
Runtime Checking for Program Verification Systems

Karen Zee Viktor Kuncak Martin Rinard
MIT, CSAIL

Cambridge, USA
{kkz,vkuncak,rinard}@csail.mit.edu

Abstract
One of the goals of program verification is to show that a program
conforms to a specification written in a formal logic. Oftentimes,
this process is hampered by errors in both the program and the spec-
ification. The time spent in identifying and eliminating these errors
can even dominate the final verification effort. A runtime checker
that can evaluate formal specifications can be extremely useful for
quickly identifying such errors. Such a checker also enables verifi-
cation approaches that combine static and dynamic program analy-
ses. Finally, the underlying techniques are also useful for executing
expressive high-level declarative languages.

This paper describes the run-time checker we are developing in
the context of the Jahob verification system. One of the challenges
in building a runtime checker for a program verification system is
that the language of invariants and assertions is designed for sim-
plicity of semantics and tractability of proofs, and not for run-time
checking. Some of the more challenging constructs include existen-
tial and universal quantification, set comprehension, specification
variables, and formulas that refer to past program states. In this pa-
per, we describe how we handle these constructs in our runtime
checker, and describe several directions for future work.

1. Introduction
This paper describes a run-time checker we are developing in the
context of the Jahob verification system. The primary goals of this
run-time checker are debugging specifications and the program and
using run-time information in loop invariant inference.

Jahob [5,18] is a program verification system for an imperative,
sequential, memory-safe language that is a subset of Java.1 Spec-
ifications are written as special comments within the source code,
so developers can compile and run programs using standard Java
interpreters and runtimes. Jahob specifications are written as for-
mulas in higher-order logic (HOL), using the syntax of the input
language to the Isabelle proof assistant [20].

Jahob specifications include declarations and definitions of
specification variables (similar to model fields in JML), data struc-
ture invariants, procedure pre- and postconditions, as well as as-
sertions. Specification variables are abstract fields defined by the
programmer that can be referenced in the invariant, pre- and post-
conditions, and assertions. In the standard program verification
usage of Jahob, the data structure invariants, pre- and postcondi-
tions, and assertions are guaranteed to hold using a combination of
static analysis and theorem proving. Our runtime checker ensures
that these properties hold by evaluating them dynamically.

Contributions. This abstract presents the current state of our run-
time checker for Jahob. The checker evaluates a subset of higher-
order logic formulas containing quantifiers, set comprehensions, in-
teger and object expressions, sets, and relations. Among the inter-

1 Jahob’s implementation language does not support reflection, dynamic
class loading, multi-threading, exceptions, packages, subclassing, or any
Java 1.5 features.

esting features of our checker is the evaluation of certain expres-
sions that denote infinite sets, and the evaluation of formulas that
refer toold values of fields of an unbounded number of objects.

2. Quantifiers and set comprehensions
While Jahob’s specifications are written in HOL, for practicality
purposes we restrict the runtime checker to support only first-order
quantification. Even with first-order quantification, however, it is
possible to write formulas that cannot be executed, as is the case
when the domain of the quantifier is unbounded. Consider, for
example, the formula∀x : T.P (x). Note thatx refers not only
to all objects of typeT in the heap, but to all possible objects of
typeT , which would be highly impractical to compute. Therefore,
in most cases, the runtime checker checks only those quantified
formulas where the domain of the quantification is bounded. For
integers, this means that quantification must be restricted to a range
of integers. For objects, Jahob has a built-in notion of the set of
allocated objects, so that quantification over all allocated objects
of type T is written ∀x : T.x : AllocatedObjects −→ P (x).
The same applies to set comprehensions, which also need to be
confined to a bounded domain in order to be evaluated. (There
is an interesting case in which the runtime checker can handle
even unbounded quantification, which we explain in the following
section.)

Even bounded domains, however, may be large, and we would
like to avoid considering all objects in the heap if at all possible. For
example, in the formula∀x : Tx∀y : Ty.x : AllocatedObjects ∧
y : AllocatedObjects ∧ x.next = y −→ P (x, y), the quantified
variabley is introduced for the purposes of naming and can be
easily evaluated without enumerating all elements of the heap. The
runtime checker handles these cases by searching into the body
of quantified formulas, through conjunctions and implications, to
determine if the bound variable is defined by an equality. If so, we
can evaluate the body of the formula without having to enumerate
a large number of objects. While it may be possible to write the
same formula without introducing a quantified variable, being able
to do so may not only make a specification easier to understand,
it can also make its evaluation more efficient. If the bound variable
appears more than once in the body of the formula, the introduction
of the quantified variable identifies a common subexpression that
is essentially being lifted, so that the runtime checker need only
evaluate it once.

3. Specification variables
Jahob supports two types of specification variables: standard speci-
fication variables and ghost variables. These are sometimes referred
to as model fields and ghost fields, respectively, as in JML [19].

A standard specification variable is given by a formula that de-
fines it in terms of the concrete state of the program. When the run-
time checker evaluates a formula that refers to a standard specifica-
tion variable, it evaluates the formula that defines the specification
variable in the context of the current program state.

1 2007/3/5



A ghost variable, on the other hand, is updated by the program-
mer using special comments in the code. They behave very much
like normal variables in the program. In general, they are treated
similarly by the runtime checker, though in addition to standard
program types such as booleans, integers, and objects, the runtime
checker also supports ghost variables of types tuple and set.

When ghost variables are updated, the right-hand side of the as-
signment statement consists of a formula that the runtime checker
evaluates to produce the new value of the ghost variable. It then
stores the resulting value in the same way as it would for the as-
signment of a normal program variable. This formula is a standard
Jahob formula and may contain quantifiers, set comprehensions,
set operations, and other constructs not typically available in Java
assignment statements.

Since ghost variables of type set are allowed, it is also possible
to write the following code:

//: private ghost specvar X :: int set;
int y = 0;

//: X := {z. z > 0};
//: assert y ~: X;
y = y + 1;
//: assert y : X;

The above code is an interesting case because the ghost variablex
is assigned to the value of an unbounded set. The runtime checker
handles this case by deferring the evaluation ofx until it reaches
the assert statements. It then applies formula simplifications that
eliminate the set comprehension. Of course, the runtime checker
uses the same simplifications when presented with a formulay ∈
{z.z > 0}, but the above case is an interesting example of being
able to check formulas that one might not expect to be able to
check.

4. Theold construct
The old construct is common to most program specification lan-
guages for referring to the value of an expression in an earlier state
of the program. In Jahob, anold expression refers to the value of
the enclosed expression as evaluated on entry to the current proce-
dure. Unlike theold construct in JML [19], which is syntactically
restricted so that anold expression can be fully evaluated in the pro-
cedure pre-state,old expressions in Jahob are not restricted in this
way. While this makes the Jahob specification language more ex-
pressive, it also makes it necessary for a runtime checker to access
past program state in order to evaluate such expressions.

One simple but inefficient method of providing the checker
access to past program state would be to snapshot the heap before
each procedure invocation. Unfortunately, this approach is unlikely
to be practical in terms of memory consumption; the memory
overhead would be a product of the size of the heap and the depth
of the call stack.

Instead, the runtime checker obtains access to the pre-state by
means of a recovery cache (also known as a recursive cache) [14]
that keeps track of the original values of modified heap locations.
It is implemented as a stack that behaves as follows. On entry to a
procedure, the runtime checker pushes a new, empty frame onto the
stack. When a write occurs, the checker notes the memory address
of the write, as well as the original value of the location before
the write. Subsequent writes to the same address do not require an
update to the frame. When the checker needs to evaluate anold
expression, it simply looks up the necessary values in the topmost
frame. If it does not find a value there, that means that the heap
location was not changed, and that the current value is also theold
value.

There are several features of this solution worth noting. First,
it takes advantage of the fact that we need only know the state of
the heap on procedure entry, and not the state of any intermediate
heaps between procedure entry and the assertion or invariant to be

evaluated. Also, where the state of a variable is unchanged, theold
value resides in the heap, so that reads do not incur a performance
penalty excepting reads ofold values. Finally, one of the ideas
underlying this solution is that we expect the amount of memory
required to keep track of the initial writes to be small relative to the
size of the heap. While there is a trade-off between memory and
performance—there is now a performance penalty for each write—
the overhead is greatest for initial writes, and less for subsequent
writes to the same location.

5. Related Work
Run-time assertion checking has a long history [9]. Among the
closest systems for run-time checking in the context of static ver-
ification system are tools based on the Java Modeling Language
(JML) and the Spec# system [2].

JML [19] is a language for writing specifications of Java pro-
grams. Tools are available both for checking JML specifications at
runtime and for verifying statically that a program conforms to its
JML specification [6]. As such, the work on JML shares at least
one of the goals of the work in this paper—that of being able to
use a runtime checker to aid in the process of verifying programs
with respect to their specifications. The JML compiler, jmlc [8], is
the primary runtime assertion checking tool for JML. It compiles
JML-annotated Java programs into bytecode that also includes in-
structions for checking JML invariants, pre- and post-conditions,
and assertions. Other assertion tools for JML include Jass [3] and
jmle [17].

One of the goals in the design of JML was to produce a speci-
fication language that was Java-like, to make it easier for software
engineers to write JML specifications. It also makes JML specifi-
cations easier to execute. Jahob, on the other hand, is first and fore-
most a program verification system, and, as such, uses an expres-
sive logic as its specification language. The advantage of this design
is that the semantics of the specifications is clear, and the verifica-
tion conditions generated by the system can easily be traced back
to the relevant portions of the specification, which is very helpful
in the proof process.

Spec# is another system [2] for which both runtime checking
and program verification tools are available. Spec# is a superset
of C# and includes a specification language. The Spec# system
compiles its specifications into inline checks, which may also be
verified using the Boogie verifier [1]. The Spec# specifications that
we are aware of do not contain set comprehensions and transitive
closure expressions.

We are not aware of any techniques used to execute such specifi-
cations in the context of programming language run-time checking
systems. Techniques for checking constraints on databases [4, 12,
13,15,21,22] contain relevant techniques, but use simpler specifica-
tion specification languages and are optimized for particular classes
of checks.

To evaluateold expressions in our specifications, we use a re-
covery cache, or recursive cache, a technique from fault-tolerant
computing [14]. Fault-tolerant systems use recovery caches to re-
store the program state to a previous state in the presence of a fail-
ure.

6. Conclusions and Future Work
The Jahob run-time checker is currently built as an interpreter and
is meant for debugging and analysis purposes as opposed to the
instrumentation of large programs. Among the main directions for
future work are compilation of run-time checks [7, 10] to enable
checking of the assertions that were not proved statically [11], and
combination with a constraint solver to enable modular run-time
checking [16].

2 2007/3/5



References
[1] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.

Boogie: A modular reusable verifier for object-oriented programs. In
Proc. 4th Intl. Sym. on Formal Methods for Components and Objects,
2005.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. InCASSIS: Construction and Analysis of Safe,
Secure and Interoperable Smart devices, 2004.

[3] D. Bartetzko, C. Fischer, M. M̈oller, and H. Wehrheim. Jass–Java
with assertions. InProc. 1st Workshop on Runtime Verification,
volume 55 ofENTCS, pages 103–117, 2001.

[4] P. A. Bernstein and B. T. Blaustein. Fast methods for testing quantified
relational calculus assertions. InProc. 1982 ACM SIGMOD intl. conf.
on Management of data, pages 39–50. ACM Press, 1982.

[5] C. Bouillaguet, V. Kuncak, T. Wies, K. Zee, and M. Rinard. Using
first-order theorem provers in a data structure verification system. In
Proc. 8th Intl. Conf. on Verification, Model Checking and Abstract
Interpretation, 2007.

[6] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll. An overview of JML tools and
applications. Technical Report NII-R0309, Computing Science
Institute, Univ. of Nijmegen, March 2003.

[7] F. Chen, M. d’Amorim, and G. Rosu. Checking and correcting
behaviors of java programs at runtime with java-mop.ENTCS,
144(4):3–20, 2006.

[8] Y. Cheon. A Runtime Assertion Checker for the Java Modeling
Language. PhD thesis, Iowa State University, April 2003.

[9] L. A. Clarke and D. S. Rosenblum. A historical perspective on
runtime assertion checking in software development.SIGSOFT Soft.
Eng. Notes, 31(3):25–37, 2006.

[10] B. Demsky, C. Cadar, D. Roy, and M. C. Rinard. Efficient
specification-assisted error localization. 2004.

[11] C. Flanagan. Hybrid type checking. InProc. 33rd Annual ACM Sym.
on the Principles of Programming Languages, pages 245–256, 2006.

[12] T. Griffin, L. Libkin, and H. Trickey. An improved algorithm for
incremental recomputation of active relational expressions.IEEE
Trans. on Knowledge and Data Eng., 9(3):508–511, 1997.

[13] L. J. Henschen, W. McCune, and S. A. Naqvi. Compiling constraint-
checking programs from first-order formulas. In H. Gallaire, J.-M.
Nicolas, and J. Minker, editors,Advances in Data Base Theory, Proc.
of the Workshop on Logical Data Bases, volume 2, pages 145–169,
1984.

[14] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Randell. A
program structure for error detection and recovery. InProc. Intl. Sym.
on Operating Systems, volume 16 ofLNCS, pages 171–187, 1974.

[15] H. V. Jagadish and X. Qian. Integrity maintenance in object-oriented
databases. InProc. 18th Conf. on Very Large Data Bases, 1992.

[16] S. Khurshid and D. Marinov. TestEra: Specification-based testing of
java programs using SAT.Autom. Soft. Eng., 11(4):403–434, 2004.

[17] B. Krause and T. Wahls. jmle: A tool for executing JML specifications
via constraint programming. InProc. 11th Intl. Workshop on Formal
Methods for Industrial Critical Systems, volume 4346 ofLNCS, pages
293–296, 2007.

[18] V. Kuncak. Modular Data Structure Verification. PhD thesis, EECS
Department, Massachusetts Institute of Technology, February 2007.

[19] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok,
P. Müller, J. Kiniry, and P. Chalin.JML Reference Manual, December
2006.

[20] T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 ofLNCS. Springer-
Verlag, 2002.

[21] R. Paige. Applications of finite differencing to database integrity
control and query/transaction optimization. In H. Gallaire, J.-M.
Nicolas, and J. Minker, editors,Advances in Data Base Theory,
Proceedings of the Workshop on Logical Data Bases, volume 2,
pages 171–209, 1984.

[22] X. Qian and G. Wiederhold. Knowledge-based integrity constraint
validation. In W. W. Chu, G. Gardarin, S. Ohsuga, and Y. Kam-
bayashi, editors,Proc. 12th Intl. Conf. on Very Large Data Bases,
pages 3–12, August 1986.

3 2007/3/5


