Steganalysis of Recorded Speech

M.K. Johnson, S. Lyu and H. Farid

SPIE Symposium on Electronic Imaging, San Jose, CA, 2005



Digital audio provides a suitable cover for high-throughput steganography. At 16-bits per sample and sampled at a rate of 44,100 Hz, digital audio has the bit-rate to support large messages. In addition, audio is often transient and unpredictable, facilitating the hiding of messages. Using an approach similar to our universal image steganalysis, we show that hidden messages alter the underlying statistics of audio signals. Our statistical model begins by building a linear basis that captures certain statistical properties of audio signals. A low-dimensional statistical feature vector is extracted from this basis representation and used by a non-linear support vector machine for classification. We show the efficacy of this approach on LSB embedding and Hide4PGP. While no explicit assumptions about the content of the audio are made, our technique has been developed and tested on high-quality recorded speech.