
Presented by Jeremy Kepner at the:

High Performance Embedded Computing
(HPEC98) Workshop
September 23-24, 1998
MIT Lincoln Laboratory
Lexington, MA

Interfacing Interpreted and Compiled
Languages for Computing on a

Massively Parallel Network of Workstations
(MP-NOW)

Jeremy Kepner1,3, Maya Gokhale2, Ron Minnich2,
Aaron Marks2, John DeGood2

1Princeton University, Princeton, NJ
 2Sarnoff Corporation, Princeton, NJ
 3Current address: MIT Lincoln Laboratory, Lexington, MA

Two Trends in Computing

• MP-NOW systems:

– Readily available.

– Flexible (commodity hardware and software).

– Deliver superior price/performance (~$10/MFlop/s).

– Represent future of high performance computing.

• Interpreted languages (e.g. MatLab, IDL & Mathematica) :

– Widely used for algorithm design and prototyping.

– Provide simplified I/O, GUIs and graphics.

– Limited performance in certain CPU intensive operations.

Speedup of Interpreted Languages on a MP-NOW

Sarnoff Cyclone MP-NOW

• 128 nodes running Unix connected by a 100Mb/s switched Ethernet.
• Dual Pentium processor nodes, 64MB RAM and 3GB disk per node.
• Peak performance of 24,000 MFlop/s at a cost $10/MFlop/s.

Speedup on a Single CPU

GUI I/O 3D • • • •

Main

Compute
Kernel

C
o

m
p

ile
d

In
te

rp
re

te
d

Single CPU Application Architecture

• Interpreted languages easily handle I/O, GUIs, graphics, and code management.
• Interpreted languages have simple mechanisms for calling external compiled libraries.
• Compiled computational kernel in this context is easy to port (no graphics or I/O).

Speedup on a MP-NOW

GUI I/O 3D • • • •

Main

TNT Server

Compute
Kernel

TNT Client

Compute
Kernel

TNT Client • • • •

• • • • C
o

m
p

ile
d

In
te

rp
re

te
d

MP-NOW Application Architecture

• Uses TNT (The Next generation Taskbag) library.
• TNT client/server manages independent instances of compute kernel on a MP-NOW.
• Interpreted layer and computational kernel are unchanged.
• TNT client and server templates are adapted by programmer to problem.

TNT (The Next generation Taskbag) Library

• Consists of a Server with many clients, communicating via TCP/IP.

Server
– Places tasks into Taskbag.
– Listens on a specific port for requests for tasks from clients.
– Dispatches tasks to requesting clients.
– Accepts results from clients.
– Monitors status of clients; re-assigns tasks of dropped clients.
– When all tasks are completed, returns results back to Main.

Client
Loops until Taskbag is empty:
– Send requests for work to Server on a specific port.
– Reads data sent by Server over network.
– Calls compute kernel with the data.
– Sends results of computation back to server over network.

TNT API (Application Programmer Interface)

• TNT client/server templates contain calls to TNT library.

• Programmer replaces default subroutines in templates.

• Typical application requires programmer to write four subroutines:

Server
– ParseInput()

passes data from the interpreted layer to the TNT server

– FillTaskbag()
passes data to the clients by placing tasks in Taskbag.

– ReturnResult()
returns result of computation back to Main.

Client
– ProcessTask()

calls the unmodified computational kernel.

TNT library on a MP-NOW

TNT CPU "Chooser"

• "Chooser" tool allows compute nodes to be selected interactively.
• Compute nodes can also be selected automatically when server starts.

Test Problem: Pattern Recognition

• N vectors (x1,...,xi,...xN) each with D elements.

• Vectors composed of real, complex, integer, string or mixed data.

• Distance between xi and xj given by:

dij = distance(xi , xj)

• Wish to compute M nearest neighbors to every point.

• Do direct calculation:

– N2 distance evaluations.
– N sorts each requiring O(N log N) operations.

• Trivial to parallelize: do N/#CPU points on each CPU.

• Can explore both CPU dominated and communication dominated
 regimes by changing N, M and #CPU.

Parallel Performance

6050403020100
0

10

20

30

40

50

60

Perfect
N = 120,000

N = 12,000

CPU

S
pe

ed
up

Linear

• Larger problem size shows nearly linear speedup: a factor of 52 on 60 CPUs.
• Communication overhead is more evident on smaller problem size.

Further Work

• Document and distribute TNT library

• Use TNT/IDL on other compute-intensive applications to further
 evaluate ease of use and performance.

• Enhance TNT to minimize data copying.

