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ABSTRACT 

 

 A new way to model astrophysical disks based on nearest neighbor perturbations (NNPs) is 

presented.  Key aspects of the NNP model are: chopping up space into a hexagonal grid, 

imposing differential rotation (as opposed to letting it arise naturally), treating the boundaries as 

reservoirs, and making the system independent of scale.  A Fortran program was written to test 

the model.  The algorithm was fast, and calculations using 105 particles could be run on a micro-

computer.  Simulations of disks with different masses were carried out.  The driving force of the 

model was accretion.  The rate of accretion was dependent on the amount of mass in the disk.  

Spiral arms and ringlet phenomena were observed.  The type of pattern depended on the mass in 

the disk. 
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1. INTRODUCTION 

 

 One of the most beautiful phenomena in nature is a pattern that appears in a variety of 

situations over a vast range of scales.  Astrophysical disks—the flat circular structures that can 

be found around planets, stars, and galaxies—are examples of such a pattern.  Their flat twisting 

curves sharply contrast the spheres that they surround.  This beauty along with their physical 

importance has made astrophysical disks a well-studied subject.  Extensive direct and indirect 

observations have been carried out on the planetary (Smith et al 1981), stellar (Snell 1989), and 

galactic level (Mihalis & Binney 1981).  Theoretical and computational work has yielded insight 

into density waves (Shu & Lissauer 1983), spiral arms (Toomre 1981), ringlets (French et al 

1988) and other features, but a complete model is still far away (Tremaine 1989). 

 The emphasis of previous research has been on analytic results.  More recently 

computational modeling has started to play a major role (Sellwood 1989).  Standard grid based N-

body problem approaches (Sellwood & Carlberg 1984) and Smooth Particle Hydrodynamics 

codes (Gingold & Monaghan 1982) have been able to reproduce many disk phenomena (Benz et 

al 1990, Artymowicz & Lubow 1989).  These methods are strongly motivated by the physics of 

disks.  Although, general results are sometimes difficult to obtain.  The work presented here takes 

a more radical approach that, admittedly, is more difficult to justify, but leads to interesting 

results never-the-less. 

 One of the more recent ideas in physics is that small, pervasive forces on a complex system 

can have a large effect (Lorenz 1979).  Keeping with this theme, I am hypothesizing that disks 

can be simulated with a far simpler model based on nearest neighbor perturbations (NNPs).  That 

is, each particle in the model only "feels" the particles nearest to it.  All the other particles are 

assumed to be far enough away that their net effect is small. 

 A "typical" disk simulation involves numerically integrating the equations of motion for 

particles moving around a central mass.  Taking into account the gravitational interaction between 

the particles results in a standard N-body problem.  More complex phenomena such as collisions, 
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non-uniform central fields, resonances with other bodies, etc ... can be added as well.  In these 

models, NNPs are overwhelmed by the more dominant forces of the system.  To test my 

hypothesis, I propose to do a disk simulation in which NNPs dominate. 

 Two advantages of using such a simple interaction are speed and generality.  Dramatic 

simplifications in the code can be made resulting in programs that can be run on micro-computers.  

Also, the program can be scaled so that such parameters as central mass, radius, and period have 

little effect on the behavior.  Thus, the results should apply to planets, stars, and galaxies. 

 §2 discusses the theory behind the NNP model more explicitly.  In §3 the details regarding the 

development of an algorithm and its implementation are given.  §4 presents some experimental 

results, the implications of which are discussed in §5. 
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2. THEORY 

 

 In this section, the physical justification for the NNP model is given.  The two fundamental 

features of the model are: 1) the particles are only perturbed by their nearest neighbors; 2) the 

overall motion of the particles is Keplerian (although any type of differential rotation would 

suffice). 

 To determine nearest neighbors requires that the area of interest of the disk (in this case a 

ring) be chopped up into a grid.  §2.1 describes how this physical space is chopped up into a 

hexagonal grid, which I call "ring space".  Knowing how the ring is gridded makes explaining the 

interaction between particles easier.  The most important part of the NNP interaction is 

determining what configurations of nearest neighbors will cause a particle to move.  This is called 

the "movement condition" and is explained in §2.2. 

 The second aspect of the model is Keplerian differential rotation.  Since this property is 

imposed—rather than obtained from integrating the equations of motion—any velocity profile 

can be chosen.  Keplerian motion is used because it is analytic and many computational 

simplifications can be made.  The most important of which is "relative differential rotation".  The 

overall motion in space becomes trivial, and only the relative motion of the particles with respect 

to each other matters.  The theory behind this is given in §2.3. 

 The simulation can only be carried out over a finite ring of the astrophysical disk, which 

raises the question of boundary conditions.  The implementation of the boundaries is explained in 

§2.4.  Finally, how all this theory ties together to produce a model that scales as well as it does is 

discussed in §2.5. 

 

2.1 Ring Space 

 We begin by looking at a ring around a central mass, M0, with a mean radius R and width W 

(Fig. 2.1).  For the time being, R/W is assumed to be sufficiently large that the space of the ring 

can be approximated by the rectangle: W x 2!R.  Next, the physical space of the ring is chopped-
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up into a finite grid of allowable locations—ring space.  This griding (or hexing) serves two 

purposes.  First, the nearest neighbors are readily identifiable.  Second, it should make the effects 

of NNPs more prominent by emphasizing changes in position. 

 The hexagonal grid was chosen for two reasons.  The nearest neighbors are more obvious, and 

the movements are less trivial than in square lattices (Fig. 2.2).  Furthermore, increasing the 

interaction length to the second nearest neighbors is clear as well.  The main drawback being the 

complexity of working with a hexagonal grid. 

 

2.2 Nearest Neighbor Perturbations 

 The gravitational force on a particle p, with mass mp, at location i will be defined as  

 Fp  =  G!
j

mpmj

dij

dij
3   . (2.1) 

The sum being over the nearest neighbors j of i, which for hexagonal ring space reduces to 

 Fp  =  
Gmp

d2 !
j = 1

6

mj  , (2.2) 

where mj = mj

dij

d
  , mj = total mass in hex j, and d = distance between the centers of two adjacent 

hexes (Fig. 2.2).  Any configuration of particles is only valid for a finite time, "t, before 

differential rotation breaks it up.  "t is how long Fp acts on mp.  The change in position of mp due 

to Fp in this time will be 

 "rp  =  
1

2 
Fp

mp
  "t2 . (2.3) 

If "rp ~ d, then the force on mp is large enough to move it out of its current hex into the hex 

conjugate with Fp. 

 It is convenient to define a quantity 

 fp  =  !
j = 1

6

mj  , (2.4) 

called the "vector mass", which is proportional to the force on mp.  Combining Eqs. (2.4) and 

(2.5), and noting that for a given simulation, G, d, and "t are constants, we see that mp will be 

perturbed into an adjacent hex if 
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 |fp|  #  
2d3

G"t2
   "  CM  =  a constant , (2.5) 

where CM is called the "motion constant".  Eq. (2.5) is called the "movement condition", and 

evaluating it for all the particles in the ring is the main purpose of the program. 

 An important constraint on the previous analysis is that d << W.  Otherwise, the change in 

radius will become sufficiently large that angular momentum effects come into play. 

 

2.3 Relative Differential Rotation 

  The velocity of small particles in circular orbits around a large central mass is given by 

 v(r)  =  
GM0

r
  . (2.6) 

The NNP model is mainly concerned with the positions of the particles with respect to each 

other.  It is convenient to fix the outermost particles of the ring (r = R + W/2).  The relative 

differential rotation then becomes 

 vrel(r)  =  v(r) - v(R + W/2) . (2.7) 

where r is the radius of the orbit. 

 As discussed in the previous section, differential rotation is what breaks up configurations.  

Let "y be the vertical distance between hexes in the same column, and "x be the horizontal 

distance between hexes in the same row (Fig. 2.3).  Note: d = "y = "x/ 3 .  One way to 

approximate "t is to say that it is the time it takes for a particle at r - "y to move "x relative to a 

particle at r + "y 

 "t(r)  =  
"x

v(r - "y) - v(r - "y)
  . (2.8) 

In the above equation "t is a function of r.  Only when r << W << R is "t a constant.  Although 

these conditions are not strictly true (W is only somewhat less than R), the approximation "t $ 

"t(R) is well within the overall accuracy of the model. 

 At this point it is worth noting the most important computational advantage of this 

algorithm.  Using Eq. (2.8) results in time steps that are on order of half a period.  Where other 

algorithms will have 100 time steps per period, NNP will have two or three.  The reason for this 
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large difference is that other algorithms need additional time steps to reproduce the overall 

differential rotation. 

 Knowing the velocity and the time step the relative change in position per time step is 

 "rx  =  vrel(r) "t . (2.9) 

This is the equation that is used to implement differential rotation on the ring. 

 

2.4 Reservoir Boundary Conditions 

 To close the ring, a periodic boundary was employed on the vertical sides of the rectangle 

(Fig. 2.1).  The horizontal sides of the rectangle can be given a variety of boundaries.  The focus 

of this project is on the behavior of particles away from the boundaries.  Therefore, the 

boundaries themselves should cause as little disturbance as possible on the rest of the ring.  One 

way to construct such boundaries is to view them as "reservoirs" of particles.  i.e. Any effect the 

rest of the ring has on them is considered negligible.  Reservoir boundaries have the same 

properties as the rest of the ring—NNPs and differential rotation—except that they never 

change.  Particles can go in and particles can come out, but within the boundaries the distribution 

of particles remains constant. 

 

2.5 Scaling 

 The scaling advantages of this model are subtle and are best understood by observing the 

execution of the program.  In general, there are two ways in which the model scales.  The first has 

to do with the physical parameter M0.  Notice that the only effect of changing M0 is to change 

v(r).  By Eq. (2.8), "t is changed as well.  However, Eq. (2.9) is what is used to calculate the 

differential rotation, and in this equation M0 factors out.  The second scaling occurs along 

geometric lines.  It turns out that varying the total number of hexes, H, has no effect on the 

overall geometry.  Even though d varies inversely with H, "t changes in the opposite sense.  

Furthermore, the changes balance out so that the movement condition, Eq (2.5), remains constant 

with respect to H. 
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 The advantages of the model being independent of M0 and H (and to some extent R and W), 

means that there are very few variables to observe.  In fact, the only really important variables 

are the number of particles in the system and how they are distributed. 

 Also along these lines is the question of units.  Since the model scales, it doesn't really matter.  

So we choose distance # A.U., mass # Solar masses, and time # Earth years.  

 

2.6 Figures for §2 
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3. THE PROGRAM 

 

 The NNP model was implemented in a Fortran program of approximately 1700 lines.  The 

operation centered on the manipulation of three arrays (§3.1).  These arrays stored the mass 

distribution, the coordinates of each particle, and the coordinates of the nearest neighbors.  

Evaluating the movement condition of each particle was the primary task of the main loop, and 

considerable effort was put into optimizing this code (§3.2).  Differential rotation corresponded 

to offsetting each row in the the mass distribution array, while also updating the positions of the 

particles (§3.3).  The four top and bottom rows of hexes were devoted to the boundaries.  Using a 

combination of "soft" and "hard" boundaries a reservoir boundary was achieved (§3.4).  Two 

methods were used to distribute particles (§3.5).  The random method picked the coordinates of 

each particle using a random number generator.  The uniform method simply placed one particle 

in each hex.  The program ran in a interactive mode, which dramatically reduced the debugging and 

simulation time (§3.6).  Finally, the analogy between the NNP model and a Monte Carlo 

algorithm is discussed (§3.7). 

 

3.1 Main Arrays 

 The majority of operations were performed on three large, two byte integer arrays denoted: 

Rspace, NNmap, and Mlist.  These names stand for "Ring space", "Nearest Neighbor map", and 

"Mass list", respectively. 

 Rspace was a two dimensional array with each element storing the total mass in one of the 

hexes.  The mapping of the hexagonal grid into memory is shown in Fig. 3.1.  Each row in 

memory represents a row of hexes with the same orbital radius, which made imposing differential 

rotation much easier. 

 The rather unorthodox way in which the hexagonal lattice was represented in memory made 

determining the nearest neighbors more difficult.  The nearest neighbors depended upon the 

evenness of the y coordinate and the position relative to the boundaries.  Referencing the nearest 
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neighbors is probably the most commonly called function in the program.  These coordinates 

were placed in a look-up table: NNmap.  NNmap was a three dimensional array that was 

equivalent to stacking twelve Rspace arrays on top of each other.  NNmap stored the coordinates 

of all six nearest neighbors for each coordinate in ring space.  Although this array was large—24 

bytes per point—it dramatically increased the speed of the program. 

 The third array, Mlist, stored the mass and the x and y coordinates of each particle.  Storing 

the mass made it possible to have particles with different (integer) masses.  The central loop 

operated by stepping through Mlist and evaluating the movement condition of each particle. 

 

3.2 Movement Condition 

 Evaluating the movement condition of a particle consists of two steps.  First, computing the 

value of |fp|.  Second, comparing |fp| with CM and acting upon the result.  |fp| is obtained from the 

main arrays in the following manner.   The x and y coordinates of a particle in ring space are 

obtained from Mlist.  Plugging these coordinates into the NNmap gives the coordinates of the six 

nearest neighbors.  The mass in each of the nearest neighbors can then be looked-up in Rspace.  

This process is illustrated by the following Fortran code fragment: 

 

C  Get coordinates of particle P. 

 I = Mlist(P,X) 

 J = Mlist(P,Y) 

 

C  Get mass of each nearest neighbor of P. 

 m1 = Rspace(NNmap(I,J,1,X),NNmap(I,J,1,Y)) 

 m2 = Rspace(NNmap(I,J,2,X),NNmap(I,J,2,Y)) 

 m3 = Rspace(NNmap(I,J,3,X),NNmap(I,J,3,Y)) 

 m4 = Rspace(NNmap(I,J,4,X),NNmap(I,J,4,Y)) 

 m5 = Rspace(NNmap(I,J,5,X),NNmap(I,J,5,Y)) 

 m6 = Rspace(NNmap(I,J,6,X),NNmap(I,J,6,Y)) 
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Where m1,...,m6 are integer variables containing the mass of each nearest neighbor.  Knowing 

these masses, it is a fairly simple matter to calculate fp.  Fig. 3.2 shows an example calculation of 

fp.  Suffice it to say that both the magnitude and direction of fp could be computed with integer 

operations. 

 Strictly speaking, |fp| should be compared with the value of CM given in Eq. (2.5).  An 

alternative approach is to define CM to be a constant (e.g CM = 1), and make d and "t consistent 

with it.  However, d and "t are fairly well defined.  So what gives?  Up to this point, no attention 

has been paid to the masses of the particles themselves.  They are integers, but integer values of 

how much mass?  Setting CM has the operational effect of fixing the mass of the particles.  

Algebraically then, Eq. (2.5) can be rewritten as 

 |fp|m0  #  
2d3

G"t2
      $     |fp| #  

2d3

m0G"t2
    "  CM , (3.1) 

where |fp| is now dimensionless.  Increasing CM is then equivalent to reducing the mass of each 

particle. 

 Having calculated |fp|, if |fp| < CM, the force on the particle is too small to move it from its 

hex.  If |fp| # CM, then the particle is moved to the hex conjugate with fp.  This is done by 

changing the coordinates of the particle in Mlist and adding and subtracting mp from the 

appropriate hexes in Rspace. 

 

3.3 Differential Rotation 

 Motion was imposed by offsetting each row in Rspace.  In addition, the position of each 

particle in the Mlist had to be updated as well.  The offset of each row was computed using Eq. 

(2.9), and was stored in a look-up table.  Some typical values are shown in Table I.  Table I 

illustrates three points: 

 1) "t is a significant fraction of a year. 

 2) The velocity of the outermost row is zero. 

 3) Significant relative offsets do develop. 
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The numbers in Table I are reals, while the arrays can only be moved in integer amounts.  The 

actual offset comes from rounding off "rx.  To insure the most accurate results, the total integer 

offset, "rtot, was kept.  The integer offset, "rint, for a particular time step, t, was then computed 

from 

 "rint  =  INT(t"rx - "rtot + 0.5) , (3.2) 

where INT truncates the expression in parentheses to an integer.  "rtot then becomes 

 "rtot = "rtot + "rint . (3.3) 

 

3.4 Boundaries 

 The desired behavior of the boundaries is discussed in §2.4.  The theory is fairly straight 

forward, but programming reservoir boundaries is another matter.  In all, the boundaries were 

allotted the four top and bottom rows of Rspace (Fig. 3.1).  These four rows were further broken 

down into two rows of hard and soft boundaries.  Particles in the hard rows were only 

represented in the Rspace array and did not exist in the Mlist.  Particles in the soft boundaries 

were represented in both Rspace and Mlist. 

 The algorithm ran by stepping through Mlist.  Thus, the particles in the hard boundaries were 

never evaluated and never moved except by differential rotation.  The purpose of the hard 

boundaries was to give the particles in the soft boundaries a complete set of nearest neighbors.  

The particles in the soft boundaries were evaluated.  In general only one type of motion was 

allowed: particles leaving the soft boundary and moving into the "free" zone.  Since the 

boundaries were supposed to be reservoirs, they should be immutable.  All intra-boundary 

motion was ignored.  Pushing a particle into the free zone was handled by creating a new particle 

in the destination hex and adding it on to the end of Mlist.  Likewise, pulling a free particle into 

the soft boundary resulted in subtracting its mass from its original hex and deleting it from Mlist. 

 Although these boundaries were by no means perfect, they served their function of keeping 

boundary effects small. 
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3.5 Adding Particles 

 There are three distinct regions in Rspace: the upper boundary, the free zone, and the lower 

boundary.  Let the density, %, be defined as 

 % = Np/H , (3.4) 

where Np = the total number of particles.  The program was written so that % could be set 

differently for each region.  Choosing % determines the number of particles in a region, but it says 

nothing about the distribution.  As in the case of the velocity (where there are many different 

velocity curves to choose from), there are a large number of reasonable distributions.  The two 

used were a random distribution and a uniform distribution.  By random, it is meant that the 

coordinates of each particle were calculated using a random number generator (Park & Miller 

1988).  One of the nice features of this method was that it easily accommodated different 

numbers of particles.  i.e. The position of a new particle does not depend upon the positions of 

previous particles.  The uniform distribution placed one particle in each hex.  This distribution 

was limited to % = 1. 

 The particles were dropped into Rspace one at a time by region.  At the same time, the 

particles were added to Mlist.  The order of particles in Mlist was also the order the algorithm 

evaluated them.  To insure the particles were evaluated randomly Mlist was "shuffled". 

 

3.6 Operation 

 The aforementioned ideas were combined into an interactive program written in Fortran.  The 

code was very portable and ran successfully on Apple Macintosh, VMS and UNIX computers.  

The program started by presenting the user with the following list prompt of options and their 

default values: 

 

Type in option or parameter to change. 

(1) Run Program 

(2) Quit Program 

(3) Total Hexes, H = 4000 
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(4) Iterations = 100 

(5) Print Step = 1 

(6) Prompt Step = 10 

(7) Central Mass, Mo = 1.0 (Solar masses) 

(8) Mean Radius, R = 1.0 (A.U.) 

(9) Ring Width, W = 0.45 (A.U.) 

(10) Upper Boundary Density = 0.0 

(11) Free Region Density = 0.5 

(12) Lower Boundary Density = 0.0 

 

The most useful menu item for debugging purposes was (6)—Prompt Step.  Every specified 

number of time steps, the program would stop and present the user with another list prompt: 

 

Type in option or parameter to change. 

(1)     Continue 

(2)     Cancel 

(3)     Iterations = 500 

(4)     Print Step = 1 

(5)     Prompt Step = 10 

(6)     Show Mass Map 

(7)     Write Mass Map To File 

 

allowing the user to examine a simulation while it was running.  Just the ability to monitor and 

cancel bad runs resulted in dramatic savings in debugging and simulation time. 

 The flow of the program is diagrammed in Fig. 3.3.  The vast majority of the CPU time was 

spent in evaluating the movement condition and acting on it. 

 

3.7 Monte Carlo Analogy 

 Another way to view this algorithm is as a Monte Carlo simulation of particle configurations 

in ring space.  As in thermodynamics calculations, the probability of encountering a particular 

configuration depends on the interaction energy, or in this case |fp|. 
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 Computationally, the two algorithms are very similar as well.  In fact, a good deal of the 

computational motivation for the NNP model came from previous work done on 2D Ising 

systems (Kepner 1990).  The concept of generating new configurations using nearest neighbor 

interactions is directly analogous.  However, where a Monte Carlo simulation is more concerned 

with the long-term statistics of configurations, the NNP model focuses on the short term 

dynamics.  Perhaps the best description of the NNP model is that it is a hybridization of 

Newtonian and stochastic models (Seiden & Schulman 1990). 

 

3.8 Table and Figures for §3 



 

TABLE I 
Differential velocity data from a run with: M0 = 1.0, R = 1.0, W = 

0.4, H = 86 x 20 ! !t = 0.39 years.  Multiplying vrel(r) by 0.079 

gives the velocity in A.U./yr. 

 r  vrel(r) !rx 

Row (A.U.) (hex/yr) (hexes) 
20 1.20 0.00 0.00 
19 1.18 0.70 0.27 
18 1.16 1.42 0.55 
17 1.14 2.15 0.84 
16 1.12 2.91 1.14 
15 1.10 3.69 1.44 
14 1.08 4.50 1.75 
13 1.06 5.32 2.08 
12 1.04 6.18 2.41 
11 1.02 7.05 2.75 
10 1.00 7.96 3.10 

9 0.98 8.90 3.47 
8 0.96 9.86 3.85 
7 0.94 10.86 4.24 
6 0.92 11.90 4.64 
5 0.90 12.97 5.06 
4 0.88 14.08 5.49 
3 0.86 15.23 5.94 
2 0.84 16.43 6.41 
1 0.82 17.67 6.89 
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the border between 3 and 4.  The convention for resolving border disputes
is given by the black flags lying on the boundaries between hexes.



Fig. 3.3 : Flow chart of NNP program.
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4. RESULTS 

 

 The program was executed on an Apple Macintosh SE/30 micro-computer and a VAX 6310 

mainframe.  The experiments can be broken up into three groups.  The first set of experiments 

were of a general kind.  This survey (§4.1) determined what types of astrophysical situations the 

program could address.  The other two sets focused on particular aspects of the model.  §4.2 

describes the exploration of the quantitative outputs as a function of the density of particles.  

§4.3 presents a qualitative examination of how a disturbance propagates through the ring. 

 

4.1 General Behavior 

 The first set of experiments were of a broad nature to determine the overall behavior of the 

algorithm.  These preliminary runs helped sort out the wide variety of data that the program 

produced.  Two main outputs were examined, the mean force per particle, &|f|', and the transfer 

ratio, Tr.  The mean force is calculated by taking the average of all the |fp| at a given time step.  

The transfer ratio is the fraction of the total number of particles that moved during a particular 

time step.  In other words, the number of particles that satisfied the movement condition divided 

by Np. 

 Before examining &|f|' and Tr, it is important understand the qualitative behavior of the 

algorithm.  One way to explore the evolution is by decomposing the model.  For example, asking 

the question "what would happen if there was no differential rotation?" The answer is "not 

much."  Starting with an initial configuration of randomly distributed particles with mp = 1 and 

empty boundaries† (Fig. 4.1a), the system evolves to a static situation in three time steps (Fig. 

4.1b).  Such a fast equilibrium indicates that motion is necessary for complex dynamics to occur.  

Adding differential rotation gives a slightly more interesting result.  After approximately fifty 

                                                

†This was the standard starting configuration for two reasons.  First, the random distribution was 

a very general and very reproducible distribution.  Second, whether or not the boundaries were 

filled or empty made no difference with this distribution. 
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time steps, the hexes with more particles have accreted most of the free particles (Fig. 4.1c).  At 

this point the algorithm looses its physical validity.  The large concentrations of particles would 

undoubtedly exert significant long range forces and the NNPs would be of little importance.  It is 

interesting to note that the process of accretion is intrinsic to the algorithm. 

 Accretion is exhibited quantitatively as well.  Fig 4.2 shows &|f|' as a function of the time 

step††.  For the first thirty time steps the system evolves in a consistent manner with &|f|' 

increasing logarithmically.  After accretion has occurred all that is left is a statistical system 

governed by the random encounters of the particle concentrations.  The probability of 

encountering a particular configuration of particles then becomes a function of &|f|' (Fig 4.3).  

Since this is beyond the physically valid regime, we will devote no more discussion to this long 

term behavior. 

 That the algorithm is related to a Monte Carlo simulation is partially demonstrated by the 

behavior of Tr (Fig. 4.4).  Tr follows the logarithmic decay curve that is typical of Monte Carlo 

algorithms (Binder 1984). 

 Finally, I would like to say a few words about computational performance.  One of the goals 

was to write a program that was linear in Np.  Often in dealing with these kind of phenomena, the 

programs are O(Np
2) or O(Np Log Np) (Monaghan 1990)†, which can get costly very quickly.  

Fig 4.5 demonstrates that indeed the program is linear and efficient.  Especially when one 

considers that it was quite feasible to do calculations involving 100,000 particles on a micro-

computer. 

 

 The general behavior of the algorithm can be summarized as follows.  Starting with a random 

distribution, the configurations steadily move towards a situation in which most of the particles 

                                                
††The computational parameters (M0, R, W, and H) given for Fig 4.2 were the same as those that 

were used throughout the experiments of §4.1 and §4.2.  These parameters were used to generate 

the data shown in Figs. 4.3-4.8. 
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are found in a few hexes.  This process of accretion shows up as a logarithmically increasing force 

per particle.  Accretion is completed in about fifty time steps.  The concentration of particles 

causes the model to loose its physical validity.  Thus, there is no physical justification in 

studying its behavior beyond this point. 

 

4.2 Quantitative Analysis 

 In this section a closer look was given to the short term values of &|f|' and Tr.  As mentioned 

in the previous section, both &|f|' and Tr are approximately logarithmic during the first twenty to 

thirty time steps (Fig 4.6).  How these curves change with % was the focus of the next set of 

experiments.  % and the mass ratio, Mr/M0, are related by 

 Mr/M0  =  (% , (4.1) 

where ( = 6.3 x 10-2 hexes/particle for this series of simulations.  Varying % is then equivalent to 

varying the mass of the ring, Mr. 

 Ten runs were carried out over the range 0.1 % % % 1.9 (0.63 x 10-3 % Mr/M0 % 12.0 x 10-3).  

These data were fit to 

 &|f|'  =  A + B Log(t) , (4.2a) 

and 

 Tr  =  C - D Log(t) . (4.3a) 

A and B, and C and D are plotted in Fig. 4.7.  From Fig. 4.7a it is fairly clear that A(%) $ B(%) $ 

4.3 %.  Using this result, it is possible to simplify Eq. (4.2a) 

 &|f|'  =  4.3 % (1 + Log(t)) . (4.2b) 

Unfortunately, there is no such simplification for Eq. (4.3a).  Although, as % becomes large, it is 

safe to say that 

 Tr  #  $ 1.0 - 0.5 Log(t) . (4.3b) 

                                                                                                                                                       

†A notable exception is the fast multipole method which is O(Np) (Greengard & Rokhlin 1987). 
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Eqs. (4.2b) and (4.3b) suggest that while the mean force on the particles increases linearly as 

more mass is added, the transfer ratio levels off. 

 Up to this point, all the experiments have been carried out with a motion constant of CM = 1.  

Suppose CM were varied.  To explore this possibility, four runs at % = 0.9 were carried out for CM 

= 1, 2, 3, and 4.  The transfer ratios for the first thirty time steps of each run are shown in Fig. 

4.8.  The effect of increasing CM is to reduce the initial transfer rate.  It is even possible to reduce 

CM to the point that the transfer rate starts out increasing rather than decreasing. 

 

4.3 Uniform Distribution with a Disturbance 

 In contrast to the previous section, which examined the quantitative behavior of a large 

number of randomly distributed particles, this section will focus on the qualitative dynamics of a 

small number of orderly distributed particles.  The goal will be to determine how a uniformly 

distributed ring responds to a small disturbance.  Fig 4.9 shows the initial configuration.  Every 

hex, including the boundaries, is filled with one particle.  Three additional particles are located in a 

hex corresponding to the point in space: r = R, ) = 0.  Figs. 4.10, 4.11, 4.12† show how the ring 

evolved for three different motion constants: CM = 1, 2, and 3.  In the first case (CM = 1), the 

disturbance causes accretion to propagate quickly through the disk, even outrunning the 

differential rotation.  In the second case (CM = 2), the disturbance moves more slowly, allowing 

the differential rotation to create a spiral pattern.  In the third case (CM = 3), the disturbance 

creeps along.  Only those particles that are adjacent to the disturbance are perturbed, and a ringlet 

develops. 

 

4.5 Figures for §4 

                                                

†The computational parameters used to generate the data shown in Figs. 4.9, 4.10, and 4.11 were 

the same as those used in Fig. 4.1. 
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Fig. 4.6: Short term behavior of the NNP model  (! = 0.7, 20 steps).  a) "|f|# vs. t 

fit to A + B Log(t).  b) Tr vs. t fit to C - D Log(t). 
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5. DISCUSSION 

 

 In this section, the results of §4 are placed into a physical context.  First, a general evaluation 

of the NNP algorithm is given with a discussion of the advantages and disadvantages (§5.1).  §5.2 

applies the data presented in §4.2 to the accretion rates of disks around stars.  §5.3 briefly states 

some of the implications of §4.3.  Throughout §5 a rather liberal approach is taken in comparing 

the NNP model to what has been observed.  The thin physical basis of the model means that it is 

very difficult to rigorously prove its correspondence with nature.  But this was never the goal.  

The goal has always been to see what new ideas the NNP model could provoke. 

 

5.1 Properties of the Model 

 Computationally, the NNP algorithm has several advantages over standard Newtonian 

methods.  The most significant being large values of "t, making it possible to see a considerable 

amount of evolution with relatively few steps.  Yet, "t is small enough that the simulations 

maintain their continuity from step-to-step.  Other time saving features of the algorithm are: 

 - Calculations are linear with the number of particles i.e. O(Np). 

 - Integer basis increases speed and reduces memory usage. 

 - Grid representation provides faster I/O. 

 Methodologically, the algorithm has several properties that give a different perspective on 

astrophysical disks.  The utility of the scaling of ring space has already been discussed.  

Imposing the velocity curve also has interesting ramifications.  The experiments carried out in 

this paper only required differential rotation.  Many additional experiments could be carried out 

exploring different velocity curves.  The idea of treating the boundaries as reservoirs is not an 

integral part of the NNP model, but the ability to simulate a small portion of a disk is.  This 

feature allows a range of phenomena to be addressed that would otherwise require much larger 

systems. 
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 The price of these new tools is sacrificing the concept of angular momentum transport.  This 

has traditionally been an anchor of Newtonian modeling techniques, and a great deal has been 

learned by just applying conservation of angular momentum (Tremaine 1989).  Additionally, 

limiting the interaction to nearest neighbors means that the model looses its validity when 

concentrations of mass develop.  This limits the number of time steps in a typical simulation to ~ 

50. 

 

5.2 Interpretation of Quantitative Experiments 

 The main result of the experiments carried out in §4 is that the behavior of the NNP model is 

driven by accretion.  Figs. 4.1 b and c show that motion is a key part of this process.  Accretion 

pushes the system in such a way that the fraction of particles being perturbed steadily decreases 

(Fig. 4.4 and Fig. 4.6b).  This is due to the sweeping up of individual particles by larger 

concentrations of particles.  More concentrations causes the mean force on the particles to 

steadily increase (Fig. 4.6a). 

 The key parameter determining the rate at which accretion occurs appears to be the mass in 

the ring.  Experiments were conducted over the range 0.63 x 10-3 % Mr/M0 % 12.0 x 10-3, with 

M0 = 1.0 Mo, R = 1 AU, W = 0.45 AU, and CM = 1.  These parameters correspond to part of an 

accretion disk around a star.  Observed values for T Tauri stars (M0 ~ 1.0 Mo)  are Mdisk ~ 0.01 

- 0.1 Mo and have radii from 10 - 100 AU (Strom, Edwards & Strom 1989).  Assuming that the 

density drops off as roughly 1/r2 $ M(r) * r (a gross assumption), the typical mass for a 0.45 

AU ring is ~ 0.45 x 10-3 Mo.  Thus, these experiments correspond to slightly denser than average 

disks. 

 Tr indicates what fraction of the total particles moved, and is a measure of the rate of 

accretion.  At the lower end, adding mass causes the rate of accretion to speed up (Fig. 4.7b).  

The mean force between particles increases linearly with the mass (Fig. 4.7a).  What is 

unexpected is that the accretion rate levels off.  Whether or not this reflects a physical situation is 

difficult to say.  It would suggest an upper limit on how quickly accretion can take place. 
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 Increasing CM is equivalent to decreasing the mass in the ring.  To understand how the 

system behaves with even less mass, it is easiest to vary CM.  Transition ratios for Mr $ 0.57 x 

10-3 Mo, 0.28 x 10-3 Mo, 0.19 x 10-3 Mo, and 0.14 x 10-3 Mo are shown in Fig. 4.7.  As the mass 

decreases, the initial rate of accretion drops dramatically.  In fact, Tr gets to the point where it 

starts out increasing.  It is interesting to note that this occurs in the observed range of disk 

masses.  Interpreting these results to their fullest suggests that accretion disks form when less 

mass is available and the rate of evolution is level or gently increasing.  Adding mass causes disks 

to accrete too quickly to be observed.  Finally, there is an upper limit for how quickly the disk 

can be swept up. 

 These results can be scaled to planetary disks as well.  In the galactic case, there is the 

problem of the phase transition due to star formation.  How this should be handled is not exactly 

clear, and the above interpretations should be applied with care. 

 

5.3 Interpretation of Qualitative Experiments 

 The effects of varying CM on the propagation of a disturbance is shown in Figs. 4.10, 4.11, 

and 4.12.  In each case the ring evolves in a different way. In Fig. 4.10, the particles are swept up 

quickly, illustrating how easily the process of accretion is initiated when there is enough mass.  

Lowering the mass by increasing CM causes the disturbance to be sheared by differential rotation.  

Hence the characteristic spiral pattern.  The rate of propagation is slow in real terms as well.  The 

spiral in Fig. 4.11b took approximately six years, or periods, to develop.  In a larger system, it 

would not be inconceivable for this time frame to multiplied by an order of magnitude.  In other 

words, the spirals live long enough that they could be seen on galactic time scales.  Furthermore, 

adding arms to the spiral is trivial, just add more disturbances.  In Fig. 4.12 CM is so large that 

very few particles are perturbed.  Very slowly the particles nearest to the disturbance are swept 

up.  The final ringlet that develops is quite reminiscent of the structures seen in planetary rings 

(Smith et al 1981).  Using combinations of strategically placed disturbances, it is not difficult to 

imagine how a whole array of ringlets, arcs, gaps and double rings might be produced. 
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 These results indicate that a wide variety of phenomena can be produced by changing only 

one parameter, CM.  That CM corresponds to the mass is very thought provoking, implying a 

link between accretion disks, the spiral arms of galaxies, and planetary rings. 
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6. CONCLUSIONS 

 

 The answer to the question of can NNPs effect the behavior of disks is an unqualified "yes".  

In fact, many disk phenomena can be simulated with the NNP model.  Accretion, spiral arm 

structure, and finer scale planetary ring structure can all be obtained, and are related by the 

amount of mass in the disk.  Also tied to the disk mass is the rate at which accretion occurs.  Less 

massive disks accrete slowly, while more massive ones accrete quickly, but only to a point.  

From a computational standpoint the NNP algorithm produces these results quite efficiently.  

Complete simulations with 105 particles can be performed in minutes on a micro-computer. 

 This paper also addresses the question of how basic a model is too basic.  Claims of rigorous 

results from simple models should be heavily scrutinized.  This is not to say that such models 

cannot be useful tools for provoking new insights.  Never-the-less, as is shown here, the very 

simplest of models can give impressive results. 

 As far as further research is concerned, imposing different velocity curves is an obvious topic.  

Other possibilities include: 

- Studying different mass distributions. 

- Changing the geometry to encompass whole disks. 

- Extending the interaction length to cover second nearest neighbors. 

- Optimizing the code to its theoretical limit (6 bytes/particle) and running 

simulations of O(107) particles. 

- Combining the NNP model with a phase transition model (Seiden & Schulman 

1990) to get a more complete picture of galaxies. 

It is apparent that there are many situations to which NNP be can be applied.  In this light, the 

research here can be viewed as a "proof-of-concept", and warrants exploring the further 

application of this model. 
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