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Abstract— Hob is a program analysis system that enables the hew algorithm that can analyze some specific set of consis-
focused application of multiple analyses to different modies in tency properties, we propose a technique that developers ca
the same program. In our approach, each module encapsulates use to apply multiple pluggable analyses to the same pragram

one or more data structures and uses membership in abstract ith h Vs lied to th dules f hich it i
sets to characterize how objects participate in data struatres. with each analysis applied to the modules tor which 1t 1S

Each analysis verifies that the implementation of the module @ppropriate. Our system uses a range of static analyses to
1) preserves important internal data structure consisteng prop-  verify various classes of program properties. The analyses

erties and 2) correctly implements a set algebra interfacehat 3 common abstraction based on sets of objects to communicate
characterizes the effects of operations on the data structa. their analysis results. Our approach enables the verificati

Collectively, the analyses use the set algebra to 1) characize : . . . .
how objects participate in multiple data structures and to of properties that involve multiple objects shared by nplfi

2) enable the inter-analysis communication required to veify ~Modules analyzed by different analyses.
properties that depend on multiple modules analyzed by difrent Our technique is designed to support programs that en-
analyses. capsulate the implementations of complex data structures i
We implemented our system and deployed several pluggable jhstantiatable leaf modules, with these modules analyneé o
analyses, including a flag analysis for modules in which absict - . .
set membership is determined by a flag field in each object, a by very precise, potentially expensive analys_e,S (S,UCh,apes,h
PALE shape analysis plugin, and a theorem proving plugin for analyses or even analyses that generate verification aomslit
analyzing arbitrarily complicated data structures. Our experience that must be discharged using an interactive theorem prover
shows that our system can effectively 1) verify the consistey The rest of the program uses these modules but does not
of data structures encapsulated within a single module and )2 gjrectly manipulate the encapsulated data structuresnide
combine analysis results from different analysis pluginsa verify . .
properties involving objects shared by multiple modules aalyzed ule.s.ln the rest of the program can then be analyzed using more
by different analyses. efficient analyses that operate at the level of the common set
) abstraction. These analyses can be viewed as generaizatio
Index Terms— Typestate, Data Structure, Invariant, Program . . .
Analysis, Program Verification, Shape Analysis, Formal Mehods, OT typestate analysis [9_]_[14]' W't_h the typestate of aneabj
Programming Language Design given by the sets to which the object belongs. These analyses
simultaneously 1) ensure that the rest of the program réspec
the preconditions of the data structure operations (that is
adheres to a protocol that guarantees the correct use of the
A data structure is consistent if it satisfies the invariaets- data structure), and 2) verify high-level consistency praps
essary for the normal operation of the program. Data stractetween data structures, such as disjointness or contatnme
consistency is important for successful program executibn of data structure contents.
an error corrupts the data structures of a program, the @anogr We have implemented our analysis framework in the context
can quickly exhibit unacceptable behavior and may crasbf.the Hob project [15], [16] and initially populated thisfne-
Motivated by the importance of this problem, researcheve hawork with three analysis plugins: 1) the flag plugin, which is
developed algorithms for statically verifying that progrss designed to analyze modules that use a flag field to indicate
preserve important consistency properties [1]-[8]. the typestate of the objects that they manipulate [17]; 8) th
However, two problems complicate the successful applicBALE plugin, which implements shape analysis for linked
tion of these kinds of analyses to practical prograstsila- data structures using the PALE tool [1]; and 3) the theorem
bility and diversity Because data structure consistency oftgroving plugin, which generates verification conditions fo
involves quite detailed object referencing propertiesnynaconsistency properties of arbitrarily complicated praojsrand
analyses fail to scale to the size of the entire program. B&ra discharges them using the Isabelle interactive theoremepro
of the vast diversity of data structures, each with its owfl8]. This paper discusses these three plugins. Thomas Wies
specific consistency properties, it is difficult to imagitatt has subsequently developed another shape analysis plugin,
any one algorithm will be able to successfully analyze all dohne [19], [20], which offers more automation and a wider
the data structure manipulation code that may be present isape of applicability than the PALE plugin.
sizable program. Our framework analyzes programs written in a memory-
This paper presents a new perspective on the data structsafe imperative language with Java-like syntax. We used our
consistency problem. Instead of attempting to develop glesin analysis framework to analyze several programs; our experi

|I. INTRODUCTION
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ence shows that our framework can effectively 1) verify the The minesweeper application exhibits a variety of data
consistency of data structures encapsulated within a esingtructures with a range of important consistency propertie
module and 2) combine analysis results from different anakmong the data structure consistency properties verifigthus
ysis plugins to verify properties involving objects shat®d our system are the following:

multiple modules analyzed by different analyses.

Structure of the paper and related Hob publications.In the
rest of the paper, we present the basic concepts of our system
We use a running example to illustrate these concepts aird the 2)
effectiveness in verifying complex data structure comesisy
properties in the context of an application. Additionaladlst

on earlier versions of the Hob system are presented in [15],
[16]. The theorem proving plugin is presented in [21], the 4)
flag plugin in [17], and the field constraint analysis behind
the (recently developed) Bohne plugin in [19], [22]. Novel
specification-level constructs of Hob—scopes and defaults
are described in [23].

1)

3)

5)

II. MINESWEEPEREXAMPLE 6)

To illustrate our technique, we present an example program
that implements the popular minesweeper game. The centray)
entity of the implementation is @ell object, which stores  8)
the state of one cell in the field of the game. In terms of

The set of unexposed cells in thénexposedList
module form an acyclic doubly-linked list with glrev
references being the inverse mdxt references.

The iterator of theUnexposedList module is either
null or points inside the list.

If the board is initialized, then thEexposedSet module
storing the exposed cells is also initialized.

The set of unexposed cells maintained in tward
module (using flags) is identical to the set of unexposed
cells maintained in the linkedUnexposedList data
structure.

The set of exposed cells maintained in tBeard
module (using flags) is identical to the set of exposed
cells maintained in th&xposedSet array.

Unless the game is over, the set of mined cells is disjoint
from the set of exposed cells.

The sets of exposed and unexposed cells are disjoint.
At the end of the game, all cells are revealed; the

set of unexposed cells is empty.

content, eactCell may or may not contain a mine; in terms\ptice that this list contains two kinds of properties: itala
of visibility, each cell can be exposed or unexposed; finally,cture consistency properties that involve the impleme
the pl_ayer can mark an unexposed cell if they believe thatiftion of a single data structure, such as Property 1, and
contains a mine. ii) more abstract properties involving relationships bextw
Our implementation uses the standard model-viewhjects stored in multiple data structures, such as Priegett
controller (MVC) design pattern [24]. The implementation 6 and 8. One somewhat unusual feature of these abstract
has several modules (see Figure 1). The game board motifi§perties is that they are outward looking: they capture
(Board) represents the game state and plays the role jf{portant features of the system that are directly meaningf
the “model” part of the MVC pattern; the controller modulgg the users of the system, and not just the implementors.
(Controller) responds to user input; the view modulerg the best of our knowledge, the Hob system is the only
(View) produces the game’s output; the exposed cell modgrrently existing system that supports and promotes the
(ExposedSet)  uses an array to store the cells exposed by th&plicit identification and guaranteed checking of theselki
player in the course of the current game; and the unexpossithutward-looking, application-oriented properties.
cell module (UnexposedList) uses an instantiated linked \we next show how our system verifies these properties
list to store the cells that have not yet been exposed. Thgfe combining multiple analyses with different strengths an
are 750 non-blank lines of implementation code in the @tferent levels of automation. We start by describing them
implementation sections of minesweeper, and 236 non-blagikments of our language using an example of a doubly-linked

lines in its specification and abstraction sections. (Falirse |ist with an iterator, which corresponds to tteexposedList
code for the minesweeper example and other case studies,{fijule in the minesweeper example.

interpreter for our language, and analysis engine areablail

from the authors’ web pages.) I1l. M ODULES INHOB

The basic unit of analysis in our system is a module. Be-

Main cause developers partition programs into multiple modules
system can verify different parts of a program indepengent!
ExposedSet / \j using different analysis techniques. Each module in ouesys
K__ consists of an implementation section, a specification@gct
Board & Controller and an abstraction section. We illustrate different sestiof
/— a module using the example of a doubly-linked list with an
iterator.
UnexposedList v
\ View A. Implementation Section

Figure 2 contains a skeleton of the implementation section
of a doubly-linked list with an iterator. Our implementatio
language is a standard memory-safe imperative language wit

Fig. 1. Modules in Minesweeper implementation.
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impl module DLLIter {
format Node { next : Node; prev : Node; }
var root, current : Node;

proc isEmpty() returns e:bool { return root==null; }
proc add(n : Node) { ... }
proc remove(n : Node) {

if (n==current) { current = current.next; }

if (n==root) { root = root.next; }

Node prv = n.prev, nxt = n.next;

if (prvl=null) { prv.next = nxt; }

if (nxt!=null) { nxt.prev = prv; }

n.next = null; n.prev = null;

}

proc openlter() { current = root; }
proc nextlter() returns n : Node {

Node nl = current; current = current.next; return ni;

proc isLastlter() returns e: bool {return current==null;}
proc closelter() {current = null;}

spec module DLLIter {

format Node;
specvar Content, Iter : Node set;
invariant Iter in Content;

proc isEmpty() returns e:bool

ensures e’ <=> (card(Content’) = 0);
proc add(n : Node)

requires card(n)=1 & not (n in Content)

modifies Content

ensures (Content’ = Content + n);
proc remove(n : Node)

requires card(n)=1 & (n in Content)

modifies Content, Iter

ensures (Content’ = Content - n) &

(Iter’ = lter - n);

proc openlter()
requires card(lter) = 0
modifies Iter
ensures (lter' = Content);

3

} proc nextlter() returns n : Node
requires card(lter)>=1
modifies Iter
ensures card(n’)=1 & (n’ in lter) &
(Iter’ = lter - n’);
proc isLastlter() returns e:bool
ensures not e <=> (card(lter’) >= 1);

dynamically allocated objects. (See Section VI for a disturs Pfoniog'izzi'tife(z
of our choice of implementation language.) One interesting ensures card(ter) = 0;
feature of our language is the ability to introduce new fields
to an object in any module usirdigrmats In our doubly-linked
list example, the statemerformat Node {next: Node;
prev: Node; } directs the compiler to addext and prev
fields to allNode objects. These fields are encapsulated within
the doubly-linked list module in which they are declared; ngontains a procedure contract for each public procedureeof t
other module can access them because our typechecker dn@gule.
allows the use of fields introduced in the current module. TheFigure 3 presents the specification section for our iterable
ability to encapsulate fields facilitates the modular asialpf doubly-linked list module. To describe the behavior of pro-
the list by maintaining the encapsulation of the doublydid cedures without exposing implementation details, the -spec
list data structure while still enabling objects in the listbe ification module introduces abstract variables. The abstra
shared with other modules. variables in our example are the ské¢s andContent . The

Our doubly-linked list implementation includes the stamia Setlter represents the set of objects still to be iterated over;
add andremove procedures for a doubly-linked list, as well aghis set is a subset of theontent set, as indicated by the
an iterator interface, represented by tipeniter , nextlter formula following theinvariant ~ keyword in Figure 3. The
isLastlter , and closelter procedures. Thepenlter in keyword denotes the subset relation on sets. Because our
procedure initiates an iteration by setting therent refer- language represents individual elements as singletonisets
ence to the root of the list. We shall see that our specifinati@lso serves as the set membership operator.

prevents an iteration from being initiated unless all pvesi Procedure contracts. A procedure contract consists of a
iterations have completed. Thextiter ~ procedure advancesrequires  clause that specifies a condition that must hold
thecurrent  pointer to the next element of the list; it iterateefore calling a procedure, agnsures clause that speci-
through the contents of the linked list, returning each elem fies the postcondition that the procedure guarantees, and a
in sequence. ThesLastlter procedure indicates to themodifies clause that states the sets that may change during
client when to stop iterating. Theloselter ~ procedure the execution of the procedure. For example e operation
terminates an iteration by skipping directly to the end afas a precondition that the element being inserted is ndign t
the list, which allows a new iteration to start. Note thaist already, as given by the conjunait (n in Content)

the implementation of theemove operation must take into We represent references to objects as sets of cardinalitpsit
account the existence of an iterator by moving the iteratghe, with() denoting a null reference, and a local variable name
pointer when the corresponding element is removed. = denoting a singleton set containing the object referenged b
x. In particular, the conjunetard(n)=1 in the precondition of

add indicates that the parameteis notnull .! Theensures
clause can refer to initial variables at procedure entryhwi

In conventional programming languages, a module 'melﬁhprimed variables indicating the values at procedureyentr

face contains only type declarations that indicate the mrmand primed variables indicating the values at the end of
of procedure parameters. Type declarations typically do no

describe the behavior of procedures, which are usually left_ o _ .

he inf | hecked d tati f th dul The idea of using singleton sets to represent elements eEpipedecision
to the intormal, unc e? e Olcumen ation o : € modaule. H?ocedures for several logics for reasoning about sets [26] and is used
contrast, the specification section of a module in our lagguasuccessfully in the Alloy modelling notation [27].

Fig. 2. Implementation Section of a Doubly Linked List with &erator.

Fig. 3. Specification Section of a Doubly Linked List with aerhtor.

B. Specification Section
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i . abst module DLLIter {
procedure execution. For example, the notatimmtent’ = use plugin "PALE";

Content + n indicates that the final version of ti@ontent e { rl:lo:d;\ITd'?chrgr?g:eT:tXt o i

set is equal to the union of the initial version of the set dred t '

newly inserted element. A modifies clause lists all sets that ™vanant "wpe Node = {

may change during the execution of the procedure and can pointer prev:Node[this"Node.next = {prev}];

be thought of as a shorthand for the conditinS" = S | wias 100t : Node:™

which would otherwise appear in tlesures clause, where  invariant “pointer current : Node;";

M ranges over all sets of the program that are not listed in the

modifies clause (also known as the frame condition [28]). In

our example, the modifies clause of thed procedure states Fig. 4. Abstraction Section of a Doubly Linked List with arrator.

thatadd does not change theer set.

Boolean algebra of sets. Procedure preconditions, postyficient to show that the invariant always holds outside th
conditions, and invariants are first-order logic formulastie | ter module. A module entry occurs when a procedure
language of the boolean algebra of sets, which is a decidagt does not belong to the module calls a procedure that does
theory for reasoning about sets of uninterpreted elemes{s [ pejong to the module. Conversely, module exit occurs when
[29]. Formulas in the language of boolean algebra of sefsyrocedure inside the module returns control to a procedure
contain set expressions built using set union, intersectiqtside the module. Note that, together, the invariat

and difference. Atomic formulas in this language can staj¢ content and theopeniter andnextiter  specifications

set inclusion, set equality, as well as cardinality comstsa narally express the essence of iteration over a set.
card(S) p k on sets with constant cardinality boukdand

some ordering or equality relatiop € {=,<,<, >, >}. _ _
Such atomic formulas can then be combined using arbitrefpy Abstraction Section
propositional combinations, as well as quantification mets. Previous sections described how developers write imple-

Specifying an iterable list. Procedure contracts summarizénentations of Hob programs in the implementation sections
the behavior of the doubly-linked list in terms of abstragtss and how they specify interfaces of operations in the speeific
and impose constraints on both the clients and the impkon sections. Such separation into different sectionsiesa
mentation of theDLLIter module. Therefore, the contractsHob to perform modular analysis of data structure clients. T
of procedures in Figure 3 present the intended use of thewgify that the data structure implementation itself confe
procedures. The developer initiates the iteration by mglli to its interface, it is necessary to specify the connection
openiter , which initializes Iter  to contain all members between the implementation and the specification. For this
of Content . openlter requires thatiter be empty upon Purpose, each module in Hob has abstraction section
entry, which requires the client to end each iteration kefospecifying the abstraction function as well as any addétion
beginning a new iteration. Note that no analysis of the khkénformation needed to verify the implementation. Figure 4
list implementation in isolation could ensure this pargeu Shows the abstraction section for the doubly linked lishvein
precondition: it is the responsibility of the client to ensthat iterator, which connects the specification in Figure 3 wita t
this precondition holds. Subsequent callséatiter ~ remove implementation in Figure 2. The abstraction section speeifi
an item fromiter and return that item, while preservingthe appropriat@nalysis pluginthat will analyze the module,
the underlyingContent set. The precondition of this pro-the abstraction functionthat gives the values of abstract
cedure requires thater contain at least one remaining itemvariables, and theepresentation invariantshat should hold
(card(lter)>=1 ). TheisLastlter procedure tests whetherinside the module. We next discuss each of these pieces of
any such item exists. By calling theLastiter ~ procedure information in greater detail.

and testing the result before calling thextiter ~ procedure, Analysis plugins. Theuse plugin  keywords in the abstrac-
the developer can determine if there are any remaining eton section of a module specify the specialized analysis, o
ments and therefore satisfy the precondition ofribetiter plugin, that the system should invoke to verify the module.
procedure. Furthermore, iterating unisiLastlter becomes In the example in Figure 4, the Hob system will invoke the
true ensures that theer  set is empty, which enables the nexPALE plugin to analyze the iterable list module; this chaite
iteration to begin. Another way to enable subsequent itarat plugin is appropriate because the PALE plugin is specidlize
is to call thecloselter ~ procedure, which also ensures thafor analyzing linked data structures.

thelter set is empty upon exit. All verification in Hob is ultimately performed by the anal-
Invariants between setsThe implementation of our iterable YSiS plugins. The Hob system currently contains four anslys
doubly-linked list preserves the abstract invariaet in plugins, of which we present three that illustrate différen

Content . Hob ensures that this invariant holds throughod@rget properties and different tradeoffs between exjwess
the entire program’s execution by assuming that the inmarig?ower and automation.

holds upon entry to the module and proving it upon exit. « The flag plugin, described in Section IV-C, propagates
Because the setger andContent are encapsulated within constraints between sets and tracks the values of constant
theDLLIter module, showing that the invariant always holds  flags of fields of objects. The flag analysis is an example
upon exit given that it holds in the initial program state is  of a simple, automated analysis that infers loop invariants
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o The PALE shape analysis plugin, described in Section I'¥lement to return from the iterator. Note that these defingi
A, verifies properties of tree-like linked data structuregse reachability expressions, whose expressive power-is be
using monadic second-order logic. The use of monadyond first-order logic. In general, the developer defines the
second-order logic enables PALE to verify specificatiomaeaning of set variables using a notation specific to one of
that contain reachability expressions that are not ekiob’s analysis plugins; the expressive power of this notgis
pressible in first-order logic. PALE requires the use daifot limited by the set specification language. This abstract
loop invariants, but the subsequently developed Bohfienction allows both the analysis and the developer to jimtr
tool [19], [22] shows how such invariants can often bprocedure contracts in terms of the implementation: répipc
inferred. the set variables with their definitions results in a coritrac

o The theorem proving plugin, described in Section IMthat refers to the implementation state. Our design support
B, illustrates that our approach can verify arbitrarilthe development of analysis plugins for verifying arbityar
complex implementations of data structures as long asmplex data structure implementations, while ensurireg th
this complexity is encapsulated within the data structuseich plugins remain capable of communicating with other
itself and the (partial) interface can be expressed aomponents of the system through the set specification lan-
the set specification language. The internal language gifage.
the theorem proving plugin is the higher-order logic of
the Isabelle interactive theorem prover [18] which cap

. Spresentation invariants. Data structures often maintain
express all data structure properties we have encountered.

The developer can prove the aenerated proof obli atiOErlvaterepresentation invariantthat are true before and after
P P 9 P 9 Zch public data structure operation. Abstraction modules

g}:lirsc:g/:lljé huir;gg] ngeellcfs(;arkt)egﬁag;ggrjgeﬁ’gg‘éz’ tz’)vcg:%yow the developer to specify representation invariasiag
arbitrarily complex propertiés : Ian_guag(_e sp_ecmc to the analysis _pIugm. The representati
' invariants in Figure 4 use the notation of graph types [1] to

Hob supports a loose interaction model between differesecify that the linked data structure has the shape of algloub
plugins: each procedure is analyzed by a single plugin. Theked list with a back pointer. For example, the invariaates
plugin attempts to establish that the procedure conformsthift thenext field is adata field, indicating that it is part
its specification and reports an error if this is not the casef the tree backbone of the data structure, and thaptee
The analysis plugins in Hob do not directly interact with leacfield is an auxiliarypointer ~ field that is the inverse of the
other; the interaction is solely through the fact that onegjsi next field.
shows the correctness of explicitly provided set interateat
can be used by another plugin. Thanks to this architecturejn general, representation invariants [30], [31] allow the
there are very few requirements on each Hob plugin: eagBveloper to specify data structure consistency projsettiat
plugin only needs to be able to extract the information fromre internal to the data structure and are expressed girectl
the set interfaces of public methods. The plugin can usgterms of the data structure implementation. In contrifst,
arbitrarily expressive logics and data structures to &ccepquires clauses and specification module invariants indicate
from the developer or synthesize automatically propettias those preconditions of operations that are expressibkelysol
are not visible to other modules. Such properties can ocghrterms of abstract specification variables, such as théigub
in the form of loop invariants, data structure represeotatiinvariantiter in Content  in Figure 3. Representation in-
invariants, and the specifications of private procedures; wariants are often essential for proving that procedurtisfga
illustrate such more complex properties below. their set specifications: for example, the remove operation

Abstraction functions. Analysis plugins establish that thein Figure 2 would be incorrect without the property that
behavior of the implementation is observationally equémal Prev is the inverse ofnext . However, incorporating such
to the behavior of its specification. To help the analysigjis conditions into procedure contracts would violate the data
in this task and to serve as design documentation, we requifgicture abstraction boundary.

developers to specify an abstraction function that maps the

state of the implementation to the state of the specification Because representation invariants mention concrete vari-
The abstraction section of a module specifies this absbractiables of a module, they are only visible while analyzing the
function by defining the meaning of each specification vaeiabimplementation of a module. A plugin proves the invariant
in terms of concrete variables. The abstraction sectiormef twhen control leaves the module and in the initial state of
iterable list module in Figure 4 defines the Sentent as the the module (the initial state is given by the initial valuds o
set of all nodes reachable from the root of the doubly-linkedriables according to the semantics of our implementation
list along thenext field. Namely, we can view theext field language). Because variables participating in representa
as a binary relation, seext » denotes the transitive closureinvariants are private, outside actions cannot violaterépee-

of next , androot<next =*>n denotes the statement that theentation invariants. In our example, our system ensuias th
transitive closure ofiext holds for the pair oot ,n), which in the initial state with no objectgrev is the inverse ofiext ,
means thah is reachable fromoot alongnext . Similarly, which holds trivially, and conjoins the representatiorairiant

the setlter is defined as the set of nodes reachable froto both the precondition and postcondition when verifyimagtt
the global reference variablaurrent  that denotes the nexteach procedure conforms to its specification.
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.. . /I in Board specification
D. Instantiating and Using Modules
. . . . proc setExposed(c:Cell; v:bool) returns causedGameOver: bool
We next illustrate the module instantiation mechanism in .

i i ures (v => (ExposedCells’ = ExposedCells + c)
Hob, and then present an example of using a module in ¢u# & (UnexposedCells' = UnexposedGels . ¢)

system. & (UnexposedList.lter = UnexposedList.lter - c))

. . & ((not v) => ((ExposedCells’ = ExposedCells -
Module instantiation. To allow the reuse of modules, our ((not vy = <(<U,fg;’ggsejcg,ls, =X82§§po§e§ca|? . o)
language supports a static instantiation mechanism thai-in & ..

duces a new m0(_1ule into the system by copying an eXistiBgc revealallunexposed()
module and possibly renaming its types. In our minesweeperequires gameOver

. modifies ExposedCells, UnexposedCells
example’ we use the declaration ensures card(UnexposedCells’) = 0;

spec module UnexposedList = List with Node <- Cell; // in Board implementation

to instantiateUnexposedList ~ as alist module with the o peekq ¢
Node type replaced by th€ell format. Modules generated Peeking = true;
. : . . . Cell c;
using instantiation behave no differently from other m@sul  ynexposedList.opentter():
Our module instantiation mechanism is similar in spirit to bool b = UnexposedListisLastiter();

SML’s functor mechanism, which we discuss further in Sec- ZYQ)"S{ (b7 <=> (UnexposedListiter’ = {))) & peeking™

tion VII. ¢ = UnexposedList.nextlter();
L . View.drawCellEnd(c);
Verifying correct data structure use. Our minesweeper b = UnexposedList.isLastlter();

implementation uses iterators to process the list of ungsgbo }, . wait for key press ..

cells in two contexts; both of these contexts are shown inunexposedList.openiter();

Figure 5. One use of iteration is at the end of the game, af,; “EPOS (P ELEt0 e peeking®
which point the implementation exposes all of the cells. The (b) { _

second use is in a “peek” command, which we added to our {,Z, SiePosedistnextterd:

minesweeper implementation. The “peek” command allows b = UnexposedList.isLastlter();

the player to peek at all unexposed cells. This command i
implemented by iterating twice over the set of unexposeld,cel}

first exposing them, then hiding them. proc. revealAlunexposed() {

Benefits of set abstraction. Because the clients of the list UnexposedList.openiter(); _
. bool b = UnexposedList.isLastlter();
data structure need not reason about pointers, only abstrag ioop invariant in quotes below:
sets, it is possible to build more scalable and more autainatewhile .. & (b" <=> (UnexposedListlter’ = {})) &
. . (UnexposedList.lter’ = UnexposedList.Content’)" ('b) {
analyses of clients. In particular, the fragments of quoted "cell ¢ = UnexposedList.nextiter();
text in Figure 5 make up part of the loop invariants for our ZefXBng;dg‘;e;’t’i‘;)t?isLasmero,
loops.® Our flag analysis plugin can, in fact, infer these loop ; P ' '
invariants [32], eliminating the additional annotationrdben !
on the programmer. One reason for the success of our loop
invariant inference technique is that it works at the leviel ¢i9- 5. Doubly-Linked List Client. An optional loop invaria appears in
abstract set variables. quotes after thavhile keyword.
Note that client code always uses the list through its inter-
face; it cannot directly manipulate the list itself. In geade
verifying consistent interface use is simpler than venifyi the unexposed set is empty at the end of the procedure,
consistency of data structure operations, and our Hob mystas follows. The procedure maintains the invariant that the
therefore uses the simpler but more efficidiaig plugin to Iter set equals th€ontent set during every loop iteration
verify the consistency of data structure uses. The flag plugiecaus@extiter ~ removes an element from thter set, and
verifies that the precondition farextiter ~ (thelter set is setExposed removes the same element fra@ontent . The
nonempty) is always satisfied befarextiter  is called. This loop exit condition implies that theer set is empty upon
follows from the fact thatsLastlter always returngalse ~ completion, which, in turn, implies thatontent is empty as

before nextiter  is called. Thepeek example nondestruc- well.

tively iter_ates over th&nexposedList ~ set without changing Addressing specification aggregation.When analyzing the
the backingContent - set, whereas thevealAllunexposed start of an iteration, which contains a call to thgeniter

procedure removes all elements from the list during 'terE'rocedure, the analysis must shopeniter ’s precondition

%eeking = false;

tion. The revealAllUnexposed procedure guarantees tha

ard(Iter)=0 . The analysis should be able to use the
20ne of the authors successfully used the “peek” commandaimatically precondmons ofpeek  and revealAllUnexposed for. thIS .
improve his minesweeper score. purpose, but because Hob analyzes each procedure inasplati

30ur notation of primed and unprimed variables in loop irsats is similar - preconditions such asard(Iter)=0 would need to propa-
to the convention in postconditions: unprimed variablesode values at gate into the preconditions and postconditions of procmiur

procedure entry, whereas primed variables denote curegm¢s. In Figure 5, .
all variables refer to current values; in general, a loomiiant can relate the that callpeek andrevealAllunexposed . We call this phe-

current state with the state at procedure entry (see Figure 7 nomenorspecification aggregatiof23]. We address this prob-
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lem by factoring out such global invariants @sd(lter)=0 relevance of our approach we next emphasize two equally im-
that apply to many preconditions and postconditions, am@rtant components of the data structure consistency @mbl
specifying them only once. For this purpose, we introduee tiConsider an application that manipulates an encapsulatd d
notion of ascope which groups several modules along withstructure. To ensure that the data structure satisfiesstensy
invariants on public specification variables of these meslul properties at run time, we need to ensure both 1) that the data
If the developer specifiesard(lter)=0 as an invariant of structure operations conform to their contracts, and 2) tha
a scope, Hob will implicitly conjoin it to the preconditionsthe rest of the program invokes data structure operations in
and postconditions of public procedures in the scope. Tlhitates where operation preconditions are satisfied. Wittneu
invariant, however, may be violated during iteration ovee t first condition we cannot say anything about the presematio
list, so it must not be conjoined to preconditions of progedu of our data structure consistency property, and without the
called during the iteration. Therefore, we introduce a dadr second condition we cannot assume that procedure contracts
version of the invariant into a scope: apply. Writing procedure contracts without checking the im
(not Board.peeking) => (card(UnexposedList.lter) = 0) plementation runs the risk of writing incorrect specifioat of

) . procedures that do not correspond to the actual data steuctu
As the procedurepeek illustrates, the program can expliC-ipiementation. Conversely, writing contracts withoueck-
itly set Board.peeking 1o true to disable the invariant i,y their use in the context of a program runs the risk of
dgrmg the iteration over th_e I_|st. This reduces the eval\hriting too-strong preconditions that the make the opereti
ation of card(lter)=0 to finding the truth value of the n,eqiple to use, or too-weak postconditions that make it
boolean vanabIeBoard.peekmg_ . To provide fine-grained impossible to satisfy preconditions of subsequent opETati
control over whenBoard.peeking  holds, the developer i, cations. This is why Hob verifies both components of
can use the concept adefaults [23] to write an expres- .o strycture consistency. It does so using potentiafigreint
sion over program points specifying the preconditions ang,vses because these two components are likely to require
postconditions whereBoard.peeking ~ holds. In our ex- ierent precision/scalability trade-offs. In the nextction
ample, the developer specifies the defaodt peeking o give an overview of the PALE plugin and the theorem
W_|t_h an expression that syntactically identifies the preCOBroving plugin as two precise analysis plugins suitable for
ditions of both peek and revealAllunexposed as the erifying data structure implementations, and then presen
pomts_m the source code where the_ Qefault apphes._ Tﬁ?ore scalable typestate analysis plugin suitable for yief
analysis expands the default and conjoins the scope iNV{ly, structure use.
ant, so bothot peeking and(not Board.peeking) =>

(card(UnexposedList.lter) = 0) are part of the pre-

condition ofpeek andrevealAllUnexposed , which allows IV. MODULAR ANALYSIS IN HoB

the analysis to deduoceard(iter)=0 and verify these pro- An analysis plugin must ensure that the implementation
cedures. of a module conforms to its specification, and that any

Separate verification of data structure use and data struc- Calls originating in the module it is analyzing satisfy thei
ture implementation. Hob's analysis of an implementationPreconditions. To analyze a modulé, the analysis uses the
proves that each procedure conforms to its specificatiois THNPIementation, specification, and abstraction sectidns/o
specification is expressed in terms of abstract sets; thereten S well as th"j specification sections of all m_odules whose
meaning of abstract sets is given by the abstraction modupEocedures invokes. Apart from these requirements, the
as seen in the linked list example. On the other hand, d&igtails of the analysis are entirely plugin-specific, wigores
structure clients can use a module’s specification, as egpde OUr system great flexibility in leveraging different anasys

in Hob’s set specification language, to reason about thetsffel€chniques.
of operations and to ensure that a module’s preconditioms ar

satisfied when calling into the module; in our example above,

ExposedSet spec

ExposedSet abst

the minesweeper board guarantees that the iterator alveesys h Board spec
) ExposedSet impl
at least one iterable element before each call. Board abst
In our approach, clients of the linked-list data structure Unexposedlist spede———1.B02rd imel
need not be analyzed using the shape analysis plugin. Hob UnexposedList abst
provides another analysis plugin (the flag plugin) thatqenk UnexposedList impl

a dataflow analysis over set algebra formulas. This plugin
is more efficient than the shape analysis plugin, as it trackg. 6. checking implementation of minesweeper board.
less-detailed properties. The availability of additioaahlysis

plugins is crucial in deploying shape analysis techniqoébé  Figure 6 illustrates our analysis of tlB®ard module from
context of larger programs: our technique for composind-angninesweeper: to ensure thBbard meets its specification,
ysis plugins allows the focused application of shape amalygve use the flag plugin (described in Section IV-C). Instead of
to only the relevant module in isolation, while other analysysing the implementation of all of the modules in Figure 1,
plugins guarantee that the remainder of the program uses he plugin only needs to read the the specification sectiéns o
module correctly. the ExposedSet andUnexposedList module in addition to
Two sides of data structure consistency. To clarify the the implementation, abstraction and specification sestiafn
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the Board module. As a special case, if a module is in thetructures than first-order logic, which cannot expresstraa
leaf of the call graph, as is the case with theposedSet  bility properties. The PALE analysis system translate it

or UnexposedList modules in Figure 1, then it sufficesprogram into a collection of verification conditions whose
to examine the implementation, specification, and abstract validity guarantees that the procedures in the prograrsfgati
sections of that module. their precondition/loop invariant/postcondition retatships.
Soundness of modular reasoning_ The modular approach These verification conditions are formulas in MSOL, and the

of Hob is possible because different modules access disjoffLE system then uses the MONA decision procedure [35],
regions of state: a modulk/ directly accesses only the fields[36] to determine the validity of these verification conalits.
declared inM, and the invariants id/ depend only on those If all of these conditions are valid, the program satisfies it
fields that are declared if/. When the developer instantiated®ALE specification.

modules, the fields declared in each module instance assing the PALE plugin. As illustrated in Section Ill, the
distinct from the fields of other instances of the same madulgeveloper specifies the abstraction function for a datatstre
This semantics prevents sharing of fields, while allowingerified by PALE by defining the content of an abstract set
sharing of objects. Arrays in Hob are not objects and hayging a formula in monadic second-order logic.

a distinct type, and we impose the following simple rules to The developer specifies the representation invariantiéor t
ensure the soundness of modular reasoning in their presens® E plugin usinginvariant declarations in the abstraction
if an abstraction function or a representation invariamtetels section. An invariant for the PALE plugin can be a graph type
on an array, then this array must be a global variable if8al definition, such as the definition of thiede graph type in Fig-

by array allocation in the module, and module operations gjige 4; the declaration of a routing restriction for the bamhd
not allowed to introduce additional references to the a(b@¥ of the data structure, such as the declaratiam root:

they can copy its content into fresh arrays). When an arride; or the declaration of a non-backbone routing restriction,
does not affect the value of a specification variable, theneth g ch as the declaratiquointer current: Node

are no restrictions on its use. . . These representation invariants impose the following con-
We next describe three of the analysis plugins that Wgraint on the heap: each object is either Tjhamberof the

have implemented in our analysis framework. These plugiggta structure or 2) an objeekternalto the data structure.

enabled us to modularly verify data structure consisten@ch member object is reachable from the data structure

properties in our example programs. root along specially-markedata fields (denoted by thdata
keyword). In addition to data fields, a member object may have
A. The PALE Analysis Plugin routing fields (denoted by theinter  keyword) whose value

is given by the formula specified in the graph type definition.
n the other hand, each external object is unreachable from
e data structure root, and all of its fields that are dedlare

Our PALE plugin uses a previously implemented tool, th
Pointer Assertion Logic Engine [1] (PALE). We incorporate
PALE into our framework with very few changes to the too
. ] . . he analyzed module atex11.
itself: we reported a few bugs in the underlying MONA too _ ) )
and modified PALE to return different exit codes on success | '€ Member/external constraint applies to the projection o
and failure. the heap onto the fields declared in the currently analyzed

The PALE analysis system takes as input a program writt dule. The constrai_nt doe§ not ap.ply to fields declargd in
in the PALE imperative language [1]. This program include&€r modules, enabling objects to simultaneously padiei
preconditions, postconditions, loop invariants, ameph type " Multiple data structures.
declarations [33]. A graph type is a tree-like pointer-nnse 1he Hob PALE plugin invokes the external PALE tool to
(potentially recursive) data structure with a distingeidrset €nforce this constraint throughout the procedure, with the
of data fields(such as thenext field in Figure 4), whose _exce_ptlon _of points in the interior of a ba5|c_block. These
values form the spanning tréeackboneof the data structure. interior points may violate the constraint, provided thaeyt
In addition to data fields, a graph type may conteinting reestablish the constraint by the end of the basic block.
fields[33] (such as therev field in Figure 4). These routing Translation to PALE Input Language. We incorporated the
fields are functionally determined by the backbone;jikev PALE analysis system into our pluggable analysis framework
field in Figure 4, for example, is uniquely determined as tHey 1) using abstraction sections to translate our common set
inverse of thenext field. By identifying data fields that form based specifications into PALE specifications, 2) trangjati
the spanning tree and by providing the definitions for the&tatements into the imperative language accepted by PALE,
derived fields, graph type declarations allow the develdperand 3) translating loop invariants into PALE loop invargnt
specify the representation invariants that the data strest (The Hob system accepts loop invariants in the form of quoted
must satisfy. strings embedded into implementation sections). The loop

PALE preconditions, postconditions, and loop invarianigvariants in implementation modules verified by the PALE
are formulas written in monadic second-order logic (MSOLplugin contain two parts. The first part contains concrete
which is decidable [34]. Our use of MSOL allows the use afata structure properties, and is written directly in thd.PA
transitive closure over object reference fields to iderttiyset specification language. The second part contains absteact s
of all objects that participate in that data structure. Ta&ure properties, and the PALE plugin translates this part in dmes
of MSOL makes it more appropriate for verifying linked datavay asrequires andensures clauses. Our translation also
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elides scalar variables (which are not supported by PALEpmplex linked data structures. For scalability reasons, i

from the input program. is impractical to use PALE to analyze anything other than

A sketch of the translation follows. For each set definitioancapsulated data structure implementations: PALE irsoke

of the form the MONA decision procedure [35], [36] for monadic second-
S={z:T|F(z)} order logic, which has non-elementary complexity [37].Héxrt

that appears in the abstraction section, the translatauses Shap?‘ analyses_also have _high complgxity.) But V\./ith.in this d
a second-order predicate of the following form that takesta gnain it can provide exceptional precision and verify impaott
as an argument: properties that are clearly beyond the reach of more sealabl

analyses. Our successful integration of the PALE analysis
system demonstrates that it is possible to apply very pecis
Theiss predicate therefore selecssto be the set of objects analyses to focused parts of the program. Our results theref

that satisfy predicate. Together, thésS predicates enable usshow how to unlock the potential of these analyses to verify

isS(set S:T) = allpos x of T: x in S <=> F(x)

to interpret a formulaB(Sy, ..., S,) in the boolean algebraimportant data structure consistency properties in progra
of sets as the second-order formula that would otherwise remain beyond reach of static analysis
3S1, ..., Sn. \i, 188i(Si) A B(S1,...,5). In the next section we show how to verify potentially even

In this way, current values of abstract set variables in |oc;Bore detailed properties using theorem proving.

invariants and postconditions are effectively replacedhsr
definitions, using the fact that an expressiBf{z | P(z)}) B. The Theorem Proving Plugin
is equivalent to the expressiatb. S = {z | P(z)} A E(S5).

The predicatesisS; enable the PALE plugin to translate
procedure specifications. For instance, ta@ove procedure
whose implementation is in Figure 2 and whose contract is
Figure 3 gives PALE code of the form:

set Content : Node;
set Iter : Node;

The theorem proving plugin [21] generates verification
conditions using weakest liberal preconditions [38] anst di
charges them using the Isabelle theorem prover. We have
Hosen this technique for verifying arbitrarily compliedtdata
structure implementations. The logic for specifying adstion
functions is based on typed set theory. Proof obligationshea

/ % precondition * / discharged using either automated theorem proving or & proo
[isContent(Content) A isIter(lter) A checker for manually generated proofs. As a result, there is
n € Content A lter C Content] no a priori bound on the complexity of the data structures
(and data structure consistency properties) that can bigeder
{stmts} . ) .
using this technique.
/ % postcondition * / For our minesweeper example, we have applied this plu-
[ existset Content’ of Node : isContent(Content’) A gin to the verification of theExposedSet module, which
existset Iter’ of Node : isIter(lter’) A implements a set by storing objects in a global array. The
Content’” = Content \ {n} A lter’ = Iter\ {n} A implementation ofExposedSet is shown in Figure 7. Note
Iter’ € Content] that the implementation contains explicit loop invariafits
In the PALE code, the definitionset Content : Node quotes); our verification condition generator does not edpp
and set Iter : Node introduce local set variables thatloop invariant inference. The state of tBeposedSet module

are used to track the initial content of the data structure. represented by the global arraly which stores the set
The precondition establishes the relationship betweesethelements, and the integer variabée which indicates the
abstract variables and the concrete state of the programrrently used part of the array.
Procedure postconditions and loop invariants can then us@ne of the procedures in tHexposedSet module is the
these variables to refer to the initial content of the datald procedure, which adds &lode to the set ofNodes
structure. These annotations can also refer to currenesailti representing the exposed cells. The specification section o
abstract set variables, which are effectively substitutsihg the module states this contract more precisely in termsef th
isS; predicates and existential quantification. abstract seContent (see Figure 8), which corresponds to the
Our example uses twass; predicates,sContent and set ofNode objects in theExposedSet .
isiter . Combined with the quantification induced by the The abstraction function in Figure 9 relates the abstract se
set declarations, these predicates bind thentent and content to its concrete implementation; it simply states that

lter ~ sets to their definitions, giving meaning to the conjuncisontent corresponds to the set ®fode objects contained
n € Content andlter C Content in the precondition; a similar within the arrayd with index between zero and - 1
translation is done for the postcondition. inclusive.

Note that the actual translation is slightly more compBecat  To verify that theadd procedure conforms to its specifica-
than what we have presented here because our PALE pluggh, the analysis plugin first augments thed procedure’s
introduces additional instrumentation fields that conealy postcondition by conjoining it with a frame condition desil/

store the external objects (objects that are not part of them the modifies clause. The resulting formulgdsntent’
currently analyzed data structure). = Content + n) & (setinit’ = setlnit)

Consequences. The PALE analysis tool implements a The next step is to apply the definition Gbntent from
sophisticated analysis that can verify detailed properté the abstraction section to theld procedure’s preconditions,
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impl module ExposedSet {
format Node {}
reference d : Node[];
var s : int;

proc init() { ... }
proc add(n : Node) { d[s] = n; s =s + 1; }
proc remove(n : Node) {
inti =0
/I loop invariant for removal
while "0 <=1 & I' <= 5 &
(forall j. (" <= j & j < s) --> dTj] = d[]) &
{Xx. exists . 0 <= j & j<1i &
x = d[j] & x "= null} =
{X. exists . 0 <= j &<V &
x = d[j] & x "= null} - {n}"
(i<s9){
if (d[i] == n) d[i] = null;
i=i+1
}
}

proc contains(n : Node) returns b : bool {
inti =0
bool result = false;
/I loop invariant
while "0 <= & "'<=s & d =d &
(result <=> (n : {x. exists j. 0 <= j & j <V &
x = d[j] & x "= null})"
(fresult && (i < s)) {
if (d[il == n) result = true;
i=i+1
}

return result;

Fig. 7. Implementation Section of tHexposedSet Module.

spec module ExposedSet {
format Node;
specvar setlnit : bool;
specvar Content : Node set;

proc init()
requires true
modifies Content, setlnit
ensures setlnit’ & (Content’ = {});

proc add(n : Node)
requires setlnit & card(n) = 1
modifies Content
ensures (Content’ = Content + n);

proc remove(n : Node)
requires setlnit & card(n) = 1
modifies Content
ensures (Content’ = Content - n);

proc contains(n : Node) returns b : bool
requires setlnit & card(n) = 1
ensures b <=> (n in Content)

Fig. 8. Specification Section of tHeExposedSet Module.

abst module ExposedSet {
use plugin vcgen;
Content = { x : Node | "exists . 0 <= ] & j < s &
x = d[] & x "= null"};
invariant "0 <= s";

}

Fig. 9. Abstraction Section of thExposedSet Module.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

assume setlnit & card(n) = 1 & 0 <= s;

d[s] = n;
s =s+ 1;
assert { x | exists . 0 <= j & j<s &
x = dTfj] & x "= null} =
{ x| existsj0O<=j&j<s &
=df] & x "= null} + {n} &

setlnit’ = setlnit & 0 <= s;

Fig. 10. Translated Implementation @fid in Loop-Free Guarded Command
Language.

postconditions, loop invariants and assertions. The tiagul
conditions are expressed in terms of the concrete datasteuc
state. For example, the formula&éntent = Content +
n” translates into:
{]35.0<jAj<sAx=d[j] Nz #null} =
{z]3j.0<jAj<sAz=dj] Nz #null} U{n}
The analysis then conjoins both the precondition and post-
condition with the representation invariants specifiedhig t
abstraction section. Our example contains the represemtat
invariant0 < s.

Next, the analysis translates the statements from the imple
mentation ofadd into a loop-free guarded command language
similar to that used in [39]. The result of the translation is
given in Figure 10.

By computing weakest liberal preconditions, the analysis
then creates a formula from the translated code; the walidit
of this formula implies the conformance of the procedure to
its specification.

To simplify the task of discharging the resulting verificeti
condition, the formula is split into as many conjuncts asspos
ble by performing a simple non-backtracking walk through th
connectives/, =, A in the formula syntax tree. The analysis
then attempts to verify each conjunct in turn. It first seasch
a library of previously proven lemmas for a match to the
current conjunct. If it does not find a match, the analysis
invokes Isabelle’s built-in simplifier and classical reasowith
array axioms, attempting to prove the formula automatcall
In our example, this attempt succeeds for most of the gesatrat
verification-condition conjuncts. For the remaining cargts,
the fully automated verification fails and the plugin saves
them as “not known to be true”. The user then interactively
proves these difficult cases in Isabelle, and stores thernein t
library of verified lemmas. Subsequent verification attesmpt
then execute without user assistance.

C. The Flag Plugin

Our flag analysis [40] verifies that modules implement
set specifications in which integer or boolean flags indicate
abstract set membership. The developer uses set definitions
the abstraction section of a module to specify the correspon
dence between concrete flag values and abstract sets from the
specification.

Figure 11 presents the abstraction section of Board
module, which contains definitions of setsMarkedCells ,
ExposedCells , UnexposedCells , andMinedCells as well
as several global boolean variables. The Wetontains all
initialized Cell objects in the program heap, that is, @dll
objects that have theimit flag set totrue . The other
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abst module Board { impl module Board {
use plugin "flags"; proc setMarked(c:Cell; v:bool) {
U = { x : Cell | "x.init = true"}; c.isMarked = v;
MarkedCells = U cap { x: Cell | "x.isMarked = true"}; }
ExposedCells = U cap { x: Cell | "x.isExposed = true"}; }
UnexposedCells = U cap { x: Cell | "x.isExposed = false"};
MinedCells = U cap { x: Cell | "x.isMined = true"}; spec module Board {
predvar gameOver; predvar init; predvar peeking; proc setMarked(c:Cell; v:bool)
} requires (c in U) & (card(c)=1)

modifies MarkedCells
ensures (v <=> (c in MarkedCells’)) &
Fig. 11. Abstraction Section dBoard Module. (MarkedCells’ <= MarkedCells + c);

}

sets are defined as intersections withe.g. using the syntax Fig. 12. Specification and implementation of procedureBa@ard Module.

MarkedCells = U cap { .. }. This ensures that all sets

defined in this abstraction section are initially empty amd d

not change when a different module allocates an object using — , , ©)

the new statement. C=Chrpsp (6)
The flag analysis performs abstract interpretation [41hwit A (vecCM)AM CMUc) @

analysis domain elements represented by formulas. The-trafne formula ranges over the set variables and boolean pred-
fer functions in the dataflow analysis update boqlean foamulicates in the program; procedure parameters occur as free
to reflect the effect of each statement, symbolically compufariaples of the formula, while the program’s abstractestat
ing the relation composition of transition relations. When given in terms of universally quantified variables. The fatan
encounters an assertion, procedure call, or procedure pegniains two parts. Lines 1 through 4 specify the program
condition, our flag analysis generates a verification ceomlit sate after symbolic execution of the procedure, whileslife
and discharges it using the MONA decision procedure fgfq 7 state the requirements on the program state needed by
the monadic second-order logic of s'Frings, Which_ subsumgs procedure’s postcondition. To verify that the procedur
boolean algebras [36]. In our experience, applying seveiiisfies its specification, MONA must deduce that lines 1
formula transformations drastically reduced the size &f t'ihrough 4 imply lines 6 and 7.
formulas generated by the flag analysis, as well as the tiate th \ye first discuss the conditions known by Hob to hold upon
the MONA decision procedure spent verifying these formmaﬁrocedure exit. For brevity, we have repladddrkedCells
These transformations greatly improved the performance@} M and peeking by p. Line 1 states definitions for
our analysis and allowed our analysis to verify larger proferived formulas. These definitions are repeated twiceg onc
grams. Complete treatments of the flag plugin appear in [1fy unprimed variables and once for primed variables. Line 2
[32]. - _ _ ives the result of the transfer function as computed over
In addition to tracking the values of sets mtroduceam procedure. It captures the effect of the assignment to
by flag values, the flag plugin also keeps track of th@e ismarked field, which defines the set/. Line 3 states
values of sets specified in client modules. In theard  the procedure precondition. Finally, line 4 constrains setd
module of the minesweeper example, this includes the S¢fgiaples that are unmodified by the procedure. Initially, a
ExposedSet.Content and UnexposedList.Content . sets and variables are unmodified; each transfer functian th
This allows the analysis to verify invariants such agogifies state also removes variables from this line.
Board.ExposedCells = ExposedSet.Content Next, we discuss the required postconditions. Procedures
Board.UnexposedCells = UnexposedList.Content must guarantee that, upon exit, sets that are not declared to
disjoint(MarkedCells, ExposedCells) be modified keep their initial values; line 6 states this iegu

disjoint(ExposedCells.Content, - .
UnexposedList.Content) ment. Also, procedures must guarantee that their posteondi

The last two properties are examples of high-level dat@ns hold; in this case, line 7 states the neede(_tl postdondit .
structure invariants that correlate the values of sets thatOnce the flag plugin generates the appropriate formula, it
correspond to multiple data structures. Hob helps tRé&SSes the formula on to the MONA tool. In this case, the
developer and the analysis deal with such high-Ievé?”f'Cat'On succeeds becagse the anfteceden_t_ls _suffyclentl
invariants using the scope construct described in [23]. strong: the procedure does implement its specification.

Flag example. Figure 12 presents a short procedure arfd@d analysis and generalized typestate. We have just

its specification. This procedure either adds or removes ghserved that the flag plugin can establish high-level data
object from theMarkedCells ~ set by mutating itésMarked ~ Structure properties s_,uch as equality and d|310|ntne5$pf s
boolean-valued field. We next present the formula that tie fi§Ve have also seen (in Section I11-D) that the flag plugin can
plugin generates to verify this procedure, omitting irvelet be used to verify the correct use of the iterator interfacereH

parts of the program state for the sake of brevity. we present. another perspective on an ana]ysi_s that verifies
contracts (interfaces) based on sets, by viewing sets as a
(M=UnNM)AM =U"NM (1)  generalization of typestate [9], [42].
A ((Mi=MiUc)Av) [ (Mi=M\c)A-w) (2) Instead of associating a single state with each object, our
A ¢CUAcard(c) =1 (3) system models each typestate as an abstract set of objects.

AN U=UANC"=CArpep A... (4) If an object is in a given typestate, it is a member of the set
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that corresponds to that typestate, which leads to thevollp V. EXPERIENCE
generalizations of the standard typestate approach:
In this section, we describe our experience using the Hob
system to implement and specify design information for othe
« Abstract Data Types: For typestate purposes, abstraddenchmark programs. In addition to the minesweeper example
data types can be viewed as maintaining several abstrpatsented in Section I, we ran our analysis on a complete
sets of objects. For example, an iterator contains one saibserver, as well as short programs inspired by computa-
for all objects in the list, and one set of objects that rematibnal patterns from scientific computations, operatiggtam
to be iterated over. In this way, the iterator indicateschedulers, and program transformation passes. Note tic-par
whether an object has already been iterated over. Witlhar that the Hob webserver serves the Hob project webpage,
this perspective, the typestate of an object is a functi@ http:/hob.csail.mit.edu . These benchmarks use a
of its participation in the abstract data type as reflected V@riety of data structures, and we have therefore impleeaent
its membership in the data type’s abstract sets of objecisd verified sets, set iterators, queues, stacks, and tgriori
» Orthogonal Composition: In our formulation of types- queues. Table | illustrates the benchmarks we ran through ou
tate, an object can be a member of multiple sets simystem. Our data structure implementations range fromysing
taneously. This promotes composite typestate structuigked and doubly-linked lists (with and without iteratpesid
in which the developer endows each component withtgee insertion (all verified using the PALE plugin) through
collection of abstract sets, with each set correspondiagray data structures (verified using the theorem proving pl
to an aspect of the typestate relevant to the componegih). Our modular approach allowed us to reuse data streictur
With this kind of structure, each object’s typestate is ainplementations across multiple benchmarks. We expedct suc
orthogonal composition of the typestate aspects from ea@fuse to be possible in general, thus amortizing the cost of
of the components in which it participates. Examplgsrecise and potentially expensive data structure anaf@ess
include composite typestates for objects that participateany clients of these data structures.
in multiple data structures and objects that play multiple Section Il gave the flavor of high-level properties that we
roles within a single component. verified in our examples through the example of minesweeper,
The advantages of using multiple orthogonal sets inclu@@ing in particular sets of exposed and unexposed celle Not
better modularity (because each component deals ot all Hob properties are expressed in terms of sets, it th
with those aspects of the typestate that are relevant for & interpretations of sets vary on a per-application, doma
operation) and support for polymorphism (because eagpecific basis. A second example where Hob enforces design
component can operate successfully on multiple obje@gnstraints arises in our web server example. A designidecis
that participate in different ways in other components)for the web server was to have the server cache the content
« Hierarchical Typestates: Hierarchical classification via pefore sending it in response to a request. Our web server
inheritance is a key element of the type systems in magiplementation contains a procedusendEntry(c) , which
object-oriented languages, but is absent in historical flainits the contents of its parameteto a socket. The interface
typestate systems [9]. Our formulation cleanly supportf sendentry(c)  imposes the precondition that the entry
typestate hierarchies—a collection of sets can partitiento be sent is either 1) stored in the cache or 2) in the
a more general set, with the subset inclusion orderiRgt of “blacklisted” objects that are too large to be stored.
capturing the hierarchy. Typestate hierarchies also appegb’s analysis tracks the dynamically changing values tf se
in [40], [43]. representing the cached content and the blacklisted conten
« Sharing and Typestates: Sharing via aliased objectand checks that the parameterof sendEntry is in the
references has caused problems for standard typesigigon of these two sets. Note that the tracked property is
systems—it has been difficult to ensure that if the pr@imple to state and understand, yet goes beyond static type
gram uses one reference to access the object and chag@gems. The use of sets as opposed to flags associated with
its typestate, the declared type of other references is &fhjects naturally captures the idea that being in the cashe (
propriately adjusted. Our typestate formulation supporging blacklisted) is not the property of the content itself
a new, more abstract form of sharing, which integrat@ft rather a property of the way in which the content is
aliasing information directly into the analysis domainysed in the web server, a fact that is reflected in the data
in the form of constraints expressed using sesy.( structures in which the content is stored. In tubdeduler
set disjointness for unaliased variables). This integrati example, we have verified disjointness of sets of suspended
enables the flags plugin to update set membership dRd running processes, the equality of sets represented by
a manner consistent with known aliasing relationshigfags (allowing a constant-time membership test) and lists
between objects. Furthermore, if an object participatggr iteration), as well as typestate preconditions on doler
in multiple data structures, its typestate characterizgperations. Theprodcons example coordinates the actions
that kind of sharing by indicating its membership irpf a producer and a consumer module that communicate via
multiple typestate sets, one for each data structure. Thisshared stack (implemented as a list), with specifications
formulation supports non-monotonic changes—the set gfsuring that the elements are produced and consumed by the
objects that contain an element may change arbitrartyperations and that stack underflow never occurs. Water is
throughout the computation. a numerical simulation of water molecules that proceeds in
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several phases; we verify that these phases are performed ifio understand the scope of Hob’s set specification lan-
the desired order by encoding them using global boolean, flagsage, consider the example of a map implementation. The
specifying these flags in preconditions and specifyingrthedet specification language can express, for example, tkat th
changes in postconditions. The compiler example transforiset of keys and the set of values are disjoint, but cannot
nodes of an abstract syntax tree. We used sets to encodeetkress that a particular key is related to a particularejalu
typestates of the nodes. We provided specifications erngsurlrecause the boolean algebra of uninterpreted elementsidbes
that the nodes are processed in the correct order and thatdbetain any relation symbols Nevertheless, our experience

operations have the expected effect on the typestates. shows that the boolean algebra of sets can express many
_ . interesting data structure properties. Such descriptimasnot
tSyStem # #lines  #lines be full specifications of the behavior of operations, buytte
otals modules spec impl - . . .
compiler 3 113 211 indicate important partial correctness properties. Weettoee
water 10 542 1921 believe that the set specification language makes a useful
gg‘r’]‘i‘é‘l’j‘; g > 1;2 trade-off between the expressive power and tractabilitihef
minesweeper 7 236 750 analyses. We chose to explicitly omit integer and floatingip
httpd 14 33 1229 arithmetic from our specification languagéndeed, many data
TABLE | structure consistency properties do depend on genergeinte
BENCHMARK CHARACTERISTICS and floating-point arithmetic. Note that the set specifarati

language does not support sets of pairs or sets of sets, @tsly s
of uninterpreted elements. This is why it can be charactdriz
using the boolean algebra of sets and decided in elementary
VI. ScopPE OFOUR TECHNIQUE time [29] and in practice often belongs to the quantifieefre
Our Hob system verifies data structure consistency projpagment that can be decided in non-deterministic poly@bmi
erties for programs written in a memory-safe imperatiéme.
implementation language and specified using a specificationt is important to distinguish between Hob’s interface lan-
language based on the boolean algebra of sets. We now dis@ussge, which was designed to be less expressive and more
some of the design decisions that we made while building Habactable, and the specification languages inside theaatbismn
a) Choice of Implementation and Specification Lamodules, which express data structure representatiomiinva
guages: We designed the Hob implementation language tints and abstraction functions. Inside abstraction magule
be syntactically similar to Java at a statement level. Wsugins may use arbitrarily powerful specification langesg
decided to use a custom procedural implementation langudg® example, the monadic second-order logic used in the
as a convenient way to explore the automatic verification PALE plugin can express reachability properties that are no
data structure consistency properties while avoidingseetal even expressible in first-order logic [46]. In general, Halm ¢
complexities of a full-fledged programming language. In-paanalyze arbitrarily complex internal data structure prtips
ticular, we omitted common object-oriented features suh given the presence of appropriate plugins.
inheritance, dynamic dispatch, and object-based encatjsul b) Developers’ Responsibilitiesdur technique requires
In our experience, it was relatively simple to port Java ctede developers to specify the data structure consistency piepe
our implementation language. When comparing Java and Hefit they would like the Hob system to verify. Developers
it is important to keep in mind that Hob has two constructsxpress these properties 1) in terms of procedure predonslit
that approximately correspond to Java’'s classes: 1) f@mahd postconditions; and 2) in terms of high-level invarsdior
are used to represent memory cells, and 2) modules are ugrfbal data structure consistency properties. These piepe
to structure a program into its main constituent parts. Thge expressed using the set specification language. Siece th
static module instantiation in Hob is less general than the a gap between the abstract set specification language and
dynamic instantiation of classes with methods in Java, butihe concrete implementation language, developers must als
encourages developers to express the static architedta® ospecify an interpretation for the program’s abstract séts—
application, and aids verifiability. We expect that struittg other words, abstraction functions. A key feature of the Hob
Java applications along similar principles would help thgpproach is that it supports a variety of different absivact
analysis of Java programs as well. function syntaxes, by delegating the core analysis task to
We believe that Hob’s set specifications are natural fer set of analysis plugins. In short, each plugin is required
developers to use because they enable developers to si@t@erify that a procedure’s implementation conforms to its
object membership properties and relationships betwe&n dépecification, where the set interpretations are given byath
structures [17]. After all, many data structures are simpbtraction function. While it would be possible to use anays
implementations of sets. Set specifications can expresy maglinfer specifications or abstraction functions, we founciy
key data structure properties and, in particular, consiste
properties which relate the contents of different datecstm@s.  47he Jahob system [44] supports a module specification layegtimt per-
Such consistency properties are often crucial design ptiepe mits the use of relations, and has successfully verifiedilddtapecifications

for a system which ought to hold throughout its life cycle; s€' Map implementations such as hash tables. _
In [45], we describe how to decide Boolean Algebra with Puegér

SpeC|f'Cat'OnS prowde a concise "fmd eaSY'to'und?rSta'yd Wthmetic (BAPA); the Hob system’s core specification lange could be
for developers to express and verify these properties. extended to support BAPA.
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useful to explicitly state this information as part of safi® advantage of being especially well-suited to our verifaati

documentation, and decided to focus the inference effort approach, it has the disadvantage of requiring us to trensla

our analyses on loop invariants that are more program-pol@nchmarks from other programming languages into the Hob

specific and therefore less interesting for documentingéye language. The related Jahob project [47] explores the uae of

properties of the system. Java subset as an implementation language for verifying dat
c) Hob and the Development Life Cycl&he abstract- structure consistency properties.

ness of Hob's set specification language encourages derslop

to think at a higher level of abstraction and enables them to VII. RELATED WORK

express deeper properties of programs. Such properties cafe survey research in verification technology, existing

easily be obscured in a program’s implementation. At thgrification tools, and other approaches to combining éfie
implementation level, design information is hidden behénd yerification techniques.

mass of details, which are necessary for implementing, but n

useful for understanding, the underlying design. We belie\A' Verification technology

that the set specification language exposes design infammat ) ) o _ _

more effectively than imperative implementation langusage We first discuss the verification techniques used in the Hob

since set specification languages abstract away from tiaégietSyStem. Hob builds on ideas from shape analysis and typestat
of how the program carries out its tasks to expredmtthe SYSEEMS to verify data structure consistency propertiexeS
program does. Hob analysis plugins use a decision procedure for boolean

While a program’s set specifications are useful from tHflgebras for_ evaluating fo_rmul_a_s in th_e set specificati_am la
earliest prototype stages of development, its specificatiodU@9€, we discuss the decidability of this question and exam
become especially valuable as a program moves through!f8!S t© decide this language.
development life cycle into the maintenance phase, when thBape analysis. The goal of shape analysis is to verify
design information may become outdated, and the origiff8t programs preserve consistency properties of (pafiyti
devek)pers may have moved on to other projects_ The H{ﬁpursive) linked data structures. Researchers have(l:‘mml
system enables developers to use data structure congistéRany shape analyses and the field remains one of the most
properties as verified documentation. Our analysis todfiger active areas in program analysis today [1], [2], [14]. These
that these properties hold, not just at any one point in ti@@alyses focus on extracting or verifying detailed coesisy
program’s life, but throughout changes by successive deveroperties of individual data structures. While these ysed
opers, who may not understand the program’s original desigfe very precise, the level of detail of the properties thayt
at all. Our experience with Hob suggests that it is capable st track have limited their scalability—many extant shap
recording design decisions taken by the original develpetnalysis algorithms have super-exponential complexitye O
and ensuring that this design information remains up-te-da©f our research goals is to enable the application of such

d) Scalability of the Hob ApproachBecause the Hob sophisticated but expensive analyses in small regions aé co
system uses a modular verification approach, we believe th¢here their precision is needed), while taking advantaige o
it should scale quite well. However, we have not yet evaliat&hodularity to analyze other parts of code using more scalabl
its efficacy on programs larger than 2000 lines. The scatiabilanalyses.
of our system does not depend on asymptotic complexifypestate systems. Typestate systems track the conceptual
arguments; we instead observe that researchers have not states that each object goes through during its lifetiméén t
cessfully performed shape analysis on programs that ex@eetbmputation [9], [48]. Typestate systems generalize stathd
couple of hundreds of lines, and that our modular verificatidype systems in that the typestate of an object may change
approach sidesteps such ceilings on analysis applicabilit during the computation. Our approach enables the checking

We believe that Hob’s use of a set specification languageat properties that generalize typestate properties [140].[
especially productive for several reasons. First, our Bgpee The developer can simply use sets to model typestates: if an
with the flag plugin suggests that set-based specificatiobject should be in a given typestate in the typestate system
languages make symbolic loop invariant inference feasiliea member of the corresponding set in our system. Aliasing
because the space of possible invariants is relatively Ism@r more generally, any kind of sharing) is the key problem
(especially compared to a specification language with futhr typestate systems—if the program uses one reference
integer arithmetic constraints). Second, the use of a &mpd change the typestate of an object, the typestate system
set-based specification language imposes fewer restrictionust ensure that either the declared typestate of the other
on plugins, which need to understand specifications in thisferences is updated to reflect the new typestate or that the
language. A simpler specification language therefore maikesiew typestate is compatible with the old declared typestate
easier to develop new analysis plugins. Finally, the useref a the other references. Role analysis [14] identifies thiblam
stricted specification language helps control the “spettiid  and suggests a solution based on a precise abstraction of
creep” observed in ESC/Java [8], because the restrictibnstioe heap and user-specified procedure specifications. Fink,
the specification language force developers to avoid ovkrly Yahav, Dor, Ramalingam, and Geay integrate pointer arglysi
tailed specifications that would require unscalable teples with typestate property verification for Java programs [49]
to check. Their approach scales due to the use of a series of related

While our use of a custom implementation language has thbstractions: the simpler abstractions quickly rule outyna
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simple property violations, leaving the more sophistidateMost of these methodologies include some tool support in the
cases to the more expensive analyses. Our system uses i Idose of verification condition generators and proof assitga
integration model for the constituent analyses, which makelowever, unlike Hob, these methodologies do not leverage
integration of diverse program analyses easier and allomsrrent static analysis technologies, such as shape #@alys
us to verify properties that go beyond traditional typestato automatically verify program properties. Tools based on
properties. Bierhoff and Aldrich describe a dynamic analysverification condition generation and theorem proving une
system for verifying typestate properties in Java progréras [61], [63], [64], and, more recently, [65]-[67].

correctly handles typestates in the context of subclaqdidp ESC/Java [8] is a program checking tool which aims to
Like Hob, [43] also supports multiple orthogonal typessateidentify common errors in programs using program speci-
While a dynamic analysis can prevent programs from execfitations in a subset of the Java Modelling Language [68].
ing undesirable actions, typically by terminating a pragraAn explicit design goal of ESC/Java is to statically identif
when it attempts to execute such actions, the advantagepotential run-time error€.g.null-pointer exceptions, although
our static approach is that it provides stronger guararttests ESC/Java does attempt to establish that preconditionsdtold
programs never violate typestate constraints on any pessiball sites. The Hob system was principally designed to yerif
execution. program-specific properties, which include preconditiand

Decision procedures for boolean algebras. We use first- Postconditions, but also global data structure consigtpnap-
order logic formulas in the language of boolean algebrabeas €rties. Hob's support for abstraction functions and scopeise
basis of our module specification language. The decidghifit data structure consistency properties much easier to sxpre
the satisfiability problem for the first-order theory of beah ESC/Java also sacrifices soundness in that it 1) does notl mode
algebras dates back to [26], [50]. To our knowledge, the or}l Of the details of the program heap and 2) unrolls loops
tool that can decide the first-order theory of boolean algebr@ finite number of times rather than using loop invariants.
is MONA [35]; it implements the more general decision procéddowever, ESC/Java does detect some common programming
dure for monadic second-order logic over trees, and has n&fLors.

elementary complexity in general but adequate performancel he ESC/Java2 project extends the original ESC/Java work
in practice for the problems that arise in our program ansly®y supporting current versions of Java, and verifying more
framework. A decision procedure for an extension of booleaML constructs. ESC/Java2 (as well as ESC/Modula-3 [69])
algebra with Presburger arithmetic operations is presen®lows the use of heap abstractions via its support for model
in [45], [51]; this extension allows reasoning about sizés &elds. Model fields use developer-provided representation
data structures. These representations are similar in spirit to the set diefirs
Modularity mechanisms. Hob's ability [23] to encapsulate which appear in Hob’s abstraction modules. However, not all

individual object fields in separate modules appeared if [62 model fields hav% rgprgsr(]antatio/rls; for :jnstance, the.ybrar
present in aspect-oriented programming implementatidj [ annotations provided with ESC/Java2 do not contain any

and is used in intermediate languages for static checkiolg todefinition O_f a ".St,s _contents. The first-order logic used by
[8], [54]. Hob's approach of allowing modules to share otxjecthe underlying Simplify theorem prover [70] does not suppor

and not fields enables it to solve some of the informati0|tr-6msm\’e closure; effective (and necessarily partiaitiorder
hiding problems mentioned by O’Hearn, Yang and Reynol@g(iomatizations of transitive closure are still active esref
in [55]. In particular, the change in perspective from erscap research [71]-[73]. ESC/Jav_aZ has therefore, to our knowl-
lating objects to encapsulating fields frees Hob pluginsnfroedge' not been used to verify the data structure consistency

the obligation to reason about which module owns Whiclplroperties that Hob verifies for linked lists. Another difface

object: we have set up the system so that no module dsnqthat ESC/Java2 representations are expressed in terms of

affect the contents of any other module’s sets. Note that, Jiva expressions or predicates, rather than the analygstp

in [55], the Hob system supports purely static modules aﬁgecific set definitions suppgrted _by Hob. Cok gxplaips how
dynamically created objects. ESC/Java2 handles model _f|elds in [74]; essenua_ll_y, ittérea
Our module instantiation mechanism is similar in spirit ghem as me:[hod calls a’?" includes the postconditions of the
the functor mechanism of Standard ML [56]. One difference [godel fields’ representations. _ .
that functors in Standard ML can take arbitrary declaratias The Hob approach uses sets and abstraction modules in

parameters, whereas parameters in Hob are simply name?lgf':e of JIML's model fields. Abstraction modules enable Hob

format types. Nevertheless, Hob’s mechanism is sufficient f,to check that implementations satisfy both local propertie

statically instantiating an arbitrary number of data stioes i.e. that representation invariants continue to hold, and dloba
" properties (whose meaning is made explicit by abstraction

o _ functions). Furthermore, abstraction modules allow Hoal-an

B. Program verification and checking tools. ysis plugins to use arbitrarily powerful logics for estahing

Methodologies for using formal specifications in softlocal set properties. Despite this, the simplicity of Hobé&t
ware development include Gypsy [57], the B method [58§pecification language allows even simple and scalablansug
VDM [59], Z [60], Larch [61], and RAISE [62]. Some of theseto take advantage of detailed results produced by complex
methodologies (for instance, Z) provide a general notati@malyses.
which developers may use to express program properties, anéd more recent effort is a sound static analysis tool for
expect developers to carry out all of the proofs by handn object-oriented language, Spec#, which extefigs and



16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

comes with a particular methodology for the modular treat- VIIl. CONCLUSION

ment of invariants [75]. Spec# has recently been extendedThe roaram analvsis community has oroduced manv ore-
with a treatment of model fields [76]. The Spec# static varifie . prog Y y P yp

currently uses the theorem provers Simplify and Zap [77] thg >c analyses that are capable of extracting or verifyintequ

do not directly support transitive closure; however, therait sophisticated data structure properties. Issues assdarth

Spec# methodology is largely independent of the underlyiri(:ﬂ‘:'/Ing .thesg analyses include scalability I!m|tat|ons almel t
reasoning engine. ersity of important data structure properties, some loiciv

will inevitably elude any single analysis.

Other tools focus on verifying properties of concurrent Thi h how t v the full ¢ |
programs [6], [78] or device drivers [3], [4] as opposed to IS paper snows how 1o apply the 1ull range ol analyses

properties of linked data structures to programs composed of multiple modules. The key elements

i i of our approach include modules that encapsulate objedsfiel
Higher-order contracts. Modular analysis has also been prog,y gata structure implementations, specifications based o
posed for functional programs. Verifying contracts in tloac

. ) : ; .~ membership in abstract sets, and invariants that use these
text of higher-order programming languages is quite difficu

L ? ) .- sets to express (and enable the verification of) propeitis t
existing approaghes for improving programmer produgtinit i, e multiple data structures in multiple modules aaely
this context typically focus on dynamic checking of contsachy, ifferent analyses. We anticipate that our techniqudk wi

or static checking based on type system extensions. HOWe\é%able the productive application of a variety of precisal-an

Meunier, Findler and Felleisen do propose a modular arraly%es to verify important data structure consistency prigger

based on contracts in [79]. Note that their use of the terM g check important typestate properties in programs butlt

“set-based” is not the same as our use of a set specificatiﬂr}nunip'e modules

language; in their work, set-based refers to the staticyanal
sis technique used to verify contracts (in combination wi
OCFA). Their approach uses the base programming Iangua? =
to specify predicates for use in contracts; contrast thih wi
the Hob approach of using set specifications and abstractr8
functions. In principle, one could use arbitrary analyses
establish procedure contracts. In Hob, we have succegsf
used multiple cooperating analyses to establish datatsteic
consistency properties. The analysis in [79] is modulahim t

same sense that Hob is modular: they both analyze the program

one module at a time. In the context of higher-order funcjon (1
contracts become more complicated to analyze, since tle vep)
fication of a procedure’s contract must be delayed until &igh

order function parameters are evaluated. A significant armoul3!
of effort goes towards handling this complication, whichtHo 4

avoids by using a first-order implementation language.
(5]

C. Hob analysis approach. [6]

Our research aims to enable the application of multiple
analyses that check arbitrarily complicated propertighiwia 1
single program. Most existing approaches, in contrastngit
to develop a single new analysis algorithm or technique. Ouyg]
system supports the loose integration of analyses wheitte eac
analysis applies to one procedure or module. This design dE’]
cision makes the incorporation of external tools easy. 0i,[8
Chang and Leino explore an approach that proposes a tightét
combination of a particular domain (uninterpreted funetio 11]
symbols) with an arbitrary base domain. Their approach doul
enable the application of static analysis techniques which
could reason about the program state using a number
different abstract domains. Briefly, our approach workslwel
for combining analyses at granularities above the proaedut3]
level, while their approach is targeted towards combinimgl-a

! . > [14]
yses below the procedure level. The fine-grained comblnau%
of analysis techniques also appears in the Jahob verificatjos]
system [47]. Note also that these techniques are not mytuall
exclusive: finer-grained combinations of analyses could be
implemented and deployed as individual Hob analysis pkigin
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