analyses on a set of benchmark programs. These
results show that our technique is able to remove sub-
stantial numbers of write barriers from the majority of
the programs in our benchmark suite, producing mod-
est performance benefits of up to a 6% reduction in
the total execution time.

The remainder of this paper is structured as follows. Sec-
tion 2 presents an example that illustrates how the algorithm
removes unnecessary write barriers. Section 3 discusses ways
to increase the precision of our analysis and alternatives to
its basic approach. Section 4 presents the analysis algo-
rithms. Section 5 presents the allocation order transforma-
tions, and Section 6 discusses the optimistic extension to our
basic analysis. We discuss experimental results in Section 7,
related work in Section 8, and conclude in Section 9.

2. AN EXAMPLE
Figure 1 presents a binary tree construction example. In

addition to the left and right fields, which implement the
tree structure, each tree node also has a depth field that
refers to an Integer object containing the depth of the sub-
tree rooted at that node. In this example, the main method
invokes the buildTree method, which calls itself recursively
to create the left and right subtrees before creating the root
TreeNode. The linkTree method links the left and right
subtrees into the current node and invokes the linkDepth

method. This method allocates the Integer object that
holds the depth and links this new object into the tree.

class TreeNode {

TreeNode left;

TreeNode right;

Integer depth;

static public void main(String[] arg) {

buildTree(10);

}

void linkDepth(int d) {

depth = new Integer(d);

}

void linkTree(TreeNode l, TreeNode r, int d) {

1: left = l;

linkDepth(d);

2: right = r;

}

static TreeNode buildTree(int d) {

if (d <= 0) return null;

TreeNode l = buildTree(d-1);

TreeNode r = buildTree(d-1);

TreeNode t = new TreeNode();

t.linkTree(l, r, d);

return t;

}

}

Figure 1: Binary Tree Construction Example
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We focus on the two store statements in lines 1 and 2 in
Figure 1; these statements link the left and right subtrees
into the receiver of the linkTree method. In the absence
of any information about the relative ages of the three ob-
jects involved (the left tree node, the right tree node, and
the receiver), the implementation must conservatively gen-
erate write barriers for each of these statements. But in this
particular program, these write barriers are superfluous: the
receiver object is always younger than the left and right tree
nodes. This program is an example of a common pattern in
many object-oriented programs in which the program allo-
cates a new object, then immediately invokes a method to
initialize the object. Write barriers are often unnecessary
for these assignments because the object being initialized is
often the most recently allocated object.2

Our analysis allows the compiler to omit the unnecessary
write barriers as follows. It first determines that, at all call
sites that invoke the linkTree method, the receiver object
of linkTree is the most recently allocated object. It then
analyzes the linkTree method with this information. Since
no allocations occur between the entry point of the linkTree
method and the store statement at line 1, the receiver object
remains the most recently allocated object, so the compiler
can safely remove the write barrier at this statement.

In between lines 1 and 2, the linkTree method invokes the
linkDepth method, which allocates a new Integer object
to hold the depth. After the call to linkDepth, the receiver
object is no longer the most recently allocated object. But
during the analysis of the linkTree method, the algorithm
tracks the types of the objects that each invoked method
may create. At line 2, the analysis records the fact that
the receiver referred to the most recently allocated object
when the linkTree method was invoked, that the linkTree

method itself has allocated no new objects so far, and that
the linkDepth method called by the linkTree method allo-
cates only Integer objects. The store statement from line
2 creates a reference from the receiver object to a TreeNode

object. Because TreeNode is not a superclass of Integer,
the referred TreeNode object must have existed when the
linkTree method started its execution. Because the re-
ceiver was the most recently allocated object at that point,
the statement at line 2 creates a reference to an object that
is at least as old as the receiver. The write barrier at line 2

is therefore superfluous and can be safely removed.

2.1 The Optimistic Extension in the Example
We have so far assumed that the collector promotes ob-

jects in age order. We next consider the behavior of our ex-
ample in the context of a collector that may promote objects
out of order. We can apply our analysis to such collectors
using an optimistic extension, which performs the following
additional tasks.

The optimistic extension first identifies the TreeNode ob-
ject created in the buildTree method as an object for which
write barriers have been removed. It therefore initializes
TreeNode objects created at that allocation site with their

2Note that even for the common case of constructors that
initialize a recently allocated object, the receiver of the con-
structor may not be the most recently allocated object—
object allocation and initialization are separate operations
in Java bytecode, and other object allocations may occur
between when an object is allocated and when it is initial-
ized.

header bit set. It next determines where to insert instruc-
tions to clear the header bit. As the analysis does not
propagate information about most recently allocated ob-
jects from called methods to callers, the compiler does not
remove write barriers for the TreeNode object created in
the buildTree method after the method returns. Thus, the
compiler can safely insert the instructions to clear the header
bit of the TreeNode object immediately after the last use of
the TreeNode object, which occurs in the call to linkTree.

Now suppose that the collector promotes the receiver of
the linkTree method before line 1 executes, and before it
promotes the TreeNode objects referred to by local variables
l and r out of the youngest generation. Because the header
bit of the receiver is set, the collector adds the receiver to
the remembered set of objects. At the beginning of the
next collection, the collector will scan the remembered set
of objects, find the references from this object to objects
in the younger generations, and ensure that these references
are in the root set for current and future collections. So even
though the statements at lines 1 and 2 execute without write
barriers, the intergenerational references that they create
will be in the root set.

We expect that in almost all cases, the buildTree method
will complete its execution before the collector promotes its
receiver object. In this case, the collector will not add the
TreeNode object to the remembered set of objects, and the
only overhead of our extension is clearing the header bit.
Thus, this technique enables the compiler to remove write
barriers for a large variety of collectors with a performance
overhead that is negligible when compared with the perfor-
mance improvement due to removed write barriers.

Finally, note that the extension also works with mem-
ory management systems that may occasionally decide to
allocate an object directly in an older generation when it
is created. Assume, for example, that an execution of the
buildTree method decides to allocate the new TreeNode ob-
ject directly in an older generation. In this case, it would
also add the newly created object to the remembered set
of objects. The intergenerational references created in lines
1 and 2 of the linkTree method will therefore be in the
root set for future collections even though the correspond-
ing write barriers have been removed. Another alternative,
of course, is to generate two versions of the code: one with-
out write barriers (this version executes when the object is
allocated in the youngest generation) and one with write
barriers (this version executes when the object is allocated
in an older generation).

3. ALTERNATIVES
The basic principle behind our analysis is to remove write

barriers associated with statements that always create ref-
erences from younger to older objects. In this section we
discuss ways to increase the precision of our analysis and
alternatives to its basic approach.

3.1 Increased Precision
It is possible to generalize our analysis to maintain more

information about the relative order in which objects are cre-
ated. Such a generalization would group the objects in the
program into a statically determined number of sets, then
maintain a partial order on the sets, with one set ordered be-
fore another if all objects in the first set were created before
all objects in the other set. The analysis could then remove

4



all write barriers associated with statements that create a
reference from an object in a younger set to an object in an
older set. From this perspective, our current analysis main-
tains three sets: the set consisting of the method-youngest
object, the set consisting of all objects whose class is in the
type set T described in Section 4.4 (these objects may be
allocated after the method-youngest object), and all other
objects (these objects are all allocated before the method-
youngest object).

We anticipate that the choice of object sets would de-
termine, in large part, the effectiveness of the analysis in
enabling the optimization. One alternative would group all
objects with the same class or object creation site together
in the same set. A more sophisticated (and potentially more
effective) approach would classify objects based on their
participation in different data structures, then correlate dif-
ferences in data structure participation with differences in
allocation order. Such an approach might be realized by
reasoning about reachability properties in the various data
structures of the program.

Finally, the compiler may correlate the direction of ref-
erences in recursive linked data structures with the object
allocation order. For example, the compiler might recognize
that the parent of each subtree of a binary tree is younger
than all of its children. This information could be used to
remove write barriers associated with statements that create
references from objects higher in the tree to objects lower
in the tree. Our implemented analysis, in combination with
our allocation order transformation, currently obtains the
benefits of this approach for programs that create recursive
data structures in which the direction of the newly created
references corresponds to the order in which the program
creates the objects in the data structure.

The primary reason not to increase the precision of the
analysis is the potential to increase the analysis time without
a corresponding increase in removed write barriers. In our
benchmark set, the only significant remaining optimization
opportunities available to an analysis with increased preci-
sion would require the analysis to classify objects based on
participation in different data structures, then reason about
the relative ages of the objects in the resulting sets.

3.2 Return Values
As currently formulated, our analysis does not attempt to

recognize when a method returns the most recently allocated
object. It would, however, be straightforward to augment it
to do so—at call sites that invoke such methods, the analysis
would simply replace the current method-youngest object
with the returned object. This extension would enable the
removal of write barriers for statements after the call site
that create references from the returned object.

But this extension also has the potential to eliminate op-
timization opportunities. Consider a call site to a method
that returns the most recently allocated object. With the
current analysis, the method-youngest object after the call
site is the same as the method-youngest object before the
call site. The analysis therefore enables the removal of write
barriers that involve this method-youngest object both be-
fore and after the call site. Consider what would happen
if the analysis replaced the method-youngest object at the
call site with the returned object. After the call site, the
analysis would lose all optimization opportunities involving
the method-youngest object from before the call site.

A way to eliminate this effect is to maintain multiple
method-youngest objects. We anticipate that such an anal-
ysis would also maintain information about the relative allo-
cation order of the different method-youngest objects. With
this extension, the analysis would enable the removal of
write barriers involving a set of recently allocated objects
instead of only one recently allocated object. The only jus-
tification for implementing this extension would be increased
optimization opportunities. For our benchmark set, the ad-
ditional optimization opportunities are limited—only one of
our benchmarks would benefit at all, and for that bench-
mark, the extension would enable the removal of less than
10% of the write barriers.

3.3 References From Youngest Generation
Any write barrier associated with a statement that cre-

ates a reference from an object in the youngest generation
to any other object is unnecessary. We can exploit this prop-
erty with a straightforward generalization of our optimistic
extension. The compiler first identifies a region of code that
creates multiple references from an object that is likely to
be resident in the youngest generation. It then generates
code that, at the beginning of the region, tests if the object
is, in fact, currently allocated in the youngest generation. If
so, it sets the header bit in the object and executes a ver-
sion of the code that has no write barriers associated with
statements that create references from the object. If not, it
executes a version of the code that contains the write bar-
riers. At the end of the region, the generated code clears
the bit. Whenever the collector promotes an object with its
header bit set, it adds that object to a remembered set of
objects for future collections; the object remains in this set
until its bit is clear.

One of the issues that affects the success of this extension
is the policy that determines when to apply the transforma-
tion. Factors that affect the success of the policy include the
number of write barriers in the region of code that creates
references from the object and the likelihood that the object
is allocated in the youngest generation.

We have implemented a specialized version of this idea
whose policy focuses on newly allocated objects. The goal
is to remove write barriers in the method that allocates the
object and in the invoked constructor. At the allocation
site, the generated code sets the header bit directly with
no dynamic test (the new object will be allocated in the
youngest generation). The compiler then transforms the
allocating method and the invoked constructor to remove
all write barriers associated with statements that create a
reference from the newly allocated object. At the end of
the allocating method, the generated code clears the header
bit. Before applying the transformation, the compiler first
checks that the number of removed write barriers justifies
the overhead associated with clearing the header bit (setting
the header is integrated into the object initialization in a way
that imposes no additional overhead). This approach has
substantially lower analysis cost than the static approach
presented in this paper and is able to remove comparable
numbers of write barriers. The only disadvantage is the
small dynamic overhead associated with clearing the header
bit. The experimental results from programs compiled with
our optimistic extension, which use this mechanism, show
that the overhead is negligible.
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3.4 References To Oldest Generation
In some memory management systems, any write barrier

associated with a statement that creates a reference to an
object in the oldest generation is unnecessary. In these sys-
tems, this generation is involved only in collections of the
complete heap, so there is no need to track references into
the oldest generation from other generations.

One way to apply this principle is to identify a region
of code that creates multiple references to an object that is
likely to be allocated in the oldest generation. The generated
code would then test if the object is, in fact, allocated in this
generation. If so, it would execute a version of the code that
has no write barriers associated with statements that create
references to the object. If not, it would execute a version
containing write barriers.

Once again, an important issue is determining which ob-
jects are likely to be allocated in the oldest generation. One
approach is to simply allocate certain classes of objects im-
mediately in the oldest generation when they are created,
then remove the write barrier associated with any statement
that creates a reference to any such object. A key issue is
the policy that determines which objects should be allocated
in the oldest generation when they are created.

It is possible to generalize this basic principle to remove
the write barrier associated with any assignment that al-
ways creates a reference to an object allocated in a region of
memory that participates only in collections of the complete
heap. One alternative is to segregate the heap into two re-
gions, only one of which participates in partial collections,
then remove write barriers that always create references to
objects allocated in the other region [31].

3.5 Preemptive Remembered Set Insertion
If the program repeatedly writes references into a given

object, the system can simply add that object to the remem-
bered set of objects, then remove the write barriers associ-
ated with the writes. Before applying the transformation,
the compiler should check that the removed write barrier
overhead is larger than the resulting scanning overhead. For
objects allocated in the youngest generation, the optimistic
extension is typically a better alternative, because the ob-
ject would be inserted into the remembered set of objects
only if it is promoted while its header bit is set.

3.6 Object Inlining and Correlated Promotion
Object inlining transforms the program to allocate a par-

ent and child object together in the same memory space,
eliminating the reference from the parent to the child ob-
ject [15]. Because the program contains fewer statements
that create references, a side effect of the transformation is
a reduction in the number of executed write barriers.

It is also possible to discover related objects with similar
lifetimes in the computation, then require the memory man-
agement system to coordinate the promotion of these objects
so that they are always resident in the same generation.
This property would allow the compiler to remove all write
barriers associated with statements that create references
between related objects. This basic approach would also
enable write barrier removal even in the context of memory
management approaches such as the train algorithm [22].
These approaches store objects together in units of memory
called cars, and use write barriers to identify references to
objects in a car.

3.7 Static Lifetime Analysis
It is also possible to enable write barrier removal by cor-

relating object lifetimes with method invocation lifetimes.
Escape analysis, for example, can be used to allocate ob-
jects on the call stack instead of on the heap [6, 7, 12, 34,
28], enabling the removal of all write barriers for statements
that create references to stack-allocated objects.3 Similar
reasoning applies to systems that use region-based memory
management [32].

4. THE ANALYSIS
Our analysis consists of a purely intraprocedural frame-

work and two interprocedural extensions. The first exten-
sion incorporates information about the types of objects al-
located in called methods.The second extension incorporates
information about the calling context. With these two ex-
tensions, which can be applied separately or in combination,
we have a set of four analyses. Figure 2 illustrates these dif-
ferent analyses.

Full Interprocedural

Intraprocedural

Caller OnlyCallee Only

Figure 2: Different Versions of the Analysis

The remainder of this section is structured as follows. We
present the analysis features in Section 4.1 and the program
representation in Section 4.2. In Section 4.3 we present the
Intraprocedural analysis. We present the Callee Only anal-
ysis in Section 4.4, the Caller Only analysis in Section 4.5,
and the Full Interprocedural analysis in Section 4.6. In Sec-
tion 4.7, we describe how the compiler uses the analysis
results to remove unnecessary write barriers. In Section 4.8
we discuss how to apply our technique to partial programs.

4.1 Analysis Features
Our analyses are flow-sensitive, forward dataflow analyses

that compute must points-to information at each program
point. The precise nature of the computed dataflow facts
depends on the analysis. In general, the analyses work with
a set V of variables that must point to the object most
recently allocated by the current method, and optionally a
set T of the types of objects allocated by invoked methods.

4.2 Program Representation
We use v, v0, v1, . . . , to denote local variables, m, m0,

m1, . . . , to denote methods, and C, C0, C1, . . . , to denote

3Memory management systems that may move objects must
update references from the stack-allocated object to the
moved object. If the memory management system relies
on the write barrier to locate such references, the compiler
could not remove write barriers associated with statements
that create references from stack-allocated objects. It would
be possible, however, to develop stack-tracing techniques
that obviate the need for these kinds of write barriers, in
which case the compiler could also remove write barriers for
statements that create references from stack-allocated ob-
jects.
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types. Vars is the set of all local variables; Types is the
set of all types. The statements that are relevant to our
analyses are object allocation statements of the form v =
NEW C, move statements of the form v1 = v2, call statements
of the form v = CALL m(v1, ..., vk), and synchronization
statements of the form monitorenter. In the given form,
the first parameter to a call statement, v1, points to the
receiver object if the method m is an instance method.4

We assume that a preceding stage of the compiler has
constructed a control flow graph for each method and a
call graph for the entire program. We use entrym to denote
the entry point of the method m. For each statement st,
pred(st) is the set of predecessors of st in the control flow
graph. We use •st to denote the program point immediately
before st, and st• to denote the program point immediately
after st. For each program point p, A(p) is the information
computed by the analysis for that program point. We use
Callers(m) to denote the set of call sites that may invoke
the method m, Callees(st) to denote the set of methods
that may be invoked at a call site st, and Descendants(C)
to denote C and the types that inherit from C (we obtain
this information from the class hierarchy).

4.3 The Intraprocedural Analysis
The Intraprocedural analysis generates, for each program

point, the set of variables that must point to the most re-
cently allocated object, which we call the m-object. We call
a variable that points to the m-object an m-variable.

The property lattice is P(Vars), the powerset of the set
of all local variables. The ordering relation is: V1 � V2 iff
V1 ⊇ V2. The join operator used to combine dataflow facts
at control flow merge points is set intersection: � ≡ ∩.

Figure 3 presents the transfer functions for the analysis.
After an allocation statement v = NEW C allocates a new
object, only v points to the most recently allocated object.
For a call statement v = CALL m2(v1, ..., vk), the transfer
function returns ∅, since in the absence of any interproce-
dural information, the analysis conservatively assumes that
the called method may allocate any number or type of ob-
jects. For the synchronization statement monitorenter, the
transfer function also returns ∅; in the absence of interthread
information, the analysis must conservatively assume that
after a synchronization statement, the currently analyzed
method may obtain a reference to an object allocated by a
parallel thread, and that object may be the most recently
allocated object. Note that calls to wait are handled by the
transfer function for call statements.

After a move statement v1 = v2, v1 is an m-variable if v2

is an m-variable. For any other type of assignment (i.e., a
load or when v2 is not an m-variable), the destination of the
move is not an m-variable after the move. Other statements
leave the set of m-variables unchanged.

The analysis result satisfies the following equations:

A(•st) =

� ∅ if st ≡ entrym�
st′∈pred(st) A(st′•) otherwise

A(st•) = [[st]](A(•st))
The first equation states that the analysis result at the

program point immediately before st is ∅ if st is the en-
try point of the method; otherwise, the result is the join

4In Java, an instance method is the same as a non-static
method.

st [[st]](V)

v = NEW C {v}
v1 = v2

�
V ∪ {v1} if v2 ∈ V
V \ {v1} if v2 �∈ V

v = CALL m2(v1, ..., vk) ∅
any other assignment to v V \ {v}

monitorenter ∅
other statements V

Figure 3: Transfer Functions for the Intraprocedural
Analysis

of the analysis results for the program points immediately
after the predecessors of st. As we want to compute the
set of variables that definitely point to the most recently al-
located object, we use set intersection as the join operator.
The second equation states that the analysis result at the
program point immediately after st is obtained from apply-
ing the transfer function for st to the analysis result at the
program point immediately before st.

The analysis starts with the set of m-variables initialized
to the empty set for the entry point of the method and to the
full set of variables Vars (the bottom element of our property
lattice) for all the other program points, then iterates to a
fixed point.

4.4 The Callee Only Analysis
The Callee extension stems from the observation that the

Intraprocedural analysis loses all information at call sites—it
conservatively assumes that the invoked method may allo-
cate any number or type of objects. The Callee extension
addresses this source of imprecision by augmenting the In-
traprocedural analysis to maintain information about the
types of objects that invoked methods may allocate.

To do so, the Callee extension relaxes the notion of the
m-object. In the Intraprocedural analysis, the m-object is
simply the most recently allocated object. In the Callee ex-
tension, the m-object is the object most recently allocated
by a statement in the currently analyzed method. The anal-
ysis then computes, for each program point, a tuple 〈V, T〉
containing a variable set V and a type set T. The vari-
able set V contains the variables that point to the m-object
(the m-variables), and the type set T contains the types of
objects that may have been allocated by methods invoked
since the allocation of the m-object.

The property lattice is now

L = P(Vars) × P(Types)

where Vars is the set of all local variables and Types is the
set of all types used by the program. The ordering relation
on this lattice is

〈V1, T1〉 � 〈V2, T2〉 iff (V1 ⊇ V2) ∧ (T1 ⊆ T2)

and the corresponding join operator is

〈V1, T1〉 � 〈V2, T2〉 = 〈V1 ∩ V2, T1 ∪ T2〉
The top element is � = 〈∅, Types〉. This lattice is in fact the
cartesian product of the lattices 〈P(Vars),⊇,∩,∪, ∅, Vars〉
and 〈P(Types),⊆,∪,∩, Types, ∅〉. These two lattices have
different ordering relations because their elements have dif-
ferent meanings: V ∈ P(Vars) is must information, while
T ∈ P(Types) is may information.
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st [[st]](〈V, T〉)
v = NEW C 〈{v}, ∅〉
v1 = v2

� 〈V ∪ {v1}, T〉 if v2 ∈ V
〈V \ {v1}, T〉 if v2 �∈ V

v = CALL m0(v1, ..., vk)

� 〈∅, Types〉 if ¬Analyzable(st)
〈V′, T′〉 otherwise

where V′ = V \ {v} and

T′ = T ∪
��

m∈Callees(st) Allocated Types(m)
�

any other assignment to v 〈V \ {v}, T〉
monitorenter 〈∅, Types〉

other statements 〈V, T〉

Figure 4: Transfer Functions for the Callee Only and Full Interprocedural Analysis

Allocated Types(m) = {C|v = NEW C ∈ m} ∪

�
������

	
st ∈ m

st of the form v = CALL m0(. . .)

�
� 	

m1∈Callees(st)

Allocated Types(m1)



�



������

Figure 5: Equation for the Allocated Types Function

Figure 4 presents the transfer functions for the Callee
Only analysis. Except for call statements, the transfer func-
tions treat the variable set component of the tuple in the
same way as in the Intraprocedural analysis. For unana-
lyzable calls (for example, calls to native methods, calls to
wait, or calls to methods that transitively invoke wait or
monitorenter), the transfer function produces the (very)
conservative approximation 〈∅, Types〉. For other call state-
ments, the transfer function removes the variable assigned
to the return value from the variable set (if it is in this
set) and adds to the type set the types of objects that may
be allocated during the call. Due to dynamic dispatch, the
method invoked at st may be one of a set of methods, which
we obtain from the call graph using the auxiliary function
Callees. To determine the types of objects allocated by
any particular method, we use another auxiliary function
Allocated Types. The set of types that may be allocated
during the call at st is simply the union of the result of
the Allocated Types function applied to each component
of the set Callees(st). The only other transfer function
that modifies the type set is the allocation statement, which
returns ∅ as the second component of the tuple.

The Allocated Types function can be efficiently com-
puted using a simple flow-insensitive analysis that deter-
mines the least fixed point for the equation given in Figure 5.
The analysis solves the dataflow equations in Figure 4 using
a standard work list algorithm. It starts with the entry point
of the method initialized to the top element 〈∅, Types〉 and
all other program points initialized to the bottom element
〈Vars, ∅〉, then iterates to a fixed point.

4.5 The Caller Only Analysis
The Caller extension stems from the observation that the

Intraprocedural analysis has no information about the m-
object at the entry point of the method. The Caller ex-
tension augments this analysis to determine if the m-object
is always the receiver of the currently analyzed method on
method entry. If so, it analyzes the method with the this

variable as an element of the set of variables V that must
point to the m-object at the entry point of the method. In
the Caller Only analysis, the property lattice, associated or-
dering relation, and join operator are the same as for the
Intraprocedural analysis. Figure 6 presents the additional
dataflow equation that defines the dataflow result at the en-
try point of each method. The equation states that if the
receiver object of the method is the m-object at all call sites
that may invoke the method, then the this variable refers to
the m-object at the start of the method. Note that because
class (static) methods have no receiver, V is always ∅ at the
start of these methods. It is straightforward to extend this
treatment to handle call sites in which an m-object is passed
as a parameter other than the receiver.

Within strongly-connected components of the call graph,
the analysis uses a fixed point algorithm to compute the
fixed point of the combined interprocedural and intraproce-
dural equations. It initializes the analysis with {this} or ∅
at each method entry point, Vars at all other program points
within the strongly-connected component, then iterates to
a fixed point. Between strongly-connected components, the
algorithm simply propagates the caller context information
in a top-down fashion, with each strongly-connected com-
ponent analyzed before any of the components that contain
methods that it may invoke.

4.6 The Full Interprocedural Analysis
The Full Interprocedural analysis combines the Callee ex-

tension and Caller extension. The transfer functions, prop-
erty lattice, associated ordering relation and join operator
are the same as for the Callee Only analysis. As the equa-
tion in Figure 7 indicates, the analysis uses 〈{this}, ∅〉 as
the analysis result at the entry point entrym of a method
m if, at all call sites that may invoke m, the receiver object
of the method is the m-object and the type set is ∅. Note
that we can extend this definition to additionally propagate
type set information from the calling context into the called
method.
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A(•entrym) =


����
����

{this} if m is an instance method and
∀ st ∈ Callers(m), v1 ∈ V
where V = A(•st) and
st is of the form v = CALL m(v1, . . . , vk)

∅ otherwise

Figure 6: Equation for the Entry Point of a Method m for the Caller Only Analysis

A(•entry m) =


����
����

〈{this}, ∅〉 if m is an instance method and
∀ st ∈ Callers(m), v1 ∈ V, T = ∅
where 〈V, T〉 = A(•st) and
st is of the form v = CALL m(v1, . . . , vk)

〈∅, Types〉 otherwise

Figure 7: Equation for the Entry Point of a Method m for the Full Interprocedural Analysis

The Full Interprocedural analysis uses a fixed point al-
gorithm within strongly-connected components and propa-
gates caller context information in a top-down fashion be-
tween strongly connected components. It computes the least
fixed point of the dataflow equations.

4.7 How to Use the Analysis Results
The compiler uses the results of the Intraprocedural and

Caller Only analyses to remove unnecessary write barriers
as follows. Since each m-variable must point to the most
recently allocated object, the compiler removes the write
barrier at all statements that use an m-variable to create a
reference from the m-object to another object. Because the
m-object is the youngest object, all such references point
from a younger object to an older object. More precisely,
the compiler removes the write barrier associated with the
statement st ≡ v1.f = v2 whenever v1 ∈ V = A(•st).

The compiler uses the results of the Callee Only and Full
Interprocedural analyses as follows. Consider a statement
of the form v1.f = v2, and the analysis result 〈V,T〉 at
the program point immediately before the statement. If
v1 ∈ V, then v1 must refer to the m-object. Any object
allocated more recently than the m-object must have type
C such that C ∈ T. If the actual (i.e., dynamic) type of the
object that v2 refers to is not in T, then it must be older
than the object that v1 refers to, and the statement must
create a reference from a younger object to an older object.
The compiler therefore removes the write barrier associated
with the statement st ≡ v1.f = v2 whenever v1 ∈ V and
Descendants(C) ∩ T = ∅, where 〈V, T〉 = A(•st) and C is
the type of the object to which v2 refers.

4.8 Analyzing Partial Programs
In some situations, the compiler may not have the entire

program available for analysis. We can adapt our algorithms
to work effectively in this situation as follows.

We first consider the case when a potentially invoked
method may be unavailable to the analysis. In this case, the
Callee Only and Full Interprocedural analyses would conser-
vatively set the analysis result for the program point imme-
diately following the corresponding call site to 〈∅, Types〉.

We next consider the case when some of the callers of
an analyzed method may be unavailable. In this case, the
Caller Only and Full Interprocedural analyses may be un-

able to determine if the m-object is always the receiver of
the analyzed method. The compiler can respond to such sit-
uations by generating two versions of the analyzed method:
one that assumes the receiver is the m-object, and another
that does not. At each call site it can examine the receiver
to determine which version to invoke. Note that this mecha-
nism may increase the optimization opportunities available
to the compiler in a variety of contexts. For example, a just-
in-time compiler could use this mechanism to optimize only
selected call sites, while a whole-program compiler could use
the mechanism to optimize only those call sites that invoke
the method with the receiver as the m-object.

Finally, we address a potential problem associated with
dynamic class loading. Dynamically loading a class that
overrides a method in a superclass may increase the number
of methods that may be invoked at a given call site. This in-
crease may invalidate the results of the Callee Only and Full
Interprocedural analyses. The way to eliminate this prob-
lem is to record the dependences of these analysis results on
the properties of the class hierarchy. When the program dy-
namically loads a new class, the system would use these de-
pendences to dynamically recompute the analysis results for
the affected methods and recompile any invalidated code.

5. ALLOCATION TRANSFORMATIONS
We present two transformations that reorder object allo-

cation sites to expose additional write barrier removal op-
portunities to our analyses. Consider the example in Fig-
ure 8. The Dictionary constructor allocates an object of
type java.util.HashMap, then stores a reference to this ob-
ject into the m field of the receiver object. The statement
that creates this reference will always require a write bar-
rier because it creates a reference from an older object to a
younger object.

Figure 8 shows the example in Java source code, in which
a call to a constructor appears as a single statement. But
in Java bytecode, a call to a constructor consists of two
statements: an allocation statement, which is invisible to
the programmer, and the actual call to the constructor, for
which the receiver object is implicitly the first argument.
The pseudo code in Figure 9 shows the implicit allocation
statements for the Dictionary example.

Our first transformation finds assignments in construc-
tors that create references from the object under construc-
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class Dictionary {

java.util.Map m;

static public void main(String[] arg) {

Dictionary d = new Dictionary(10);

}

Dictionary(int size) {

this.m = new java.util.HashMap(size);

}

}

Figure 8: Dictionary Example

class Dictionary {

java.util.Map m;

static public void main(String[] arg) {

tmp_0 = new <Dictionary>;

Dictionary(tmp_0, 10);

}

Dictionary(int size) {

tmp_1 = new <java.util.HashMap>;

java.util.HashMap(tmp_1, size);

this.m = tmp_1;

}

}

Figure 9: Dictionary Allocation Statements

class Dictionary {

java.util.Map m;

static public void main(String[] arg) {

tmp_2 = new <java.util.HashMap>;

tmp_0 = new <Dictionary>;

Dictionary(tmp_0, 10, tmp_2);

}

Dictionary(int size, Map tmp_1) {

java.util.HashMap(tmp_1, size);

this.m = tmp_1;

}

}

Figure 10: Transformed Dictionary Program

tion to newly allocated objects. It then lifts the allocation
sites for these new objects out of the constructor so that
these new objects are allocated before the constructed ob-
ject rather than after. In our example, the transformation
lifts the HashMap allocation out of the Dictionary construc-
tor and into main, to a point just prior to the allocation of
the Dictionary object (see Figure 10). The uninitialized
HashMap object is then passed as an additional parameter
to the Dictionary constructor. As a result of this trans-
formation, the assignment of field m in the Dictionary con-
structor no longer requires a write barrier because it creates
a reference from a younger object to an older one. More-
over, because the allocation statements are not visible to
the programmer, the semantics of the transformed code is
unchanged from the original.

Our second transformation changes the allocation order
of data structures allocated in recursive methods. Consider
the example in Figure 11. In this example, the LinkedList

constructor allocates an object of type LinkedList, then
stores a reference to this object into the next field of the
receiver object. This assignment will always require a write
barrier because it creates a reference from an older object

to a younger object. We cannot use the first transforma-
tion because the recursive call in the constructor prevents it
from lifting the allocation inside the LinkedList construc-
tor into its callers. Our second transformation addresses
this problem by transforming the code so that it builds the
LinkedList bottom-up instead of top-down.

The pseudo code in Figure 12 shows the implicit alloca-
tion statements for our linked list construction example; the
transformation operates on the program represented at this
level. The transformation first generates a new auxiliary
static method as follows. Starting with the code from the
constructor, the transformation pushes the allocation of the
LinkedList object from the caller into the body of the new
static method. It also adds a return statement to return
the initialized LinkedList object to main. Figure 13 shows
our linked list construction example after these transforma-
tion steps. Note that the transformed code is semantically
equivalent to the original.

After performing these modifications, the transformation
applies standard code motion techniques to reorder the al-
locations of the two LinkedList objects. Figure 14 shows
the final transformed code for the LinkedList example. As
a result of the transformation, the assignment of the next

field no longer requires a write barrier.
This transformation also works for constructors contain-

ing multiple recursive calls, as in the case of a constructor
for a binary tree.

6. THE OPTIMISTIC EXTENSION
Many generational collectors always promote objects in

an order that is consistent with the allocation order. But
researchers have also proposed more complicated collectors
that may violate the promotion order; i.e., may promote
later allocated objects before earlier allocated objects. Con-
current collectors, for example, may exhibit this behav-
ior [16]. We have extended our technique to work with these
collectors as follows.

6.1 The Algorithm
We describe how our extension works in the context of a

generational collector that uses a remembered set of refer-
ences to track references from objects in older generations
to objects in younger generations [1]. This set is often im-
plemented as an array of pointers to references, with the ref-
erences in the array used as roots for collections of younger
generations. Note that our algorithm is not limited to col-
lectors that use this specific data structure; it generalizes
to work with collectors that use arbitrary intergenerational
reference data structures.

The write barrier removal algorithm presented in this pa-
per identifies a region of the program and a recently allo-
cated object for which it has removed write barriers over
that region. Roughly speaking, each such region starts at
the object allocation site and ends at the last removed write
barrier for the object. We call this region the object’s write
barrier removal region. Our algorithm reserves a bit in the
header of each object; this bit is set whenever the program’s
execution is within the object’s write barrier removal region.

The algorithm also augments the collector with a remem-
bered set of objects. It preserves the invariant that if a first
object in an older generation refers to a second object in
a younger generation, and that reference is not in the re-
membered set of references, then the first object is in the
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class LinkedList {

LinkedList next;

static public void main(String[] arg) {

LinkedList ll = new LinkedList(10);

}

LinkedList(int n) {

if (n == 1) this.next = null;

else this.next = new LinkedList(n-1);

}

}
Figure 11: Linked List Example

class LinkedList {

LinkedList next;

static public void main(String[] arg) {

tmp_0 = new <LinkedList>;

LinkedList(tmp_0, 10);

}

LinkedList(int n) {

if (n == 1) this.next = null;

else {

tmp_1 = new <LinkedList>;

LinkedList(tmp_1, n-1);

this.next = tmp_1;

}

}

}
Figure 12: Linked List Allocation Statements

class LinkedList {

LinkedList next;

static public void main(String[] arg) {

tmp_0 = LinkedListCreator(10);

}

static LinkedList LinkedListCreator(int n) {

tmp_2 = new <LinkedList>;

if (n == 1) tmp_2.next = null;

else {

tmp_1 = LinkedListCreator(n-1);

tmp_2.next = tmp_1;

}

return tmp_2;

}

}
Figure 13: Linked List Creator

class LinkedList {

LinkedList next;

static public void main(String[] arg) {

tmp_0 = LinkedListCreator(10);

}

static LinkedList LinkedListCreator(int n) {

if (n == 1) {

tmp_2 = new <LinkedList>;

tmp_2.next = null;

} else {

tmp_1 = LinkedListCreator(n-1);

tmp_2 = new <LinkedList>;

tmp_2.next = tmp_1;

}

return tmp_2;

}

}
Figure 14: Transformed Linked List Program

remembered set of objects. The algorithm maintains this
invariant as follows.

At the beginning of the write barrier removal region, it ini-
tializes the object (which was just allocated in the youngest
generation) with its header bit set. When execution leaves
the region, it clears the header bit. When the collector pro-
motes an object, it checks to see if the header bit is set. If
so, it adds the object to the remembered set of objects.

At the start of each collection, the collector scans all of
the objects in the remembered set of objects. Whenever
it finds a reference from one of these objects to an object
in a younger generation, it treats the reference as a root
for the current collection. It also checks the header bit in
the object. If the header bit is set, it leaves the object in
the remembered set of objects (execution is still within the
object’s write barrier removal region and future statements
may write references into the object without a write bar-
rier). If the header bit is clear, it removes the object from
the remembered set of objects (execution has left the ob-
ject’s write barrier removal region and all future statements
that write a reference into the object will execute with write
barriers). It also adds all references from that object to an
object in a younger generation to the remembered set of
references, ensuring that they will be treated as roots for
future collections.

6.2 Implications
Consider several implications of this extension. First, we

expect the promotion of an object with its bit set to be ex-
tremely rare because the bit is typically cleared soon after
allocation. Second, the extension applies the classic systems
tuning approach of making the common case faster at the
cost of making the uncommon case slower [25]. Specifically,
our technique eliminates the overhead of executing the (usu-
ally superfluous) write barriers associated with recently cre-
ated objects. A new overhead is the need for the collector to
check the bit in the header of each object that it promotes.
Note that because the majority of objects die before they
are promoted, we expect the number of removed write bar-
riers to be much larger than the number of header bits that
the collector tests. The experimental results presented in
Section 7 show that the resulting overhead is negligible—in
particular, setting and clearing bits and the garbage collec-
tor modifications that check a bit in each promoted object
do not significantly increase the execution time of any of our
benchmarks.

6.3 Header Bit Sets and Clears
There are two primary challenges associated with the op-

timistic extension: determining which sites allocate objects
with removed write barriers (these sites should set the header
bit in the allocated object), and determining where to place
the instructions that clear the header bit. Our analysis sepa-
rates the program into two kinds of regions: regions in which
the control flow may lead to a removed write barrier for the
current m-object (we call these regions live regions), and re-
gions with no such control-flow path (we call these regions
dead regions). The transformation inserts clear instructions
at all control-flow edges that lead from an node in a live
region to a node in a dead region.

There is a small complication associated with placing clear
instructions in the face of interprocedural write barrier re-
moval. To simplify the presentation, we first present an algo-
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At (•st) =

�
true if st ≡ entrym�

st′∈pred(st) At (st
′•) otherwise

At (st•) = At(•st) ∧ (st is not of the form v = NEW C)

Figure 15: Equations for Determining if the m-object may be the Receiver

Al(st•) =

�
false if st ≡ exitm�

st′∈succ(st) Al(•st′) otherwise

Al(•st) = (Al(st•) ∨ use(st)) ∧ (¬def(st))

use(st) = Wb Removed(st) ∨ Wb Removed Call(st)

def(st) = (st is of the form v = NEW C)

Figure 16: Equations for m-object Liveness Analysis

rithm that places all clear instructions for a given m-object
in the same method that allocated the object. If some of the
last removed write barriers for that object occur in methods
(transitively) invoked by the allocating method, our initial
algorithm places the clear instructions immediately after the
corresponding call sites in the allocating methods. In Sec-
tion 6.3.5 we describe an extension that eliminates this re-
striction to, when appropriate, place the clear instructions
in invoked methods. Our implemented compiler uses this
extension.

6.3.1 Receiver Object Reachability
Figure 15 presents the dataflow equations for the analysis

that determines if the m-object may be the receiver object.
This analysis is a forward dataflow analysis that computes
a single boolean value At (p) for each program point p. This
value is true if there is a path from the entry point of the
method to p that does not contain an object allocation site.

The bit clear placement algorithm uses this analysis to
ensure that it only clears the header bit of objects allocated
in the current method. Specifically, if At (p) is true and
the set of of m-variables at p is non-empty, the analysis
concludes that the m-variables may refer to the receiver at p.
The algorithm uses this information to prevent the insertion
of bit clear instructions at program points where the m-
variables may refer to the receiver.

6.3.2 Finding Live Regions
The algorithm for determining where in the control flow

graph to insert instructions to set and clear the header bit of
objects uses a special form of liveness analysis which tracks
the liveness (with respect to write barrier removal) of the
current m-object. We say that the m-object is live at a
given program point if there is a path from that point to
a removed write barrier that involved that m-object. Our
analysis is a flow sensitive, backward dataflow analysis that
generates, for each program point p, a boolean value Al (p)
that is true if the current m-object is live at that program
point and false otherwise.

Figure 16 presents the dataflow equations for this anal-
ysis. The property lattice is the set {true, false}, where
the top element is true and the bottom element is false.
The join operator used to combine dataflow facts at con-
trol flow split points is logical or: � ≡ ∨. The analy-
sis is a standard use/def analysis in which each allocation

statement defines the current m-object. A store statement
uses the m-object if it may write a reference into the ob-
ject without executing the corresponding write barrier; a
call statement uses the m-object if the (transitively) invoked
method(s) may write a reference into the current m-object
without executing a write barrier. The equation for the
Wb Removed Call function (see Figure 17) uses the aux-
iliary function Descendants(C), which returns the types
that inherit from the type C (we obtain this information
from the class hierarchy).

In the Caller Only and Full Interprocedural analyses, a
call statement uses the current m-object if 1) the call state-
ment passes the m-object to the invoked method as the re-
ceiver, and 2) a (potentially transitively) invoked method
contains a statement that may write a reference into this
object, and the write barrier associated with that statement
was removed. Figure 18 presents the mutually recursive
functions Wb Removed Call and Wb Removed Method,
which identify this situation. In the Intraprocedural and
Callee Only analyses, the Wb Removed Call function is
simply Wb Removed Call(st) = false because these anal-
yses do not propagate information from the calling context
into the invoked method.

6.3.3 Setting the Header Bit
Using the results of the liveness analysis, the compiler

generates code that sets the header bit in objects as follows.
It flags any allocation statement st for which Al(st•) is
true; i.e., for which the analysis has removed write barriers
associated with stores to objects created at that allocation
site. The compiler then generates code that initializes the
objects allocated at those statements with their header bit
set.

6.3.4 Clearing the Header Bit
The compiler uses the results of the liveness analysis to

insert clear instructions as follows. It inserts an instruction
to clear the header bit of the current m-object on the control
flow edge from st to st′ whenever Al(•st) ∧ (¬Al (•st′)) ∧
(¬At (•st)). In other words, the compiler inserts code to
clear the header bit in the current m-object as soon as the
execution completes its last use by reaching a program point
in the current method where all statements with removed
write barriers that store into the current m-object have exe-
cuted (unless the clear instruction may clear the header bit
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Wb Removed(st) =


���
���

true if st is of the form v1.f = v2 and
v1 ∈ V and Descendants(C) ∩ T = ∅,

where 〈V, T〉 = A(•st) and C is the type of v2

false otherwise

Figure 17: Equation for the Wb Removed Function

Wb Removed Call(st) =


���
���

true if st is of the form v = CALL m(v1, . . . , vk) and v1 ∈ V and T = ∅ and
∃ m ∈ Callees(st). Wb Removed Method(m)
where 〈V,T〉 = A(•st)

false otherwise

Wb Removed Method(m) = ∃ st ∈ m. (Wb Removed(st) ∨ Wb Removed Call(st)) ∧ At (•st)
Figure 18: Equations for the Wb Removed Call and Wb Removed Method Functions

of the receiver object). The goal is to clear the header bit
as soon as possible after the last removed write barrier.

Note that the clear instruction placement condition sup-
presses the insertion of the clear instruction if it may clear
the header bit in the receiver object. Without this restric-
tion, the algorithm could clear the header bit of the receiver
after its last use within the current method. If the caller
contained statements with removed write barriers that store
into the current m-object and some of these statements exe-
cute after the current method returned, the header bit of the
m-object would be clear when these statements executed,
violating the correctness of the header bit clear placement
algorithm.

But if the m-object may be either the receiver or an object
allocated in the current method, suppressing the insertion of
the clear instructions may cause the header bit of an object
allocated in the current method to remain set for the rest
of the execution of the program, in which case the object
will remain in the remembered set of objects until it dies.
We expect this case to be extremely rare in practice. One
alternative is to dynamically test whether the object is the
receiver or an object allocated in the current method. An-
other is to suppress write barrier removal for such objects.
Still another is to replicate regions of the control-flow graph
to eliminate the merges that cause the m-object to be either
the receiver or a locally allocated object.

6.3.5 An Optimization
In our implementation, we further improve the placement

of the clear instructions using the following optimization.
When the last use of the current m-object occurs at a call
statement—more specifically, when Al(•st) ∧ (¬Al(•st′))
is true for all st′ ∈ succ(st), and st is of the form v =
CALL m(v1, . . . , vk)—the compiler can further reduce the
live range of the current m-object by inserting the clear in-
structions in the invoked method instead of after the call
statement. To do so, the compiler first creates a specialized
version of each of the potentially invoked methods. It then
relaxes the clear instruction placement condition to allow
the clear instructions to clear the header bit of the receiver
in addition to objects allocated within the current method.
Specifically, the compiler inserts an instruction to clear the
header bit of the current m-object on the control flow edge
from st to st′ whenever Al (•st) ∧ (¬Al(•st′)).

With this technique, the compiler can push the clear in-
structions down multiple levels of the call chain, reducing

the live range of the current m-object and the probability
that the garbage collector will promote the object with its
header bit set.

Note that this optimization applies only to the Caller Only
and Full Interprocedural analyses. Since the Intraprocedu-
ral and Callee Only analyses do not use information from
callers, the placement of the clear instructions is already
optimal in the sense that the algorithm could not move a
clear instruction to a different method or to a different loca-
tion in the control flow graph of the same method without
either violating correctness of the clear placement algorithm
or increasing the time between an m-object’s last use and
the subsequent clear of its header bit.

7. EXPERIMENTAL RESULTS
We next present experimental results that characterize the

effectiveness of our optimization. For applications that exe-
cute many write barriers per second, this optimization can
deliver modest performance benefits of up to 6% of the over-
all execution time. There is synergistic interaction between
the Callee extension and the Caller extension; in general,
the analysis must use both extensions to remove a signifi-
cant number of write barriers.

7.1 Methodology
We implemented all four of our write barrier removal anal-

yses, our two allocation order transformations, and the opti-
mistic extension in the MIT Flex compiler system, an ahead-
of-time compiler for programs written in Java. This sys-
tem, including our implemented analyses, is available at
www.flexc.lcs.mit.edu. The runtime uses a copying gen-
erational collector with two generations, the nursery and
the tenured generation. It uses a remembered set of refer-
ences to track references from the tenured generation into
the nursery [1]. Our remembered set implementation uses a
statically allocated array to store the addresses of the cre-
ated references. Each write barrier therefore executes a store
into the next free element of the array and increments the
pointer to that element. By manually tuning the size of the
array to the characteristics of our applications, we are able
to eliminate the array overflow check that would otherwise
be necessary for this implementation. Our write barriers are
therefore somewhat more efficient than they would be in a
general system designed to execute arbitrary programs with
no a priori information about the behavior of the program.
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We present results for our analysis running on the Java
version of the Olden Benchmarks [10, 9]:

• BH: Implements the Barnes-Hut N-body solver [3].

• BiSort: Implements bitonic sort [5].

• Em3d: Models the propagation of electromagnetic
waves through objects in three dimensions [14].

• Health: Simulates the Health-care system in Colom-
bia [26].

• MST: Computes the minimum spanning tree of a graph
using Bentley’s algorithm [4].

• Perimeter: Computes the total perimeter of a region
in a binary image represented by a quadtree [29].

• Power: Maximizes the economic efficiency of a com-
munity of power consumers [27].

• TreeAdd: Sums the values of the nodes in a binary
tree using a recursive depth-first traversal.

• TSP: Solves the traveling salesman problem [24].

• Voronoi: Computes a Voronoi diagram for a random
set of points [17].

We do not include results for TSP because it uses a non-
deterministic, probabilistic algorithm, causing the number
of write barriers executed to be vastly different in each run
of the same executable.

We present results for the following compiler options:

• Baseline: No optimization, all statements that write
references into the heap have associated write barriers.

• Intraprocedural: The Intraprocedural analysis de-
scribed in Section 4.3.

• Callee Only: The analysis described in Section 4.4,
which uses information about the types of objects al-
located in invoked methods.

• Caller Only: The analysis described in Section 4.5,
which uses information about the contexts in which
the method is invoked. Specifically, the analysis deter-
mines if the receiver of the analyzed method is always
the most recently allocated object and, if so, exploits
this fact in the analysis of the method.

• Full Interprocedural: The analysis described in Sec-
tion 4.6, which uses both information about the types
of objects allocated in invoked methods and the con-
texts in which the analyzed method is invoked.

• Optimistic Extension: The Full Interprocedural anal-
ysis in combination with the extension described in
Section 6, which interacts with the garbage collector
by setting and clearing a bit in the object header to
identify objects with removed write barriers.

Each of our analyses may also be used in combination
with allocation order transformations.

For each application and each of the analyses, we used
the MIT Flex compiler to generate two executables: an in-
strumented executable that counts the number of executed

Benchmark Input Parameters Used
BH 4096 bodies, 10 time steps

BiSort 250000 numbers
Em3d 2000 nodes, out-degree 100
Health 5 levels, 500 time steps
MST 1024 vertices

Perimeter 16 levels
Power 10000 customers

TreeAdd 20 levels
Voronoi 20000 points

Figure 19: Input Parameters Used on the Java Ver-
sion of the Olden Benchmarks

write barriers, and an uninstrumented executable without
these counts. For all versions except the Baseline version,
the compiler uses the analysis results to remove unnecessary
write barriers. We then ran these executables on a 900MHz
Intel Pentium-III CPU with 512MB of memory running De-
bian GNU/Linux 2.2. Figure 19 gives the input parameters
we used for each application.

7.2 Removed Write Barriers
Figures 20 and 21 present the percentage of write bar-

riers that the different analyses removed with and with-
out allocation order transformations, respectively. There
is a bar for each version of each application; this bar plots
(1 − W/WB) × 100% where W is the number of write barri-
ers dynamically executed in the corresponding version of the
program and WB is the number of write barriers executed
in the Baseline version of the program.

Without allocation order transformations, the Full Inter-
procedural analysis removed over 80% of the write barriers
for Perimeter, over 60% of the write barriers for MST, and
over 20% of the write barriers for Voronoi, but less than 20%
for BH, BiSort, Em3d, Health, Power, and TreeAdd.

With allocation order transformations, the Full Interpro-
cedural analysis removed over 80% of the write barriers for
BH, Perimeter, and TreeAdd. It removed less than 20% only
for BiSort, Em3d, and Health.

Note the synergistic interaction that occurs when exploit-
ing information from both the called methods and the call-
ing context. For all applications except TreeAdd, the Callee
Only analysis and Caller Only analysis are each able to re-
move very few write barriers. But when combined, as in the
Full Interprocedural analysis, in many cases the analysis is
able to remove the vast majority of the write barriers.

To evaluate the optimality of our analysis, we used the
MIT Flex compiler system to produce a version of each ap-
plication in which each store statement is instrumented to
determine if, during the current execution of the program,
that statement ever creates a reference from an older ob-
ject to a younger object. If the statement ever creates such
a reference, we say that the write barrier is unremovable,
since it may trap a newly created reference from an object
in an older generation to an object in a younger generation.5

There are two possibilities if the statement never creates a
reference from an older object to a younger object: 1) Re-

5Of course, there may be a valid program transformation
that ensures that the statement always creates references
from younger objects to older objects. And as discussed in
Section 3, there may be other transformations or analyses
that could enable the removal of the write barrier.
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Figure 20: Percentage Decrease in Write Barriers
Executed without Allocation Order Transformations
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Figure 21: Percentage Decrease in Write Barriers
Executed with Allocation Order Transformations

gardless of the input, the statement will never create a refer-
ence from an older object to a younger object. In this case,
the write barrier can be statically removed. 2) Even though
the statement did not create a reference from an older object
to a younger object in the current execution, it may do so
in other executions for other inputs. In this case, the write
barrier cannot be statically removed.

Figures 22 and 23 present the results of these experiments
with and without allocation order transformations, respec-
tively. In each figure, we present one bar for each application
and divide each bar into three categories:

• Removed Write Barriers: The proportion of exe-
cuted write barriers that the Full Interprocedural anal-
ysis removes.

• Unremovable Write Barriers: The proportion of
executed write barriers from statements that create a
reference from an older object to a younger object.

• Potentially Removable: The rest of the write barri-
ers; i.e., the proportion of executed write barriers that
the Full Interprocedural analysis failed to remove, but
are from statements that never create a reference from
an older object to a younger object when run on our
input set.

For all but three of our applications, our analysis is almost
optimal in the sense that it removes almost all of the write
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Figure 22: Write Barrier Characterization without
Allocation Order Transformations
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Figure 23: Write Barrier Characterization with Al-
location Order Transformations

barriers that can be removed by any age-based write bar-
rier removal scheme that removes write barriers associated
with statements that always create references from younger
to older objects. Sections 7.2.1 through 7.2.6 discuss the
reasons for these results in more detail.

7.2.1 BH and Power
In BH and Power, the vast majority of the removed write

barriers occur in constructors that execute statements of
the form this.f = new C() to initialize fields of the ob-
ject under construction to refer to newly allocated objects.
Our first transformation (see Section 5) is able to lift the
allocations out of the constructor and place them before
the allocation of the object under construction. After this
transformation, the assignments in the constructor always
create references from the most recently allocated object to
older objects; our algorithm is able to recognize this prop-
erty and remove the corresponding write barriers. Without
this transformation, virtually all of the write barriers are
unremovable by any age-based scheme.

For BH, the transformation enables our analysis to re-
move the vast majority of the write barriers. But even after
transformation, many of the write barriers in Power remain
unremovable. Almost all of these unremovable write barriers
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occur in code that first allocates an empty array of references
to objects, then executes a loop that fills in the array. All
of the assignments in the array initialization loop create a
reference from the array to a newly allocated object, with a
write barrier clearly required. And because the array is ref-
erenced through a field of the containing object, an analysis
would need to track references in the heap before it could
recognize that the initialized and newly allocated arrays are
in fact the same object.

7.2.2 BiSort
BiSort first builds a tree of numbers, then repeatedly re-

structures parts of the tree to sort the numbers. Most of the
write barriers occur during the tree restructuring. Because
the restructuring assignments have no correlation with the
allocation order of the nodes in the program, the algorithm
is unable to remove these write barriers.

7.2.3 Em3d
Almost all of the write barriers in Em3d occur in a part

of the code that builds a bipartite graph. This graph is rep-
resented as a set of nodes, each of which has two arrays of
references to other nodes. The vast majority of the write
barriers in the Baseline version are associated with state-
ments that fill in these arrays. As the algorithm allocates
each node, it also allocates the first array for that node. Af-
ter it has allocated all of the nodes, it goes back and fills in
all of the first arrays. The write barriers in this section of the
code are unremovable since there is no correlation between
the direction of the created references (from the arrays to
the nodes) and the object allocation order.

When the application finishes filling in the first arrays,
it then goes back and allocates and fills in all of the second
arrays. All of the write barriers in this part of the code are in
principle removable since all of the corresponding statements
create references from the (younger) second arrays to older
graph node objects. But our technique is not designed to
remove these kinds of write barriers—it reasons about write
barrier removal at the granularity of individual objects, not
groups of objects as this application requires.

7.2.4 Health
In Health, almost all of the write barriers occur in loops

that use enumerations to traverse elements of collection data
structures. The write barriers occur at statements that move
the current element reference in the enumeration to the next
element in the collection. Although the enumeration object
is always younger than the objects in the collection, the
loop using the enumeration also allocates (in the loop body)
objects of the same type as those in the collection. The
algorithm recognizes that the newly allocated objects are
of the same type as those assigned to the current element
reference of the enumeration. Since the algorithm does not
currently differentiate between the newly allocated objects
and the older objects of the same type in the collection being
enumerated, it is unable to remove these write barriers.

7.2.5 MST, Perimeter, and Voronoi
In MST, Perimeter, and Voronoi, almost all of the re-

moved write barriers occur in constructors that use state-
ments of the form this.f = p to initialize fields of the ob-
ject under construction to refer to objects passed by refer-
ence into the constructor. At all call sites, the object under

construction is the most recently allocated object; the Full
Interprocedural analysis recognizes this fact and removes the
write barriers for the field initialization statements.

In MST, the majority of the unremovable write barriers
are caused by insertions of new objects into an existing hash
table. In principle, the allocation order could be changed to
allocate the hash table after the objects it contains, trans-
forming unremovable write barriers into removable ones. In
practice, the transformed code would need temporary loca-
tions in which to store all the references to the objects to
be put into the hash table. As hash tables usually contain
many objects, this approach is not practical.

For Perimeter, the majority of the unremovable write bar-
riers are caused by assignments that create back references
from child nodes in a tree to their parent node. Note that
changing the allocation order of the tree nodes would not
improve the results—it would simply move the unremovable
write barriers from statements that create back references to
statements that create forward references from parent nodes
to child nodes.

In Voronoi, most of the unremoved write barriers occur in
a method that creates a reference between two edge objects.
The write barriers associated with this part of the code are
unremovable because the method is used in many contexts;
there is no correlation between the direction of the created
references and the relative ages of the edge objects involved.

The remaining unremoved write barriers in Voronoi occur
in code that creates a quad edge data structure. The ap-
plication first creates an array of edges and allocates edge
objects with which to fill the array. The write barriers in
this section of the code are unremovable because the as-
signments create references from the older array object to
newer edge objects. The application then indexes into the
edge array, and creates references between the edge objects
in it. Some of the write barriers in this part of the code are
in principle removable; the corresponding statements always
create references from younger edge objects to older edge ob-
jects. But to identify these write barriers, an analysis must
know the relative ages of objects stored in an array. Once
again, our analysis is not designed to remove these kinds of
write barriers—it reasons about write barrier removal at the
granularity of individual objects, not groups of objects.

7.2.6 TreeAdd
In the Baseline version of TreeAdd, almost all of the write

barriers occur in code that recursively builds a tree. The sec-
ond transformation (see Section 5) replaces a top-down tree
construction algorithm with a bottom-up tree construction
algorithm, enabling the removal of virtually all of the write
barriers.

7.2.7 Discussion
The majority of all write barriers in the applications occur

during data structure creation, rather than during the mod-
ification of an existing data structure. Exceptions include
the tree restructuring computation in BiSort and the hash
table insertions in MST. Our techniques are able to remove
most of the write barriers that occur during data structure
construction. Exceptions include some of the write barriers
associated with the construction of cyclic data structures
such as the tree in Perimeter and write barriers in compu-
tations such as the graph construction in Em3d that first
create, then link together, groups of objects.
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Java programs have several typical patterns that any effec-
tive write barrier removal technique must successfully han-
dle. The first pattern is an allocation of an object followed
by the invocation of its constructor and the initialization of
its reference fields inside the constructor. Consider an analy-
sis that reasons about the relative ages of objects to remove
write barriers associated with statements that only create
references from younger objects to older objects. For such
an analysis to remove the write barriers associated with ob-
ject initialization, it must propagate information across pro-
cedure boundaries to recognize that the object under con-
struction is younger than the objects to which it is initialized
to refer. In some cases it may also need to transform the
program to allocate the object under construction after the
objects to which it will refer.

The second pattern is that Java constructors call the su-
perclass constructor on method entry; the superclass con-
structor may then create new objects. Once again, some
interprocedural analysis is required to recognize when these
potential new object creations do not interfere with the re-
moval of write barriers at subsequent initialization state-
ments in the currently analyzed method. Note that for suc-
cessful static write barrier removal, information must flow
both from callers to callees (to recognize that the initial-
ization of the object under construction creates references
from a younger object to older objects) and from callees to
callers (to recognize when objects potentially allocated by
called methods do not interfere with write barrier removal).

7.3 Execution Times
We ran each version of each application (without instru-

mentation) five times, measuring the execution time of each
run. The times were reproducible; see Figures 31 and 32
for the mean execution time data and the standard devia-
tions. Figures 24 and 25 present the mean execution time
for each version of each application normalized to the mean
execution time of the Baseline version, with and without al-
location order transformations, respectively. In general, the
benefits are rather modest, with the optimization producing
overall performance improvements of up to 6%. Six of the
applications obtain no significant benefit from the optimiza-
tion, even though the analysis managed to remove the vast
majority of the write barriers in some of these applications.
The increased execution time for BH in Figure 25 is due
to the allocation order transformation; the allocation order
transformation increases the number of parameters in the
transformed method, resulting in performance degradation.
Although the performance improves due to write barrier re-
moval, in this case the improvement is not large enough to
overcome the overhead of the transformation.

Figure 26 presents the write barrier densities for the differ-
ent versions of the different applications. The write barrier
density is simply the number of write barriers executed per
second; i.e., the number of executed write barriers divided by
the execution time of the program. These numbers clearly
show that to obtain significant benefits from write barrier
removal, two things must occur: 1) the Baseline version of
the application must have a high write barrier density, and
2) the analysis must remove most of the write barriers.

7.4 Overhead of Optimistic Extension
We have implemented the optimistic extension described

in Section 6. We applied this extension to programs an-
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Figure 24: Normalized Execution Times without Al-
location Order Transformations
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Figure 25: Normalized Execution Times with Allo-
cation Order Transformations

alyzed with the Full Interprocedural analysis, both with
and without allocation order transformations. Figure 27
presents the measured increase in running times due to the
extension as a percentage of the execution times. As these
numbers show, the overhead is small. Negative numbers
in the figure represent improvements in performance after
applying the optimistic extension; we attribute these im-
provements to memory system effects.

7.5 Analysis Times
Figure 28 presents the analysis times for the different ap-

plications and versions of the analysis. In general, the anal-
ysis is acceptably efficient—even the Full Interprocedural
analysis always completes in less than a minute.

8. RELATED WORK
There is a vast body of literature on different approaches

to write barriers for generational garbage collection [33, 36,
21, 23]. Several researchers have investigated implementa-
tion techniques for efficient write barriers [11, 18, 20]; the
goal is to reduce the write barrier overhead. We view our
techniques as orthogonal and complementary: the goal of
our analyses is not to reduce the time required to execute a
write barrier, but to find superfluous write barriers and re-
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Analysis Time (s)
Benchmark Intraprocedural Callee Only Caller Only Full Interprocedural

BH 15 27 31 38
BiSort 16 27 25 34
Em3d 16 27 28 38
Health 16 24 31 38
MST 16 21 28 35

Perimeter 15 23 27 35
Power 15 26 32 38

TreeAdd 12 26 29 37
Voronoi 14 29 31 42

Figure 28: Analysis Times for Different Analysis Versions

Write Barrier Density
Benchmark (write barriers/s)

BH
BiSort
Em3d
Health
MST

Perimeter
Power

TreeAdd
Voronoi

913871
5041184
898145

2452119
1361658
2586117

3720
786157

1747947

Figure 26: Write Barrier Densities of the Baseline
Version of the Benchmark Programs

% Increase in Execution Time
Without With

Allocation Order Allocation Order
Benchmark Transformations Transformations

BH
BiSort
Em3d
Health
MST

Perimeter
Power

TreeAdd
Voronoi

0.36 %
-0.33 %
0.02 %

-0.08 %
0.55 %
0.37 %
0.23 %
0.06 %
0.09 %

-0.95 %
-0.05 %
0.17 %
0.37 %
0.19 %
0.37 %
-0.12 %
0.22 %
-0.83 %

Figure 27: Overhead for Optimistic Extension

move them from the program. To the best of our knowledge,
our algorithms are the first to use static program analysis
to remove these unnecessary write barriers.

Other researchers have also identified unnecessary write
barriers as a potential target for program optimization; they
apply write barrier removal in the context of a type-based
memory management system [31]. The basic idea is to iden-
tify “prolific” types, then allocate all instances of these types
in one region of the heap, with all other objects allocated in a
separate region. The collector never moves objects between
regions. A minor collection involves only the prolific re-
gion, while a major collection involves the entire heap. The
memory management system uses write barriers to identify
all references from the non-prolific region into the prolific
region; it uses these references as roots of the minor collec-
tions. With this scheme, write barriers are required only
for statements that create references from non-prolific ob-
jects to prolific objects. The implemented system uses off-
line profiling to determine which types are prolific; it uses a

type test to identify statements that create references from
non-prolific objects to prolific objects.

It is possible to detect writes to objects stored in older
generations by using operating systems primitives to write-
protect the pages that contain objects in older genera-
tions [30, 13, 35, 2]. The advantage of this approach is that
it completely eliminates the write barrier instructions (and
the corresponding overhead) in the generated code. The
disadvantages are the signal handling overhead associated
with every write to an object stored in an older generation
and the need to interact with the operating system’s page
protection mechanism.

The term “write barrier” has also been used in persis-
tent object systems. In this context, a write barrier checks
if a persistent object that the program intends to write is
resident in memory. If it is not resident, the write barrier
reads the object into memory, enabling the application to
perform the write. Researchers have developed a technique
that identifies regions of code that repeatedly write the same
persistent object [19]. This technique inserts a write barrier
at the beginning of each such region and removes all other
write barriers within the region. It relies on some mecha-
nism to ensure that the object is not written back out to
stable storage while execution is within such a region.

9. CONCLUSION
Write barrier overhead has traditionally been an unavoid-

able price that one pays to use generational garbage collec-
tion. But as the results in this paper show, it is possible to
develop a relatively simple interprocedural algorithm that
can, in many cases, remove most of the write barriers in the
program. The key idea is to use an intraprocedural must
points-to analysis to find variables that point to the most
recently allocated object, then extend the analysis with in-
formation about the types of objects allocated in invoked
methods and information about the must points-to relation-
ships in calling contexts. Incorporating these two kinds of
information produces an algorithm that can often remove
virtually all of the unnecessary write barriers. And our op-
timistic extension enables the application of our techniques
to generational collectors with arbitrary promotion policies.
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Number of Times Write Barrier Executed
Full

Benchmark Baseline Intraprocedural Callee Only Caller Only Interprocedural
BH 8589477 8589477 8589477 8589477 8507442

BiSort 3911959 3911959 3911959 3911959 3649764
Em3d 836173 836173 836173 836173 836102
Health 11971243 11971243 11971243 11971243 10322779
MST 6544130 5373698 5373698 5373698 2229965

Perimeter 3170579 3170579 3170579 3170579 453024
Power 23556 23556 23556 23556 23503

TreeAdd 1048733 1048733 1048733 1048733 1048680
Voronoi 8426852 8426852 8394084 8426852 6135739

Figure 29: Dynamic Write Barrier Counts without Allocation Order Transformations

Number of Times Write Barrier Executed
Full

Benchmark Intraprocedural Callee Only Caller Only Interprocedural
BH 8589477 8589477 8589477 1154767

BiSort 3911959 3911959 3911959 3649764
Em3d 836173 836173 836173 836102
Health 11971243 11971243 11971243 10322097
MST 5373698 5373698 5373698 2229965

Perimeter 3170579 3170579 3170579 453024
Power 23556 23556 23556 12302

TreeAdd 1048733 159 1048733 106
Voronoi 8426852 8394084 8426852 6135739

Figure 30: Dynamic Write Barrier Counts with Allocation Order Transformations

Average Execution Time (s) ± Standard Deviation (s)
Full

Benchmark Baseline Intraprocedural Callee Only Caller Only Interprocedural
BH 9.39 ± 0.02 9.385 ± 0.002 9.387 ± 0.005 9.383 ± 0.006 9.379 ± 0.002

BiSort 0.777 ± 0.003 0.7758 ± 0.0004 0.776 ± 0.001 0.7754 ± 0.0005 0.778 ± 0.0007
Em3d 0.9314 ± 0.0005 0.932 ± 0.003 0.931 ± 0.001 0.931 ± 0.001 0.933 ± 0.002
Health 4.830 ± 0.002 4.835 ± 0.004 4.833 ± 0.004 4.827 ± 0.005 4.791 ± 0.004
MST 4.804 ± 0.005 4.765 ± 0.008 4.760 ± 0.005 4.758 ± 0.004 4.651 ± 0.004

Perimeter 1.222 ± 0.002 1.221 ± 0.000 1.222 ± 0.003 1.222 ± 0.003 1.146 ± 0.002
Power 6.349 ± 0.003 6.364 ± 0.003 6.366 ± 0.003 6.364 ± 0.003 6.296 ± 0.002

TreeAdd 1.3334 ± 0.0009 1.334 ± 0.001 1.336 ± 0.003 1.336 ± 0.003 1.335 ± 0.003
Voronoi 4.841 ± 0.003 4.829 ± 0.004 4.838 ± 0.003 4.828 ± 0.003 4.781 ± 0.004

Figure 31: Average Execution Times of Benchmark Programs without Allocation Order Transformations

Average Execution Time (s) ± Standard Deviation (s)
Full

Benchmark Intraprocedural Callee Only Caller Only Interprocedural
BH 9.380 ± 0.004 9.382 ± 0.006 9.3784 ± 0.0005 9.620 ± 0.004

BiSort 0.777 ± 0.002 0.776 ± 0.002 0.7754 ± 0.0009 0.7762 ± 0.0004
Em3d 0.9304 ± 0.0009 0.931 ± 0.002 0.931 ± 0.001 0.931 ± 0.001
Health 4.816 ± 0.003 4.814 ± 0.003 4.813 ± 0.002 4.771 ± 0.002
MST 4.774 ± 0.005 4.771 ± 0.003 4.772 ± 0.002 4.662 ± 0.004

Perimeter 1.220 ± 0.001 1.221 ± 0.002 1.221 ± 0.002 1.147 ± 0.003
Power 6.365 ± 0.003 6.365 ± 0.002 6.364 ± 0.002 6.315 ± 0.003

TreeAdd 1.3304 ± 0.0005 1.297 ± 0.002 1.332 ± 0.003 1.294 ± 0.002
Voronoi 4.827 ± 0.003 4.836 ± 0.002 4.826 ± 0.003 4.778 ± 0.002

Figure 32: Average Execution Times of Benchmark Programs with Allocation Order Transformations
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