
Slide-1
Parallel MATLAB

MIT Lincoln Laboratory

Parallel Matlab programming
using Distributed Arrays

Jeremy Kepner

MIT Lincoln Laboratory

This work is sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002.
Opinions, interpretations, conclusions, and recommendations are those of the author and are not

necessarily endorsed by the United States Government.

MIT Lincoln Laboratory
Slide-2

Parallel MATLAB

Goal: Think Matrices not Messages

Programmer Effort

Pe
rf

or
m

an
ce

 S
pe

ed
up 100

10

1

0.1
hours days weeks months

acceptable

hardware limit
Expert

Novice

• In the past, writing well performing parallel programs has
required a lot of code and a lot of expertise

• pMatlab distributed arrays eliminates the coding burden
– However, making programs run fast still requires expertise

• This talk illustrates the key math concepts experts use to
make parallel programs perform well

MIT Lincoln Laboratory
Slide-3

Parallel MATLAB

• Serial Program
• Parallel Execution
• Distributed Arrays
• Explicitly Local

Outline

• Parallel Design

• Distributed Arrays

• Concurrency vs Locality

• Execution

• Summary

MIT Lincoln Laboratory
Slide-4

Parallel MATLAB

Serial Program

• Matlab is a high level language
• Allows mathematical expressions to be written concisely
• Multi-dimensional arrays are fundamental to Matlab

Y = X + 1

X,Y : NxN

Y(:,:) = X + 1;

X = zeros(N,N);
Y = zeros(N,N);

Math Matlab

MIT Lincoln Laboratory
Slide-5

Parallel MATLAB

Pid=Np-1

Pid=1PID=NP-1

PID=1
Pid=0

PID=0

Parallel Execution

• Run NP (or Np) copies of same program
– Single Program Multiple Data (SPMD)

• Each copy has a unique PID (or Pid)
• Every array is replicated on each copy of the program

Y = X + 1

X,Y : NxN

Y(:,:) = X + 1;

X = zeros(N,N);
Y = zeros(N,N);

Math pMatlab

MIT Lincoln Laboratory
Slide-6

Parallel MATLAB

Pid=Np-1

Pid=1
Pid=0

PID=NP-1

PID=1
PID=0

Distributed Array Program

• Use P() notation (or map) to make a distributed array
• Tells program which dimension to distribute data
• Each program implicitly operates on only its own data

(owner computes rule)

Y = X + 1

X,Y : P(N)xN

Y(:,:) = X + 1;

XYmap = map([Np 1],{},0:Np-1);
X = zeros(N,N,XYmap);
Y = zeros(N,N,XYmap);

Math pMatlab

MIT Lincoln Laboratory
Slide-7

Parallel MATLAB

Explicitly Local Program

• Use .loc notation (or local function) to explicitly retrieve
local part of a distributed array

• Operation is the same as serial program, but with different
data on each processor (recommended approach)

Y.loc = X.loc + 1

X,Y : P(N)xN

Yloc(:,:) = Xloc + 1;

XYmap = map([Np 1],{},0:Np-1);
Xloc = local(zeros(N,N,XYmap));
Yloc = local(zeros(N,N,XYmap));

Math pMatlab

MIT Lincoln Laboratory
Slide-8

Parallel MATLAB

• Maps
• Redistribution

Outline

• Parallel Design

• Distributed Arrays

• Concurrency vs Locality

• Execution

• Summary

MIT Lincoln Laboratory
Slide-9

Parallel MATLAB

Parallel Data Maps

• A map is a mapping of array indices to processors
• Can be block, cyclic, block-cyclic, or block w/overlap
• Use P() notation (or map) to set which dimension to split

among processors

P(N)xN Xmap=map([Np 1],{},0:Np-1)

Math Matlab

0 1 2 3
Computer

PID Pid

Array

NxP(N) Xmap=map([1 Np],{},0:Np-1)

P(N)xP(N) Xmap=map([Np/2 2],{},0:Np-1)

MIT Lincoln Laboratory
Slide-10

Parallel MATLAB

Maps and Distributed Arrays

A processor mapmap for a numerical array is an assignment ofassignment of
blocks of data to processing elementsblocks of data to processing elements.

Amap = map([Np 1],{},0:Np-1);

Processor Grid

A = zeros(4,6,Amap);

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

P0
P1
P2
P3

List of processors

pMatlab constructors are overloaded to
take a map as an argument, and return a
distributed array.

A =

Distribution
{}=default=block

MIT Lincoln Laboratory
Slide-11

Parallel MATLAB

Advantages of Maps

FFT along
columns

Matrix Multiply

*

MAP1 MAP2Maps are scalable. Changing the
number of processors or distribution
does not change the application.

Maps support different algorithms.
Different parallel algorithms have
different optimal mappings.

Maps allow users to set up pipelines
in the code (implicit task parallelism).

f
oo

1

fo
o2

fo
o3

fo
o4

%Application
A=rand(M,map<i>);
B=fft(A);

map1=map([Np 1],{},0:Np-1) map2=map([1 Np],{},0:Np-1)

map([2 2],{},0:3)map([2 2],{},[0 2 1 3])

map([2 2],{},1)

map([2 2],{},0) map([2 2],{},2)

map([2 2],{},3)

MIT Lincoln Laboratory
Slide-12

Parallel MATLAB

Redistribution of Data

• Different distributed arrays can have different maps
• Assignment between arrays with the “=” operator causes

data to be redistributed
• Underlying library determines all the message to send

Y = X + 1
Y : NxP(N)

Xmap = map([Np 1],{},0:Np-1);
Ymap = map([1 Np],{},0:Np-1);
X = zeros(N,N,Xmap);
Y = zeros(N,N,Ymap);

Y(:,:) = X + 1;

Math pMatlab

X : P(N)xN

P0
P1
P2
P3

X =

P0P1P2P3

Y =

Data Sent

MIT Lincoln Laboratory
Slide-13

Parallel MATLAB

• Definition
• Example
• Metrics

Outline

• Parallel Design

• Distributed Arrays

• Concurrency vs Locality

• Execution

• Summary

MIT Lincoln Laboratory
Slide-14

Parallel MATLAB

Definitions

Parallel Concurrency
• Number of operations that can be

done in parallel (i.e. no
dependencies)

• Measured with:
Degrees of Parallelism

Parallel Locality
• Is the data for the operations

local to the processor
• Measured with ratio:

Computation/Communication
= (Work)/(Data Moved)

• Concurrency is ubiquitous; “easy” to find
• Locality is harder to find, but is the key to performance
• Distributed arrays derive concurrency from locality

MIT Lincoln Laboratory
Slide-15

Parallel MATLAB

Serial

• Concurrency: max degrees of parallelism = N2

• Locality
– Work = N2

– Data Moved: depends upon map

Math Matlab

for i=1:N
 for j=1:N
 Y(i,j) = X(i,j) + 1

for i=1:N
 for j=1:N
 Y(i,j) = X(i,j) + 1;
 end
end

X = zeros(N,N);
Y = zeros(N,N);X,Y : NxN

MIT Lincoln Laboratory
Slide-16

Parallel MATLAB

1D distribution

• Concurrency: degrees of parallelism = min(N,NP)
• Locality: Work = N2, Data Moved = 0
• Computation/Communication = Work/(Data Moved) → ∞

Math pMatlab

for i=1:N
 for j=1:N
 Y(i,j) = X(i,j) + 1

X,Y : P(N)xN

for i=1:N
 for j=1:N
 Y(i,j) = X(i,j) + 1;
 end
end

XYmap = map([NP 1],{},0:Np-1);
X = zeros(N,N,XYmap);
Y = zeros(N,N,XYmap);

MIT Lincoln Laboratory
Slide-17

Parallel MATLAB

2D distribution

• Concurrency: degrees of parallelism = min(N2,NP)
• Locality: Work = N2, Data Moved = 0
• Computation/Communication = Work/(Data Moved) → ∞

Math pMatlab

for i=1:N
 for j=1:N
 Y(i,j) = X(i,j) + 1

for i=1:N
 for j=1:N
 Y(i,j) = X(i,j) + 1;
 end
end

XYmap = map([Np/2 2],{},0:Np-1);
X = zeros(N,N,XYmap);
Y = zeros(N,N,XYmap);X,Y : P(N)xP(N)

MIT Lincoln Laboratory
Slide-18

Parallel MATLAB

2D Explicitly Local

• Concurrency: degrees of parallelism = min(N2,NP)
• Locality: Work = N2, Data Moved = 0
• Computation/Communication = Work/(Data Moved) → ∞

Math pMatlab

for i=1:size(X.loc,1)
 for j=1:size(X.loc,2)
 Y.loc(i,j) =
 X.loc(i,j) + 1

for i=1:size(Xloc,1)
 for j=1:size(Xloc,2)
 Yloc(i,j) = Xloc(i,j) + 1;
 end
end

XYmap = map([Np/2 2],{},0:Np-1);
Xloc = local(zeros(N,N,XYmap));
Yloc = local(zeros(N,N,XYmap));X,Y : P(N)xP(N)

MIT Lincoln Laboratory
Slide-19

Parallel MATLAB

1D with Redistribution

• Concurrency: degrees of parallelism = min(N,NP)
• Locality: Work = N2, Data Moved = N2

• Computation/Communication = Work/(Data Moved) = 1

Math pMatlab

for i=1:N
 for j=1:N
 Y(i,j) = X(i,j) + 1

Xmap = map([Np 1],{},0:Np-1);
Ymap = map([1 Np],{},0:Np-1);
X = zeros(N,N,Xmap);
Y = zeros(N,N,Ymap);

for i=1:N
 for j=1:N
 Y(i,j) = X(i,j) + 1;
 end
end

Y : NxP(N)
X : P(N)xN

MIT Lincoln Laboratory
Slide-20

Parallel MATLAB

• Four Step Process
• Speedup
• Amdahlʼs Law
• Perforfmance vs Effort
• Portability

Outline

• Parallel Design

• Distributed Arrays

• Concurrency vs Locality

• Execution

• Summary

MIT Lincoln Laboratory
Slide-21

Parallel MATLAB

Running

• Start Matlab
– Type: cd examples/AddOne

• Run dAddOne
– Edit pAddOne.m and set: PARALLEL = 0;
– Type: pRUN(’pAddOne’,1,{})

• Repeat with: PARALLEL = 1;

• Repeat with: pRUN(’pAddOne’,2,{});

• Repeat with: pRUN(’pAddOne’,2,{’cluster’});

• Four steps to taking a serial Matlab program and making it
a parallel Matlab program

MIT Lincoln Laboratory
Slide-22

Parallel MATLAB

Parallel Debugging Processes

• Simple four step process for debugging a parallel program
Serial
Matlab

Serial
pMatlab

Parallel
pMatlab

Optimized
pMatlab

Mapped
pMatlab

Functional
correctness

pMatlab
correctness

Parallel
correctness

Performance

Step 1
Add DMATs

Step 2
Add Maps

Step 4
Add CPUs

Step 3
Add Matlabs

Add distributed matrices without maps, verify functional
correctness
PARALLEL=0; pRUN(’pAddOne’,1,{});

Add maps, run on 1 processor, verify parallel correctness,
compare performance with Step 1
PARALLEL=1; pRUN(’pAddOne’,1,{});

Run with more processes, verify parallel correctness
PARALLEL=1; pRUN(’pAddOne’,2,{}));

Run with more processors, compare performance with Step 2
PARALLEL=1; pRUN(’pAddOne’,2,{‘cluster’});

• Always debug at earliest step possible (takes less time)

MIT Lincoln Laboratory
Slide-23

Parallel MATLAB

Timing

• Run dAddOne: pRUN(’pAddOne’,1,{’cluster’});
– Record processing_time

• Repeat with: pRUN(’pAddOne’,2,{’cluster’});
– Record processing_time

• Repeat with: pRUN(’pAddone’,4,{’cluster’});
– Record processing_time

• Repeat with: pRUN(’pAddone’,8,{’cluster’});
– Record processing_time

• Repeat with: pRUN(’pAddone’,16,{’cluster’});
– Record processing_time

• Run program while doubling number of processors
• Record execution time

MIT Lincoln Laboratory
Slide-24

Parallel MATLAB

Computing Speedup

Number of Processors

Sp
ee

du
p

• Speedup Formula: Speedup(NP) = Time(NP=1)/Time(NP)
• Goal is sublinear speedup
• All programs saturate at some value of NP

MIT Lincoln Laboratory
Slide-25

Parallel MATLAB

Amdahl’s Law

Processors

Sp
ee

du
p

Smax = w|
-1

N
P =

 w
|-1

Smax/2

Linear

w|
 = 0.1

• Divide work into parallel (w||) and serial (w|) fractions
• Serial fraction sets maximum speedup: Smax = w|

-1

• Likewise: Speedup(NP=w|
-1) = Smax/2

MIT Lincoln Laboratory
Slide-26

Parallel MATLAB

HPC Challenge Speedup vs Effort

0.0001

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 1 10
Relative Code Size

Sp
ee

du
p

C + MPI
Matlab
pMatlab

ideal speedup = 128

FFT

HPL

STREAM

Random
AccessRandom

Access
Random
Access

STREAM

FFT

HPL(32)
STREAM

FFT
HPL

• Ultimate Goal is speedup with minimum effort
• HPC Challenge benchmark data shows that pMatlab can

deliver high performance with a low code size

Serial C

MIT Lincoln Laboratory
Slide-27

Parallel MATLAB

Portable Parallel Programming

Amap = map([Np 1],{},0:Np-1);
Bmap = map([1 Np],{},0:Np-1);
A = rand(M,N,Amap);
B = zeros(M,N,Bmap);
B(:,:) = fft(A);

Universal Parallel Matlab programming

• pMatlab runs in all parallel Matlab
environments

• Only a few functions are needed
– Np
– Pid
– map
– local
– put_local
– global_index
– agg
– SendMsg/RecvMsg

Jeremy Kepner

Parallel MATLAB
for Multicore and Multinode Systems

• Only a small number of distributed array functions are necessary
to write nearly all parallel programs

• Restricting programs to a small set of functions allows parallel
programs to run efficiently on the widest range of platforms

1 2 3 4

MIT Lincoln Laboratory
Slide-28

Parallel MATLAB

Serial
MATLAB

Serial
pMatlab

Parallel
pMatlab

Optimized
pMatlab

Mapped
pMatlab

Add DMATs Add Maps Add Matlabs Add CPUs

Functional
correctness

pMatlab
correctness

Parallel
correctness

Performance

Step 1 Step 2 Step 3 Step 4

Get It Right Make It Fast

Summary

• Distributed arrays eliminate most parallel coding burden
• Writing well performing programs requires expertise
• Experts rely on several key concepts

– Concurrency vs Locality
– Measuring Speedup
– Amdahl’s Law

• Four step process for developing programs
– Minimizes debugging time
– Maximizes performance

