
Scalable Cryptographic Authentication for High 

Performance Computing 
Andrew Prout, William Arcand, David Bestor, Chansup Byun, Bill Bergeron, Matthew Hubbell, Jeremy Kepner, 

Andrew McCabe, Peter Michaleas, Julie Mullen, Albert Reuther, and Antonio Rosa 
MIT Lincoln Laboratory, Lexington, MA 02420 

{aprout, reuther, warcand, cbyun, bbergeron, mhubbell, kepner, amccabe, pmichaleas, jsm, antonio.rosa, 

david.bestor}@ll.mit.edu 
 

I. INTRODUCTION 

High performance computing (HPC) uses supercomputers 
and computing clusters to solve large computational problems. 
Frequently HPC resources are shared systems and access to 
restricted data sets or resources must be authenticated. These 
authentication needs can take multiple forms, both internal and 
external to the HPC cluster. A computational stack that uses 
web services among nodes in the HPC may need to perform 
authentication between nodes of the same job or a job may 
need to reach out to data sources outside the HPC. 

Traditional authentication mechanisms such as passwords 
or digital certificates encounter issues with the distributed and 
potentially disconnected nature of HPC systems. Distributing 
and storing plain-text passwords or cryptographic keys among 
nodes in a HPC system without special protection is a poor 
security practice. Systems to reach back to the user’s terminal 
for access to the authenticator are possible, but only in fully-
interactive supercomputing where connectivity to the user’s 
terminal can be guaranteed. 

Point solutions can be enabled for these use cases, such as 
software-based role or self-signed certificates, however they 
require significant expertise in digital certificates to configure. 
A more general solution is called for that is both secure and 
easy to use. This paper presents an overview of a solution 
implemented on the interactive, on-demand LLGrid computing 
system [3,4,5] at MIT Lincoln Laboratory and its use to solve 
one such authentication problem. 

II. LINCOLN LABORATORY GRID (LLGRID) 

One of the main design requirements of the LLGrid system 
was to make HPC usage accessible to the entire Lincoln 
technical staff by making HPC systems as easy to use as a 
personal computer. In striving to toward this goal, we 
developed a system that takes advantage of the desktop 
development environments (i.e., file system access and 
integrated development environments like Matlab) with which 
most engineers and scientists are already familiar. At Lincoln 
we currently have over 500 users. The vast majority of these 
users utilize LLGrid in an interactive supercomputing manner. 
As depicted in Figure 1, interactive supercomputing involves 
large jobs that require answers in minutes or hours and cannot 
wait in a queue. 

 

Figure 1: Interactive supercomputing vs. classic 
supercomputing and desktop computing. Interactive 
supercomputing jobs require answers in minutes or hours 
but wait in a queue. Classic supercomputing jobs take 
hours to days to execute and can tolerate waiting in a 
queue. Desktop computing jobs take minutes to run on a 
desktop (e.g. algorithm proof-of-concept). 

III. CRYPTOGRAPHIC KEY MANAGEMENT ON HPC 

CLUSTERS 

A challenge to any cryptographic key management system 
is to balance the need to make the keys and their associated 
Public Key Infrastructure (PKI) certificates available for 
authorized use, but simultaneously ensure they are properly 
protected. The most widely used solution for this balance is a 
smart card that can be accessed using the PKCS#11 interface 
standard. While scaling hardware-based smart cards to a HPC 
environment is not feasible, a cryptographic library that acts 
similar to a smart card is practical. Several commercial and 
open source implementations exist, but these focus on different 
use cases that are tightly coupled with the software packages 
they ship with, and are not designed to protect keys from export 
by their authorized user. [1,2] 

We developed our own cryptographic library based on the 
PKCS#11 standard that connects to a daemon running as a 
separate user that stores and manages the cryptographic keys 
for all users on the system. The key storage of this system is 
designed to allow the keys to only be manipulated by 
privileged users of the system. Unprivileged users can only 
access the keys through the PKCS#11 interface and cannot 
export them to other locations. This provides security for the 
cryptographic keys while still allowing them to be used with 
common security applications such as Transport Layer Security 
(TLS). 

This work is sponsored by the United States Air Force under Air Force 

contract FA8721-05-C-0002. Opinions, interpretations, conclusions and 

recommendations are those of the author and are not necessarily endorsed by 
the United States Government. 



Additionally utilities were developed to manage the keys 
for users across all nodes in the cluster simultaneously. Key 
and PKI certificate generation or renewal across hundreds of 
nodes can be accomplished with a single command in parallel. 
This allows keys and certificates to be pre-generated for each 
user so that relying processes can reference them by name on 
any node they are assigned to run on. 

Speed is also an important factor. Commercial smart cards 
are rated for approximately one operation per second. Reaching 
back to route cryptographic operations through the user’s smart 
card would quickly bottleneck on this factor. Using a virtual 
smart card we are only limited by the processing speed of the 
compute node, capable of over a hundred operations per second 
per CPU core, and scale linearly. 

IV. INTEGRATION WITH SUBVERSION 

This system for cryptographic authentication to external 
systems was used to enable authenticated access to subversion 
repositories on the Lincoln Laboratory SourceForge (LLForge) 
subversion server without putting users’ passwords at risk. The 
subversion client will normally either request to save the user’s 
password in plain text in their home directory or prompt the 
user to enter their password for each subversion command. 
Recognizing that widespread storage of passwords in plain text 
is to be avoided and that frequent prompting of the user to type 
their password was disruptive, a better solution was sought. 

The subversion server’s TLS settings for HTTPS were 
reconfigured to request and PKI certificate authentication and 
accept the LLGrid PKI certificate authority. The subversion 
client was configured to attempt authentication using 
certificates stored in the PKCS#11 cryptographic library 
interface discussed above, thus the current LLGrid user identity 
could be proven to the LLForge subversion server without any 
user interaction or storage of plaintext passwords. 

 

LLForge

Subversion ServerPKCS#11 API

SVN Client

User Processes

Protected Storage

HPC Node
 

Figure 2: The subversion client running on a HPC node 
is able to make use of the cryptographic key through the 
PKCS#11 interface to prove the user identity to the 
subversion server, but unable to directly access the 
protected storage. 

V. RESULTS 

We have built an infrastructure for management of 
cryptographic key and PKI certificates that can be used for user 
authentication in HPC environments. This work is applicable to 
any situation where a scalable method of proving the identity of 
a HPC process owner to a remote system is needed and can be 
used to bootstrap trust for other HPC security implementations, 
such as the work by Foster et al, [6] or to enable the security 
features of web services as explored by van Engelen. [7] 
Additionally we have used this system to integrate the LLGrid 
HPC with the LLForge subversion server to balance ease of use 
with security. 

Future work will investigate the applicability of this 
solution to other web services operating in HPC or connected 
to environments. 

REFERENCES 

[1] http://live.gnome.org/GnomeKeyring 

[2] http://www.mozilla.org/projects/security/pki/nss/ 

[3] N. Travinin Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, 
“Interactive Grid Computing at Lincoln Laboratory,” Lincoln 

Laboratory Journal, Vol. 16, Number 1, 2006. 

[4] A. Reuther, B. Arcand, T. Currie, A. Funk, J. Kepner, M. Hubbell, A. 
McCabe, P. Michaleas, “TX-2500 – An Interactive, On-Demand Rapid-

Prototyping HPC System,” HPEC 2007, Lexington, MA, Sep. 2009. 

[5] A. Reuther, J. Kepner, A. McCabe, J. Mullen, N.T. Bliss, and H. Kim, 
“Technical Challenges of Supporting Interactive HPC,” In Proceedings 

of the High Performance Computing Modernization Office (HPCMO) 
Users Group Conference (UGC) 2007, Pittsburgh, PA, 18-22 June 2007. 

[6] I. Foster, N. Karonis, C. Kesselman and S. Tuecke, "Managing security 

in high-performance distributed computations," Cluster Computing, Vol 
1, Number 0, 1998. 

[7] R. van Engelen, “Pushing the SOAP Envelope With Web Services for 

Scientific Computing.” In proceedings of the International Conference 
on Web Services (ICWS), pages 346-352, Las Vegas, 2003. 

 

 


