
DYNAMIC DISTRIBUTED DIMENSIONAL DATA MODEL (D4M) DATABASE AND 
COMPUTATION SYSTEM 

 
Jeremy Kepner, William Arcand, William Bergeron, Nadya Bliss, Robert Bond, Chansup Byun, Gary 

Condon, Kenneth Gregson, Matthew Hubbell, Jonathan Kurz, Andrew McCabe, Peter Michaleas, 
Andrew Prout, Albert Reuther, Antonio Rosa, Charles Yee  

 
MIT Lincoln Laboratory1, Lexington, MA 

 

                                                
1 This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, 
interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United 
States Government. 

ABSTRACT 
 

A crucial element of large web companies is their ability to 
collect and analyze massive amounts of data.  Tuple store 
databases are a key enabling technology employed by many 
of these companies (e.g., Google Big Table and Amazon 
Dynamo).  Tuple stores are highly scalable and run on 
commodity clusters, but lack interfaces to support efficient 
development of mathematically based analytics.  D4M 
(Dynamic Distributed Dimensional Data Model) has been 
developed to provide a mathematically rich interface to 
tuple stores (and structured query language "SQL" 
databases).  D4M allows linear algebra to be readily applied 
to databases.  Using D4M, it is possible to create 
composable analytics with significantly less effort than 
using traditional approaches.  This work describes the D4M 
technology and its application and performance. 
 

Index Terms— associative array, database, tuple store, 
linear algebra, fuzzy algebra  
 

1. INTRODUCTION 
 

Modern database analysis in the areas of healthcare, internet 
search, finance, and network security are outgrowing the 
capabilities of current technologies.  The increasing size of 
the data (doubling every year), the increasing diversity of 
the data (e.g., web pages, documents, audio, images, and 
video), and the increasing complexity of the operations (e.g., 
ingestion, scanning, link analysis, and importance scoring) 
all present tremendous challenges. 

The standard approach for handling the increasing size 
of data is to increase the storage capacity at the cost of 
increasing the time it takes to access any particular data 
item.  Solving this problem requires a transparent 
mechanism (e.g., distributed arrays) for adding computation 
and network bandwidth as storage capacity is increased. 

The standard approach for handling the increasing 
diversity of data is to increase the number of 
databases/tables at the cost of increasing the effort required 
to make the data available to users.  Solving this problem 

requires a general mechanism (e.g., tuple stores) for adding 
a wide variety of data into a single database table. 

The standard approach for handling the increasing 
complexity of operations is to increase the size of the 
functions at the cost of increasing the effort required to build 
these functions.  Solving this problem requires a 
composable mechanism (e.g., multi-dimensional associative 
arrays) for creating operations of increasing complexity 
without increasing their relative effort. 

A final challenge is that the above problems are anti-
correlated.  Addressing one problem will typically result in 
the other issue becoming more difficult.  For example, 
adding computing and network resources to a database 
system increases the difficulty of adding more diverse data 
and adding more complex operations.  Thus, a viable 
solution must address all of the issues simultaneously. 

The goal of the Dynamic Distributed Dimensional Data 
Model (D4M) is to combine the advantages of distributed 
arrays, tuple stores, and multi-dimensional associative 
arrays to create a database and computation system that 
solves the challenges associated with increasing data size, 
data diversity and operation complexity.  Our prototype 
implementation of D4M has demonstrated simultaneous  
improvement in all of these dimensions when compared to 
current standard approaches (e.g., Java + SQL). 
 

2. D4M ARCHITECTURE 
 

D4M addresses the challenges presented in the previous 
section by using a layered software architecture that 
addresses each challenge in its own layer (Fig. 1).  The top 
layer consists of composable associative arrays that provide 
a one-to-one correspondence between database queries and 
linear algebra.  Associative arrays can be both the input and 
output of a wide range of database operations and allow 
complex operations to be composed with a small number of 
statements.  The middle layer consists of several parallel 
computation technologies (e.g., pMatlab [1,2], MatlabMPI 
[3], and gridMatlab [4]) that allow associative arrays to be 



distributed efficiently across a parallel computer.  
Furthermore, the pieces of the associative array can be 
bound to specific parts of one more databases to optimize 
the performance of data insertion and query across a parallel 
database system.  The bottom layer consists of databases 
(e.g., HBase [5] and Accumulo [6]) running on parallel 
computation hardware.  D4M can use any type of database.  
D4M can fully exploit the power of databases that use an 
internal sparse tuple representation (e.g., a row/col/val triple 
store) to store all data regardless of type. The D4M 
approach provides several advantages and improvements 
over existing methods, specifically: D4M Represents 
complex database operations and queries as composable 
algebraic operations on associative arrays; D4M Provides 
distributed arrays for parallel database operations; D4M 
Transparently handles diverse data types using a tuple store.  
 

  
Fig. 1. D4M Matlab prototype architecture. At the top is the user 
application consisting of a series of query and analysis steps.  In 
the middle is the parallel library that hides the parallel mapping of 
the operations.  On the bottom are the databases (typically tuple 
stores) running on parallel computing hardware. 
 

3. ASSOCIATIVE ARRAYS 
 

Associations between multidimensional entities (tuples) 
using number/string keys and number/string values can be 
stored in data structures called associative arrays.  For 
example, in two dimensions an associative array entry might 
be 

A(’alice ’,’bob ’) = ’cited ’ 
or 

A(’alice ’,’bob ’) = 47.0 
The above tuples have a one-to-one correspondence with the 
triple store representations 

(’alice ’,’bob ’,’cited ’) 
and 

(’alice ’,’bob ’,47.0) 
 

Constructing complex composable query operations can 
be expressed using simple array indexing of the associative 
array keys and values, which themselves return associative 
arrays.  For example 

 

A(’alice ’,:)       alice row 
A(’alice bob ’,:)       alice and bob rows 
A(’al* ’,:)       rows beginning with al 

A(’alice : bob ’,:)   rows alice to bob 
A(1:2,:)        first two rows 
A == 47.0         all entries equal to 47.0 
 

The composability of associative arrays stems from the 
ability to define fundamental mathematical operations 
whose results are also associative arrays.  Given two 
associative arrays A and B, the results of all the following 
operations will also be associative arrays 

 

A + B   A – B   A & B   A|B   A*B 
 

Associative array composability can be further grounded 
in the mathematical closure of semirings (i.e., linear 
algebraic “like” operations) on multi-dimensional functions 
of infinite strict totally ordered sets (i.e., sorted strings).  In 
addition, many of the linear algebraic properties of fuzzy 
algebra can also be directly applied: linear independence 
[7], strong regularity [8], and uniqueness [9]. 

Finally, associative arrays can represent complex 
relationships in either a sparse matrix or a graph form (Fig. 
2).  Associative arrays are a natural data structure for 
performing both matrix and graph algorithms.  Such 
algorithms are the foundation of many complex database 
operations across a wide range of fields [10].  Measurements 
using the D4M prototype indicate that these algorithms can 
be implemented with significantly less coding effort when 
compared standard approaches [11]. 
 

MIT Lincoln Laboratory 
LLGrid 11 

 

MIT Lincoln Laboratory 

Multi-Dimensional Associative Arrays 

•  Extends associative arrays to 2D and mixed data types 
A('alice ','bob ') = 'cited '  !

      or         A('alice ','bob ') = 47.0 

•  Key innovation: 2D is 1-to-1 with triple store 
('alice ','bob ','cited ')!

 or                 ('alice ','bob ',47.0) 

alice!
bob! cited!

alice! bob!

•  Associative arrays unify four viewpoints into one concept 
 

Fig. 2. A sparse associative 2D array and its graph dual. 
 

4. DISTRIBUTED ARRAYS 
 

Distributed arrays provide a simple mechanism for writing 
efficient parallel programs [1].  When an algorithm is run in 
parallel, the same algorithm (or code) is run by every 
instance of the program (on one or more processors) with a 
unique identity number PID = 0…NP-1.  This execution 
model is referred to as the Single-Program Multiple-Data 
(SPMD) computation model.  In distributed array 
programming, it is necessary to map the tuples of an array 
onto a set of PIDs. This mapping process allows each PID to 
know which tuples of a distributed it “owns.”  In pMatlab 
this process is supported by adding a “map” object to the 
construction of an array.  A map contains information on the 
method used to assign tuples to PIDs.  Thus it is possible to 
formally separate the execution of a program from how it is 
mapped onto a parallel processor.  The primary benefits of 
this approach are simplicity (making a serial program a 
parallel program can be done with just a few lines of code) 
and performance (distributing arrays across processors 



allows each processor to easily work on data that is in its 
own memory). 
 

5. TUPLE STORES 
 

Web pages, documents, audio, images, and video all 
produce very different kinds of data.  Traditional databases 
require different tables to handle these data.  Tuple stores 
handle all of this data by treating them all as key/value pairs.  
This greatly simplifies the design of the database and allows 
for significant performance improvements. 

For example, consider a traditional database table where 
each row represents the keywords in the document.  Column 
names of this table might be “keyword1”, “keyword2”, …  
To find a row with a particular keyword entry requires a 
complete scan of the table or the construction of an index of 
all the entries.  In a row/col/val triple store each row 
represents a document and the column keys can be the 
actual keywords themselves. 

The Hadoop [12] distributed file system (HadoopDFS) is 
an open source distributed file system modeled on the 
Google file system [13].  Hadoop is a replicated block based 
distributed filesystem optimized for handling very large 
blocks and is well suited for managing large files that are 
larger than a typical storage device.  HBase [5], Accumulo, 
and other “Big Table Like” databases leverage the 
HadoopDFS by modeling Google Big Table [14].  These 
databases are designed for data mining applications that do 
little read-modify-write and where statistical consistency is 
more than adequate.  Under these the relaxed restrictions 
there is potential to get a sizable increase in performance. 
These databases are typically “NoSQL” databases that have 
their own custom interfaces. 

D4M associative arrays provide a one-to-one mapping 
onto the tables in a tuple store that makes complex 
manipulations simple to code.  Storing both the table and its 
logical transpose in the database allows for all rows and 
columns to be searched efficiently without the need to build 
specialized indexes.  D4M associative arrays can make both 
the insertion and retrieval of data from transpose pairs 
transparent to the user. 
 

6. TECHNOLOGY COMPARISON 
 

D4M provides a database and computation system that 
combines composable associative arrays, distributed arrays, 
and tuple stores in an integrated manner.  Table 1 compares 
various other technologies having aspects of D4M.  Note 
that while there are many distributed array technologies, 
none – except D4M – implement an associative array.  
Likewise, D4M is the first implementation of multi-
dimensional numeric associative arrays and the first 
implementation of composable associative arrays.  Finally, 
D4M is the only associative array technology that can take 
advantage of the features of a tuple store. 
 
 

Table 4. Technology Comparison.  D4M uniquely supports 
composable multi-dimensional associative arrays on parallel 
computers and tuple store databases.  Key: SQL (System Query 
Language), MPI (Message Passing Interface), HPF (High 
Performance Fortran), UPC (Universal Parallel C), VSIPL++ 
(Vector, Signal and Image Processing Library). 

Feature Pe
rl 

SQ
L 

H
B

as
e 

M
PI

 

H
PF

 

U
PC

 

V
SI

PL
++

 

pM
at

la
b 

D
4M

 

Associative Array 
     1D 
     2D 
     String key/value 
     Numeric key/value 
     Composable query 
     Composable compute 

 
X 
X 
X 

 
X 
X 
X 
X 

       
X 
X 
X 
X 
X 
X 

Tuple Store   X      X 
Parallel Client   X X X X X X X 
Distributed array     X X X X X 
 

7. APPLICATION EXAMPLE 
 

To illustrate the use of D4M consider a facet search on the 
document keyword table A shown in Fig. 3.  In this context 
facet search selects the subset of documents containing a set 
of keywords and then computes the histogram of all the 
keywords in this document subset.  Facet search is particular 
useful in helping a user build searches by providing 
guidance as to the most popular keywords as their search 
narrows.  Facet search is a highly dynamic query because it 
is not possible to compute the histograms of all sets of 
keywords in advance. 

Fig. 3. Facet Search in D4M.  
Table A stores a list of documents 
and their keywords.  Selecting 
keywords UN and Carl indicate 
that the documents c.pdf and 
e.ppt contain both.  Selecting the 
documents c.pdf and e.ppt and 
summing the occurrences of their 
keywords retrieves the facets DC 
and Bob. 
 

Facet search in D4M begins with choosing keywords in 
the table 

x = ’UN ’          and           y = ’Carl ’ 
 

Next, all documents that contain both of those keywords are 
found 

B = (sum(A(:,[x y]),2) == 2) 
 

Finally, the distribution of keywords in that set of 
documents is computed 
 

F = transpose(B) * A(row(B),:) 
 

This complex query can be performed efficiently in just two 
lines of D4M code that perform two database queries (one 
column query and one row query).  If the underlying table is 
a transpose table pair, then both of these queries are be 



performed efficiently in a manner that is completely 
transparent to the user.  Implementing a similar query in 
Java and SQL takes hundreds of lines of code. 
 

8. PERFORMANCE 
 

Graph500 [15] is derived from the Graph Analysis 
benchmark [16] and is reflective of a new class of graph 
based computations. For large problems Graph500 becomes 
a database benchmark. Specifically, the initialization phase 
measures the insert rate into a database.  The performance of 
D4M is measured by implementing the Graph Analysis 
benchmark.  Figs. 4 and 5 shows the insert performance of 
D4M and D4M+Accumulo.  These results are consistent 
with the performance of the native Java interface and deliver 
near the theoretical performance limits of the hardware. 

!"#$%&'()*+%,&

-%
.%

*&

/01&

/01&2&344565$7&/-&

8(
,%
*)
,9
:%
4&

 
Fig. 4. Single process D4M and D4M+AccumuloDB insert rates 
(top) versus the number of table entries. Curves are shown for 
standalone D4M (in memory) and D4M connected to the 
Accumulo database (in storage). 

!"#$%&'()'*+,%&-%&,'

.%
/%

&'
*+
,%
&-
,0
1%
2'

3' 4' 5' 6' 7'

89&9::%:';6<'

89&9::%:';6<'='>22"#":(';.'

3?@'

'
'
'
3?7'

'
'
'
3?6'

 
Fig. 5. Parallel D4M and D4M+AccumuloDB insert rates (top) 
versus number of insert processes on a single node system. Curves 
are shown for standalone D4M (in memory) and D4M connected 
to the Accumulo database (in storage). 
 

9. CONCLUSIONS 
 

Tuple store databases are a key enabling technology for 
larges scale data analysis.  Tuple stores are highly scalable 
and run on commodity clusters, but lack interfaces to 
support efficient development of mathematically based 

analytics.  D4M has been developed to provide a 
mathematically rich interface to tuple stores (and structured 
query language "SQL" databases). Using D4M, it is possible 
to create composable analytics with significantly less effort 
than using traditional approaches. 
 

10. REFERENCES 
 

 [1] J. Kepner, Parallel Matlab for Multicore and Multinode 
Computers, SIAM Press, Philadelphia, 2009. 
 

[2] N. Bliss and J. Kepner, “pMatlab Parallel Matlab Library,” 
International Journal of High Performance Computing 
Applications: Special Issue on High Level Programming 
Languages and Models, J. Kepner and H. Zima (editors), Winter 
2006 (November). 
 

 [3] J. Kepner and S. Ahalt, “MatlabMPI,” Journal of Parallel and 
Distributed Computing, vol. 64, issue 8, August, 2004 
 

 [4] N. Bliss, R. Bond, H. Kim, A. Reuther, and J. Kepner, 
“Interactive Grid Computing at Lincoln Laboratory,” Lincoln 
Laboratory Journal, vol. 16, no. 1, 2006. 
 

 [5] Apache HBase http://hbase.apache.org/ 
 

 [6] Apache Accumulo http://incubator.apache.org/accumulo/ 
 

 [7] J. Plavka, “Linear Independences in Bottleneck Algebra and 
their Coherences with Matroids,” Acta Math. Univ. Comenianae, 
vol. LXIV, no. 2, pp. 265–271, 1995.  
 

 [8] P. Butkovic, “Strong Regularity of Matrices - a Survey of 
Results,” Discrete Applied Mathematics, vol. 48, pp. 45-68, 1994.  
 

 [9] M. Gavalec and J. Plavka, “Simple Image Set of Linear 
Mappings in a Max–Min Algebra,” Discrete Applied Mathematics, 
vol. 155, pp. 611 – 622, 2007. 
 

 [10] J. Kepner and J. Gilbert (editors), Graph Algorithms in the 
Language of Linear Algebra, SIAM Press, Philadelphia, 2011. 
 

 [11] B.A. Miller, N. Arcolano, M.S. Beard, N.T. Bliss, J. Kepner, 
M.C. Schmidt, and P.J. Wolfe, “A Scalable Signal Processing 
Architecture for Massive Graph Analysis,” submitted. 
 

 [12] HadoopDFS http://hadoop.apache.org/hdfs/ 
 

 [13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The 
Hadoop Distributed File System,” in 26th IEEE Symposium on 
Mass Storage Systems and Technologies, 3-7 May, 2010. 
 

 [14] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. 
Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A 
Distributed Storage System for Structured Data,” ACM 
Transactions on Computer Systems, Volume 26 Issue 2, June 2008. 
 

 [15] Graph500 http://www.graph500.org 
 

 [16] D. Bader, K. Madduri, J. Gilbert, V. Shah, J.y Kepner, T. 
Meuse, and A. Krishnamurthy, “Designing Scalable Synthetic 
Compact Applications for Benchmarking High Productivity 
Computing Systems,” CT Watch, Vol 2, Number 4A, November, 
2006. 


