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PVTOL Effort Overview
Goal: Prototype advanced software
technologies to exploit novel 
processors for DoD sensors

DoD Relevance: Essential for flexible,
programmable sensors with large IO
and processing requirements

Approach: Develop Parallel Vector
Tile Optimizing Library (PVTOL) for
high performance and ease-of-use

Mission Impact:
•Enabler for next-generation synoptic,
  multi-temporal sensor systems

Technology Transition Plan
•Coordinate development with
 sensor programs
•Work with DoD and Industry
  standards bodies

Tiled
Processors

CPU in disk drive

•Have demonstrated 10x performance
benefit of tiled processors

•Novel storage should provide 10x more IO

FFTFFTA B C

Automated Parallel Mapper

P2P1P0

~1 TByte
RAID disk

~1 TByte
RAID disk

Hierarchical Arrays
DoD Software

Standards

PVTOL

Wideband
Digital
Arrays

Massive
Storage

•Wide area data
•Collected over many time scales

The Parallel Vector Tile Optimizing Library (PVTOL) is an effort to
develop a new processor architecture for signal processing that exploits
the recent shifts in technology to tiled multi-core chips and more tightly
integrated mass storage.  These technologies are critical for processing
the higher bandwidth and longer duration data produced required by
synoptic, multi-temporal sensor systems..  The principal challenge in
exploiting the new processing architectures for these missions is writing
the software in a flexible manner that is portable and delivers high
performance.  The core technology of this project is the Parallel Vector
Tile Optimizing Library (PVTOL), which will use recent advances in
automating parallel mapping technology, hierarchical parallel arrays,
combined with the Vector, Signal and Image Processing Library
(VSIPL) open standard to deliver portable performance on tiled
processors.
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Embedded Processor Evolution

• 20 years of exponential growth in FLOPS / Watt
• Requires switching architectures every ~5 years
• Cell processor is current high performance architecture
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High Performance Embedded Processors

Growth in embedded processor performance, in terms of FLOPS/Watt,
has grown exponentially over the last 20 years.  No single processing
architecture has dominated over this period, hence in order to leverage
this increase in performance, embedded system designers must switch
processing architectures approximately every 5 years.

MFLOPS / W for i860, SHARC, 603e, 750, 7400, and 7410 are
extrapolated from board wattage.  They also include other hardware
energy use such as memory, memory controllers, etc.  7447A and the
Cell estimate are for the chip only.  Effective FLOPS for all processors
are based on 1024 FFT timings.  Cell estimate uses hand coded TDFIR
timings for effective FLOPS.
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Cell Broadband Engine

• Playstation 3 uses Cell as
main processor

• Provides Cell-based
computer systems for high-
performance applications

• Cell was designed by IBM, Sony
and Toshiba

• Asymmetric multicore processor
– 1 PowerPC core + 8 SIMD cores

The current high performance processing architecture is the Cell
processor, designed by a collaboration between IBM, Sony and
Toshiba.  While the Cell was initially targeted for Sony’s Playstation 3, it
has use in wide range of applications, including defense, medical, etc.
Mercury Computer Systems provides Cell-based systems that can be
used to develop high-performance embedded systems.
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Multicore Programming Challenge

• Great success of Moore’s Law era
– Simple model: load, op, store
– Many transistors devoted to

delivering this model
• Moore’s Law is ending

– Need transistors for performance

Past Programming Model:
Von Neumann

Future Programming Model:
???

Increased performance at the cost of exposing complexity to the programmer

• Processor topology includes:
– Registers, cache, local memory,

remote memory, disk
• Cell has multiple programming

models

For decades, Moore’s Law has enabled ever faster processors that
have supported the traditional von Neumann programming model, i.e.
load data from memory, process, then save the results to memory. As
clock speeds near 4 GHz, physical limitations in transistor size are
leading designers to build more processor cores (or “tiles”) on each chip
rather than faster processors. Multicore processors improve raw
performance but expose the underlying processor and memory
topologies. This results in increased programming complexity, i.e. the
loss of the von Neumann programming model.
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Parallel Vector Tile-Optimized Library
(PVTOL)

• PVTOL is a portable and scalable middleware library for
multicore processors

• Enables incremental development

Cluster

2. Parallelize code

Embedded
Computer

3. Deploy code

Make parallel programming as easy as serial programming

1. Develop serial code

Desktop

4. Automatically parallelize code

PVTOL is focused on addressing the programming complexity of
associated with emerging “Topological Processors”.  Topological
Processors require the programmer to understand the physical topology
of the chip to get high efficiency.  There are many such processors
emerging into the market.  The Cell processor is an important example
of such a chip.  The current PVTOL effort is focused on getting high
performance from the Cell processor on signal and image processing
applications.  The PVTOL interface is designed to address  a wide
range of processors including multicore and FPGAs.

PVTOL enables software developers to develop high-performance
signal processing application on a desktop computer, parallelize the
code on commodity clusters, then deploy the code onto an embedded
computer, with minimal changes to the code.  PVTOL also includes
automated mapping technology that will automatically parallelize the
application for a given platform.  Applications developed on a
workstation can then be deployed on an embedded computer and the
library will parallelize the application without any changes to the code.
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void main(int argc, char *argv[]) {
 // Initialize PVTOL
 process pvtol(argc, argv);

 // Create input, weights, and output matrices
 typedef Dense<2, float, tuple<0, 1> > dense_block_t;
 typedef Matrix<float, dense_block_t, LocalMap> matrix_t;
 matrix_t input(num_vects, len_vect),
          filts(num_vects, len_vect),
          output(num_vects, len_vect);

 // Initialize arrays
 ...

 // Perform TDFIR filter
 output = tdfir(input, filts);
}

Serial PVTOL code

PVTOL Development Process

This slide shows an example of serial PVTOL code that allocates data
to be processed by a time-domain FIR filter.  The user simply allocates
three matrices containing the input and output data and the filter
coefficients.  The LocalMap tag in the Matrix type definition indicates
that the matrices will be allocated all on the processor’s local memory.
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PVTOL Development Process

void main(int argc, char *argv[]) {
 // Initialize PVTOL
 process pvtol(argc, argv);

 // Add parallel map
 RuntimeMap map1(...);

 // Create input, weights, and output matrices
 typedef Dense<2, float, tuple<0, 1> > dense_block_t;
 typedef Matrix<float, dense_block_t, RunTimeMap> matrix_t;
 matrix_t input(num_vects, len_vect , map1),
          filts(num_vects, len_vect , map1),
          output(num_vects, len_vect , map1);

 // Initialize arrays
 ...

 // Perform TDFIR filter
 output = tdfir(input, filts);
}

Parallel PVTOL code

This slide shows how to parallelize the serial code shown in the
previous slide.  The programmer creates a map, which contains a
concise description of how to parallelize a matrix across multiple
processors.  The RuntimeMap in the Matrix type definition indicates that
the map for the matrices is constructed at runtime.  The map object is
then passed into the matrix constructors, which allocate memory on
multiple processors as described in the map object.
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PVTOL Development Process

Embedded PVTOL code
void main(int argc, char *argv[]) {
 // Initialize PVTOL
 process pvtol(argc, argv);

 // Add hierarchical map
 RuntimeMap map2(...);

 // Add parallel map
 RuntimeMap map1(..., map2);

 // Create input, weights, and output matrices
 typedef Dense<2, float, tuple<0, 1> > dense_block_t;
 typedef Matrix<float, dense_block_t, RunTimeMap> matrix_t;
 matrix_t input(num_vects, len_vect , map1),
          filts(num_vects, len_vect , map1),
          output(num_vects, len_vect , map1);

 // Initialize arrays
 ...

 // Perform TDFIR filter
 output = tdfir(input, filts);
}

This slide shows how to deploy the parallel code from the previous slide
onto an embedded multicore system.  As before, map1 describes how
to parallelize matrices across multiple processors.  A new map, map2,
is added to describe how each processor should divide its section of the
matrices across cores.  This allocates a “hierarchical array” across the
processor hierarchy.
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PVTOL Development Process

Automapped PVTOL code
void main(int argc, char *argv[]) {
 // Initialize PVTOL
 process pvtol(argc, argv);

 

 // Create input, weights, and output matrices
 typedef Dense<2, float, tuple<0, 1> > dense_block_t;
 typedef Matrix<float, dense_block_t, AutoMap> matrix_t;
 matrix_t input(num_vects, len_vect , map1),
          filts(num_vects, len_vect , map1),
          output(num_vects, len_vect , map1);

 // Initialize arrays
 ...

 // Perform TDFIR filter
 output = tdfir(input, filts);
}

Maps give the programmer direct control over how memory should be
allocated across the processor hierarchy.  Alternatively, the
programmer can let PVTOL automatically parallelize arrays.  The only
change required is to replace the LocalMap tag in the Matrix type
definition with AutoMap.  Note that this code can be deployed without
any changes on a workstation, cluster or embedded computer.
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PVTOL Components

• Performance
– Achieves high performance

• Portability
– Built on standards, e.g. VSIPL++

• Productivity
– Minimizes effort at user level

This slide shows the various
software components that are used
in PVTOL and how they relate to
Performance, Portability and
Productivity.
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PVTOL Architecture

PVTOL preserves the
simple load-store

programming model in
softwareProductivity: Minimizes effort at user level

Performance: Achieves high performance

Portability: Runs on a range of architectures

This slide shows a layered view of the PVTOL architecture.  At the top
is the application.  The PVTOL API exposes high-level structures for
data (e.g. vectors), data distribution (e.g. maps), communication (e.g.
conduits) and computation (e.g. tasks and computational kernels).  High
level structures improve the productivity of the programmer.  By being
built on top of existing technologies, optimized for different platforms,
PVTOL provides high performance.  And by supporting a range of
processor architectures, PVTOL applications are portable.  The end
result is that rather than learning new programming models for new
processor technologies, PVTOL preserves the simple von Neumann
programming model most programmers are used to.
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Machine Model - Why?

• Provides description of underlying hardware
• pMapper: Allows for simulation without the hardware
• PVTOL: Provides information necessary to specify map hierarchies

size_of_double = 
cpu_latency = 
cpu_rate =
mem_latency =
mem_rate =
net_latency =
net_rate =
…

Hardware Machine Model

The development of a machine model that can describe different
processing architectures has two purposes.  First, a machine model
allows the pMapper automated mapping environment to simulate how
well different mappings of an application perform without executing the
application on the actual hardware.  Second, a machine model provides
information about the architecture needed by PVTOL to specify how to
map hierarchical arrays to the processing hierarchy.
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PVTOL Machine Model
• Requirements

– Provide hierarchical machine model
– Provide heterogeneous machine model

• Design
– Specify a machine model as a tree of machine models
– Each sub tree or a node can be a machine model in its own right

Entire
Network

CELL
Cluster

Cluster
of

Clusters

Dell
Cluster
2 GHz

Dell
Cluster
3 GHz

CELL

SPE 0

CELL

SPE 1 SPE 7… Dell 0 Dell 1 … Dell 15 Dell 32…Dell 1Dell 0

LS LS … LSLS LS … LS

SPE 0 SPE 1 SPE 7…

PVTOL requires that a machine model be able to describe hierarchical
and heterogeneous processing architectures.  For example, a cluster of
Cell processors is a hierarchy of processors; at the top level the
hierarchy consists of multiple Cell processors and at the next level each
Cell processor consists of multiple SPE processors.  Heterogeneity
enables the description of processing architectures composed of
different hardware architectures, e.g. Cell and Intel processors.  The
PVTOL machine model is recursive in that a machine model can be
described as a tree of machine models.
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Machine Model UML Diagram

A machine model constructor can consist of just node
information (flat) or additional children information (hierarchical).

A machine model can take a single
machine model description
(homogeneous) or an array of
descriptions (heterogeneous).

Node
Model

Comm
Model

Memory
Model

CPU
Model

Machine 
Model

Disk
Model

0..1 0..1 0..1 0..1

1

0..*

PVTOL machine model is different from PVL machine model in that
it separates the Node (flat) and Machine (hierarchical) information.

This slide shows the UML diagram for a machine model.  A machine
model constructor can consist of just node information (flat) or
additional children information (hierarchical).  A machine model can
take a single machine model description (homogeneous) or an array of
descriptions (heterogeneous).  The PVTOL machine model extends
PVL’s model in that it can describe both flat and hierarchical processing
architectures.
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Maps provide mapping
between layers

Machine Models and Maps

Entire
Network

CELL
Cluster

Cluster
of

Clusters

Dell
Cluster
2 GHz

Dell
Cluster
3 GHz

CELL

SPE 0

CELL

SPE 1 SPE 7… Dell 0 Dell 1 … Dell 15 Dell 32…Dell 1Dell 0

LS LS … LSLS LS … LS

SPE 0 SPE 1 SPE 7…

Machine model is tightly coupled to the maps in the application.

Machine model defines
layers in the tree

*Cell node includes main memory

grid:
dist:
policy:
...

grid:
dist:
policy:
...

grid:
dist:
policy:
...

A machine model is tightly coupled to the map.  Machine model
descriptions define layers in the tree, while maps provide mappings
between layers (N layers in the machine mode could have at most N-1
layers of maps).  The map API has to be adjusted to allow the user to
pass in an array of maps for heterogeneous systems.  The map API
does not require the user to specify storage level.  When specifying
hierarchical maps, the layers specified have to start at the root and be
contiguous
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Example: Dell Cluster

Dell
Cluster

Dell 0

Cache

Dell 1

Cache

Dell 2

Cache

Dell 3

Cache

Dell 4

Cache

Dell 5

Cache

Dell 6

Cache

Dell ...

Cache

A = *

*Assumption: each        fits into cache of each Dell node.

NodeModel nodeModelCluster, nodeModelDell,
nodeModelCache;

MachineModel machineModelMyCluster
= MachineModel(nodeModelCluster, 32, machineModelDell);

MachineModel  machineModelDell
= MachineModel(nodeModelDell, 1, machineModelCache);

MachineModel machineModelCache
= MachineModel(nodeModelCache);

hierarchical machine
model constructors

flat machine
model constructor

clusterMap = grid: 1x8
dist: block
policy: default
nodes: 0:7
map: dellMap

grid: 4x1
dist: block
policy: default

dellMap =

This shows an example of how to construct a machine model of a
cluster comprised of Dell computers.  This example describes a cluster
of 32 Dell nodes, with each node containing a single processor and
each processor containing cache.  This machine model contains a two-
level hierarchy.  The matrix A can be mapped to this hierarchy by two
maps: clusterMap and dellMap.  clusterMap describes how to distribute
data across nodes and dellMap describes how to partition data on each
Dell node into blocks that will fit into cache.
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Example: 2-Cell Cluster

*Assumption: each        fits into the local store (LS) of the SPE.

CLUSTER

CELL 0 CELL 1

SPE 0 SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6 SPE 7 SPE 0 SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6 SPE 7

LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS

A = *

grid: 1x2
dist: block
policy: default
nodes: 0:1
map: cellMap

clusterMap =

A =

grid: 1x4
dist: block
policy: default
nodes: 0:3
map: speMap

cellMap =

grid: 4x1
dist: block
policy: default

speMap =

MachineModel mmLS =
MachineModel(nmLS);

NodeModel nmCluster, nmCell, nmSPE,nmLS;
MachineModel mmCellCluster =
MachineModel(nmCluster, 2,mmCell);

MachineModel  mmCell =
MachineModel(nmCell,8,mmSPE);

MachineModel mmSPE =
MachineModel(nmSPE, 1, mmLS);

This shows an example of how to construct a machine model of a
cluster comprised of Cell processors.  This example describes a cluster
of 2 Cell processors, with each node containing a 8 SPE’s and each
processor containing a local store.  This machine model contains a
three-level hierarchy.  The matrix A can be mapped to this hierarchy by
three maps: clusterMap, dellMap and speMap.  clusterMap describes
how to distribute data across Cell processors, dellMap describes how to
distribute data on each Cell processor between SPE’s and speMap
describes how to partition data owned by each SPE into blocks that will
fit into its local store.
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Machine Model Design Benefits
Simplest case (mapping an array onto a cluster of nodes)
can be defined as in a familiar fashion (PVL, pMatlab).

Dell
Cluster

Dell 0 Dell 1 Dell 2 Dell 3 Dell 4 Dell 5 Dell 6 Dell ...

A = *

clusterMap =
grid: 1x8
dist: block
nodes: 0:7

Ability to define heterogeneous models allows
execution of different tasks on very different systems.

CLUSTER

CELL 0 Dell
Cluster

nodes: [Cell Dell]

taskMap =

... ... ...

This slide describes the advantages of tree machine models/maps.  In
the simplest case, a machine model can be easily specified in the same
way as PVL and pMatlab.  From the API point of view, this is expressive
enough for both flat and hierarchical machine models/maps.  It allows
the user to use different machine models in different tasks, since task
maps do not require that programmer to specify a data distribution.
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Hierarchical Arrays UML

View
Vector
Matrix
Tensor

Block

Iterator
Map

TileLayerMappingHwLayerMapping

NodeLayerMapping SwLayerMapping

DiskLayerMapping

OocLayerMapping

TileLayerManagerHwLayerManager

NodeLayerManager SwLayerManager

DiskLayerManager

OocLayerManager

LayerManager

LocalMapRuntimeMap

DistributedManager

DistributedMapping

0..

0..

0..

Hierarchical arrays are designed such that details of the memory
hierarchy are hidden from the programmer.  Programmers access data
Block objects via a Vector, Matrix or Tensor View object.  Iterator
objects provide an architecture independent mechanism for accessing
data.  Map objects describe how data in a Block object is distributed
across the memory hierarchy.  Different layer managers are instantiated
depending on which layers in the memory hierarchy data is distributed
across, e.g. tile memory, local main memory, remote main memory,
disk, etc.
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Isomorphism

CELL
Cluster

CELL 1CELL 0

LS LS LS

SPE 0 SPE 7…

LS LS LS

SPE 0 SPE 7…

SwLayerManager
upperIf: heap
lowerIf: heap

NodeLayerManager
upperIf: ∅
lowerIf: heap

TileLayerManager
upperIf: heap
lowerIf: tile

grid:   1x2
dist:   block
nodes:  0:1
map:    cellMap

grid:   1x4
dist:   block
policy: default
nodes:  0:3
map:    speMap

grid:   4x1
dist:   block
policy: default

Machine model, maps, and layer managers are isomorphic

Distribution of data across a layer in the machine model has a one-to-
one correspondence with one layer in the hierarchical map and with
one LayerManager object.
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Hierarchical Array Mapping
Machine Model Hierarchical Map

Hierarchical Array

CELL
Cluster

CELL 1CELL 0

LS LS LS

SPE 0 SPE 7…

LS LS LS

SPE 0 SPE 7…

grid:   1x2
dist:   block
nodes:  0:1
map:    cellMap

grid:   1x4
dist:   block
policy: default
nodes:  0:3
map:    speMap

grid:   4x1
dist:   block
policy: default

clusterMap

cellMap

speMap

*Assumption: each       fits into the local store (LS) of the SPE.  CELL X implicitly includes main memory.

LS LS

SPE 4 SPE 7

LS

SPE 5

LS

SPE 6

LS

SPE 1

LS

SPE 2

CELL
1

LS LS

SPE 4 SPE 7

LS

SPE 5

LS

SPE 6

LS LS

SPE 0 SPE 3

LS

SPE 1

LS

SPE 2

CELL
Cluster

CELL
0

LS LS

SPE 0 SPE 3

This slide shows an example of how a hierarchical map distributes data
across the memory hierarchy to construct a hierarchical array.
Suppose we have a matrix with 4 rows and 8 columns (4x8).  The
highest level map (clusterMap) divides the the column dimension into 2
blocks across nodes 0 and 1 in the CELL cluster.  This results in a 4x4
submatrix on each CELL node.  The next level map (cellMap) divides
the column dimension into 4 blocks across SPE’s 0 through 3 on each
CELL node.  This results in a 4x1 submatrix owned by each SPE.
Finally, the lowest level map (speMap) divides the row dimension into 4
blocks.  This results in four 1x1 submatrices.  Only each 1x1 submatrix
is loaded into the SPE’s local store one at a time for processing.
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LS

…

LS

SPE 1

LS

SPE 2

CELL
1

LS

…

LS LS

SPE 0 SPE 3

LS

SPE 1

LS

SPE 2

CELL
Cluster

CELL
0

LS LS

SPE 0 SPE 3

grid:   1x2
dist:   block
nodes:  0:1
map:    cellMap

grid:   1x4
dist:   block
policy: default
nodes:  0:3
map:    speMap

grid:   4x1
dist:   block
policy: default

Spatial vs. Temporal Maps

• Spatial Maps
– Distribute across multiple

processors
– Physical

 Distribute across multiple
processors

– Logical
 Assign ownership of array

indices in main memory to
tile processors

 May have a deep or shallow
copy of data

• Temporal Maps
– Partition data owned by a

single storage unit into
multiple blocks

– Storage unit loads one
block at a time

 E.g. Out-of-core, caches

Maps describe how to partition an array.  There are two types of maps:
spatial and temporal.  A spatial map describes how elements of an
array are divided between multiple processors.  A physical spatial map
breaks up an array into blocks that are physically located on separate
processors, e.g. dividing an array between two Cell processors.  A
logical map differs from a physical map in that the array being
partitioned remains intact.  Rather, the arrays is logically divided into
blocks that are owned by different processors.  For example, on a
single Cell processor, the array resides in main memory.  A logical map
may assign blocks of rows to each SPE.  Finally, temporal maps
divided arrays into blocks that are loaded into memory one at a time.
For example, a logicial map may divide an array owned by a single SPE
into blocks of rows.  The array resides in main memory and the SPE
loads one block at a time into its local store.



27

MIT Lincoln Laboratory
PVTOL-27

6/23/07

Layer Managers

• Manage the data distributions between adjacent levels in
the machine model

HwLayerManager
upperIf: heap
lowerIf: cache

Spatial distribution
between two layers in main

memory (shallow/deep copy)

Temporal distribution between 
main memory and cache

(deep/shallow copy)

NodeLayerManager
upperIf: ∅
lowerIf: heap

SwLayerManager
upperIf: heap
lowerIf: heap

Spatial distribution
between nodes

These managers imply that
there is main memory at the
SPE level

CELL
Cluster

CELL 0

SPE 1

CELL 1

SPE 0SPE 0 SPE 1

CELL
Cluster

CELL 0

PPE
L1 $

PPE

TileLayerManager
upperIf: heap
lowerIf: tile

Temporal distribution between 
main memory and tile processor

memory (deep copy)

CELL
Cluster

CELL 0

LS LS LS

SPE 0 SPE 2SPE 1

LS

SPE 3

Spatial distribution
between disks

DiskLayerManager
upperIf: ∅
lowerIf: disk

Temporal distribution
between a node’s disk and 
main memory (deep copy)

OocLayerManager
upperIf: disk
lowerIf: heap

CELL
Cluster

Disk 0

CELL 0

Disk 1

CELL 1

PVTOL instantiates different layer managers for data objects,
depending on where in the memory hierarchy the data object is
allocated.  The layer manager manages the movement of data between
the adjacent memory layers.  The machine model restricts the types of
layer managers; managers are implemented only for pairs of layers that
can be adjacent, e.g. there is no layer manager for moving data from
disk to tile memory since those two layers cannot be adjacent.
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SPE 0

Tile Iterators

• Iterators are used to access temporally distributed tiles
• Kernel iterators

– Used within kernel expressions
• User iterators

– Instantiated by the programmer
– Used for computation that

cannot be expressed by kernels
– Row-, column-, or plane-order

• Data management policies specify
how to access a tile

– Save data
– Load data
– Lazy allocation (pMappable)
– Double buffering (pMappable)Row-major

Iterator

CELL
Cluster

CELL 0

SPE 1

CELL 1

SPE 0 SPE 1

1 2
3 4

Iterators are used to access tiles that are distributed using temporal
maps.  The programmer can specify the direction the iterator moves
through the tiles (row, column, plane-order) and how data should be
transferred when accessing a tile, by specifying data management
policies.  For example, if the user intends to overwrite the contents of a
tile, it is not necessary to actually load the tile.  Rather, the tile can be
allocated directly in the SPE.  This eliminates the overhead of actually
transferring data from main memory to the SPE’s local store.
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Pulse Compression Example
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…
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SPE 1
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Cluster

CELL
0
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SPE 0

…
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…
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SPE 1

CELL
2
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SPE 0

DIT DAT DOT

CPI 0CPI 1CPI 2 … CPI 0CPI 1CPI 2

This shows an example of data flow through a pulse compression
operation using hierarchical arrays.  CELL 0 is responsible for the Data
Input Task, which loads one CPI into the system at a time.  Next, CELL
0 transfers the CPI to CELL 1 to perform the Data Analysis Task, which
performs the pulse compression.  CELL 1 distributes the CPI’s rows
across two SPE’s.  Each SPE divides its section of the CPI into blocks
of columns.  After CELL 1 has finished pulse compressing the CPI, the
results are sent to CELL 2.  CELL 2 performs the Data Output Task,
which writes out the pulse compressed CPI.  This example processing
multiple CPI’s in a pipelined fashion.
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• PVTOL Machine Independent Architecture

– Machine Model
– Hierarchal Data Objects
– Data Parallel API
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– pMapper
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• Summary
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API Requirements

• Support transitioning from serial to parallel to hierarchical
code without significantly rewriting code

Uniprocessor

Fits in
main memory

Fits in
main memory

Parallel
processor

Fits in
main memory

Embedded
parallel

processor

PVL

Uniprocessor

Uniprocessor w/
cache optimizations

Fits in
main memory

Fits in
main memory

Fits in cache
Fits in cache Fits in

tile memory

Parallel
processor

Parallel processor w/
cache optimizations Parallel

tiled processor

PVTOL

PVTOL extends the incremental development process demonstrated in
Lincoln’s Parallel Vector Library (PVL).  In PVL, programmers first
develop a serial implementation of thee application on their workstation.
Once the serial implementation is verified, the applications can be
parallelized on a cluster.  Because parallelization is achieved using
maps, this requires very little change to the code.  Once the parallel
implementation is verified and optimized for performance, the
application can be deployed onto the embedded parallel processor with
little to no change to the code.

PVTOL adds an additional step to the process.  As before, a serial
version is developed on a workstation.  Next, the programmer can
either develop a parallel version on a cluster (a la PVL) or develop a
serial version that is optimized for cache performance on a workstation.
In both cases, maps are used to divide the data across processors or
into blocks that fit into cache.  Next, hierarchical maps are used to
implement a parallel version in which data on each processor is
optimized for cache performance.  This is achieved by using
hierarchical maps.  Finally, the code can be deployed onto a parallel
tiled processor, such that the hierarchical map partitions data between
processors and between tiles on each processor.
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Data Types

• Block types
– Dense

• Element types
– int, long, short, char, float,

double, long double
• Layout types

– Row-, column-, plane-major

• Dense<int Dims,
      class ElemType,
      class LayoutType>

• Views
– Vector, Matrix, Tensor

• Map types
– Local, Runtime, Auto

• Vector<class ElemType,
       class BlockType,
       class MapType>

Data is stored in Block objects, which will initially support dense data
objects (as opposed to sparse).  Data dimensions can be laid out in
memory in any order.  Block can store nearly any data type.

Data stored in Blocks are accessed via View objects, which represent
vectors, matrices, or tensors.  Additionally, data distributions can be
specified in the View object using different types of Map objects.
Finally, Views specify whether data is mapped to the local processor’s
memory, mapped at runtime across multiple processors, or
automatically mapped by pMapper.
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Data Declaration Examples

// Create tensor
typedef Dense<3, float, tuple<0, 1, 2> > dense_block_t;
typedef Tensor<float, dense_block_t, LocalMap> tensor_t;
tensor_t cpi(Nchannels, Npulses, Nranges);

// Node map information
Grid grid(Nprocs, 1, 1, Grid.ARRAY); // Grid
DataDist dist(3);                    // Block distribution
Vector<int> procs(Nprocs);           // Processor ranks
procs(0) = 0; ...
ProcList procList(procs);            // Processor list
RuntimeMap cpiMap(grid, dist, procList); // Node map

// Create tensor
typedef Dense<3, float, tuple<0, 1, 2> > dense_block_t;
typedef Tensor<float, dense_block_t, RuntimeMap> tensor_t;
tensor_t cpi(Nchannels, Npulses, Nranges, cpiMap);

Serial

Parallel

This shows an example of how to allocate serial data in PVTOL, then
parallelize that data using maps.  Each map requires a grid, data
distribution and list of processor ID’s.  The grid describes how to
partition each dimension of the data object.  The data distribution
describes whether to use a block, cyclic or block-cyclic distribution.  The
list of processor ID’s indicates which processors to distribute data
across.  The map type in the Tensor datatype is changed to
RuntimeMap and the map object is passed into the Tensor constructor.
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Data Declaration Examples

// Tile map information
Grid tileGrid(1, NTiles 1, Grid.ARRAY);             // Grid
DataDist tileDist(3);                               // Block distribution
DataMgmtPolicy tilePolicy(DataMgmtPolicy.DEFAULT);  // Data mgmt policy
RuntimeMap tileMap(tileGrid, tileDist, tilePolicy); // Tile map

// Tile processor map information
Grid tileProcGrid(NTileProcs, 1, 1, Grid.ARRAY); // Grid
DataDist tileProcDist(3);                        // Block distribution
Vector<int> tileProcs(NTileProcs);               // Processor ranks
inputProcs(0) = 0; ...
ProcList inputList(tileProcs);                   // Processor list
DataMgmtPolicy tileProcPolicy(DataMgmtPolicy.DEFAULT); // Data mgmt policy
RuntimeMap tileProcMap(tileProcGrid, tileProcDist, tileProcs,
                       tileProcPolicy, tileMap); // Tile processor map

// Node map information
Grid grid(Nprocs, 1, 1, Grid.ARRAY); // Grid
DataDist dist(3);                    // Block distribution
Vector<int> procs(Nprocs);           // Processor ranks
procs(0) = 0;
ProcList procList(procs);            // Processor list
RuntimeMap cpiMap(grid, dist, procList, tileProcMap);  // Node map

// Create tensor
typedef Dense<3, float, tuple<0, 1, 2> > dense_block_t;
typedef Tensor<float, dense_block_t, RuntimeMap> tensor_t;
tensor_t cpi(Nchannels, Npulses, Nranges, cpiMap);

Hierarchical

This shows an example of how to extend the parallel code on the
previous slide to allocate hierarchical data using hierarchical maps.  In
this case, two additional layers are added to the Tensor object.  The tile
processor map describes how to distribute data on a processor
between tile processors on each node.  This is an example of a spatial
map.  The tile map describes how to distribute data owned by a tile
processor into blocks that can be loaded into the tile processor’s
memory and processed.  This is an example of a temporal map.  Note
that once a new map is created, it simply needs to be passed in as an
argument to the next map constructor to create the hierarchical map.

The method of constructing these maps are nearly identical to the node
map.  One additional parameter is added, however: data management
policies.  Data management policies allow the programmer to specify
how data should move between layers in the memory hierarchy,
potentially eliminating unnecessary communication.
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Pulse Compression Example

Tiled version
// Declare weights and cpi tensors
tensor_t cpi(Nchannels, Npulses, Nranges,
             cpiMap),
         weights(Nchannels, Npulse, Nranges,
                 cpiMap);

// Declare FFT objects
Fftt<float, float, 2, fft_fwd> fftt;
Fftt<float, float, 2, fft_inv> ifftt;

// Iterate over CPI's
for (i = 0; i < Ncpis; i++) {
   // DIT: Load next CPI from disk
   ...

   // DAT: Pulse compress CPI
   dataIter = cpi.beginLinear(0, 1);
   weightsIter = weights.beginLinear(0, 1);
   outputIter = output.beginLinear(0, 1);
   while (dataIter != data.endLinear()) {
      output = ifftt(weights * fftt(cpi));
      dataIter++; weightsIter++; outputIter++;
   }

   // DOT: Save pulse compressed CPI to disk
   ...
}

Untiled version
// Declare weights and cpi tensors
tensor_t cpi(Nchannels, Npulses, Nranges,
             cpiMap),
         weights(Nchannels, Npulse, Nranges,
                 cpiMap);

// Declare FFT objects
Fftt<float, float, 2, fft_fwd> fftt;
Fftt<float, float, 2, fft_inv> ifftt;

// Iterate over CPI's
for (i = 0; i < Ncpis; i++) {
   // DIT: Load next CPI from disk
   ...

   // DAT: Pulse compress CPI

   output = ifftt(weights * fftt(cpi));

   // DOT: Save pulse compressed CPI to disk
   ...
}

Kernelized tiled version is identical to untiled version

This is an example of how to implement pulse compression in PVTOL.
The untiled version on the left runs on both serial and parallel
processors.  The tiled version on the right runs on tiled processors.  On
a tiled processor, data is distributed using temporal maps, i.e. data are
broken into blocks that must be loaded one at a time.  Consequently,
iterators are used to load and process blocks one at a time.

Note that a pulse compression kernel could be written such that the
library automatically recognize the pulse compression operation and
automatically iterates through blocks in the hierarchical arrays.  In other
words, the iterator code in the tiled version would be hidden within the
library.  Consequently, such a “kernelized” version of the tile code
would be identical to the untiled code.
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Equation eq1(a, b*c + d);
Equation eq2(f, a / d);

for( ... ) {
    ...
    eq1();
    eq2();
    ...
}

Assignment Setup Example

Expressions stored
in Equation object

Expressions
invoked without re-
stating expression

Setup Assign API

• Library overhead can be reduced by an initialization time
expression setup

– Store PITFALLS communication patterns
– Allocate storage for temporaries
– Create computation objects, such as FFTs

Expression objects can hold setup information without duplicating the equation

Executing expressions at runtime can incur various overheads, e.g.
computing the PITFALLS communication patterns between operands
with different mappings, allocating storage for temporary, intermediate
values, and initializing values for certain types of computations like FFT.

Equation objects that describe expressions can be constructed.  Thus,
this overhead can be incurred at initialization time rather than during the
computation.
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Redistribution: Assignment
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CELL
Cluster

CELL
1

LSLS

SPE 7SPE 4

A B

Programmer writes ‘A=B’
Corner turn dictated by maps, data ordering (row-major vs. column-major)

Main memory is the highest level where all of A and
B are in physical memory.  PVTOL performs the

redistribution at this level.  PVTOL also performs
the data reordering during the redistribution.

PVTOL ‘invalidates’ all of A’s local store blocks at the lower
layers, causing the layer manager to re-load the blocks

from main memory when they are accessed.

Cell
Cluster

Individual
Cells

Individual
SPEs

SPE
Local
Stores

PVTOL ‘commits’ B’s local store memory blocks to main
memory, ensuring memory coherency

PVTOL A=B Redistribution Process:

5. PVTOL ‘invalidates’ A’s temporal memory blocks.

2. PVTOL descends the hierarchy, performing PITFALLS intersections.
3. PVTOL stops descending once it reaches the highest set of map nodes at which all of A and all of B

are in physical memory.
4. PVTOL performs the redistribution at this level, reordering data and performing element-type

conversion if necessary.

1. PVTOL ‘commits’ B’s resident temporal memory blocks.

Often, the output data of an operation must have a different data
distribution than the input data.  A common type of operation which
redistributes data is the corner turn, in which data that are distributed
into blocks of columns are redistributed into blocks of rows, or vice
versa.  To perform a corner turn on a tiled processor, such as the Cell,
all SPE’s on each Cell processor write their respective columns of the
array to main memory (blue).  The Cell processors then redistribute the
data in main memory from a column distribution to a row distribution
(red).  Finally, the rows on each Cell are distributed across the SPE’s
(green).  To perform a corner turn, the programmer simply writes A=B,
where A and B have different maps.



38

MIT Lincoln Laboratory
PVTOL-38

6/23/07

Redistribution: Copying

grid:  1x2
dist:  block
nodes: 0:1
map:cellMap

grid:4x1
dist:block
policy: default
nodes:  0:3
map: speMap

grid:1x4
dist:block
policy: default

A allocates its own memory and
copies contents of B

A allocates a hierarchy based on
its hierarchical map

Commit B’s local store memory
blocks to main memory

A shares the memory allocated
by B.  No copying is performed

A allocates a hierarchy based
on its hierarchical map

Commit B’s local store memory
blocks to main memoryLSLS
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nodes: 0:1
map:cellMap

grid:1x4
dist:block
policy: default
nodes:  0:3
map: speMap

grid:4x1
dist:block
policy: default

Programmer creates new view using copy constructor with a new hierarchical map

Deep copy

Shallow copy

A B

A BAB

In the assignment A = B, depending on if A and B are on different
processors, a deep copy is performed.  If A and B are on the same
processor, then the programmer can specify that A is a shallow copy of
B.

If A and B are on different processors, the data on each SPE for B is
written to main memory, then the contents of B are written into A, then
the contents of A are distributed onto the SPE’s according to A’s
hierarchical map.

If A and B are on the same processor, but distributed on different
SPE’s, then A and B can share the same data in main memory, but
distribute the data onto different sets of SPE’s.
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SPE 2

Pulse Compression + Doppler Filtering
Example
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This shows an extension of the previous example of data flow through a
pulse compression operation with the addition of a Doppler filtering
operation.  CELL 0 loads one CPI into the system at a time.  Next,
CELL 0 transfers the CPI to CELL 1 to perform the Data Analysis Task.
CELL 1 distributes the CPI’s rows across SPE 0 and SPE 1.  Each SPE
divides its section of the CPI into blocks of columns.  Once the pulse
compression is complete, the CPI is redistributed across SPE 2 and
SPE 3 such that rows are still distributed across the SPE’s but each
SPE divides its section into blocks of rows.  This redistribution is
necessary because the pulse compression requires a different data
distribution than the pulse compression.  Once the DAT is complete,
CELL 1 sends the processed CPI to CELL 2, which writes out the CPI.
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Tasks & Conduits

• Each Task is SPMD
• Conduits transport distributed data objects (i.e. Vector, Matrix, Tensor)

between Tasks
• Conduits provide multi-buffering
• Conduits allow easy task replication
• Tasks may be separate processes or may co-exist as different threads

within a process

Task 2 Task 3Task 1

Conduit B Conduit C

Conduit A

A means of decomposing a problem into a set of
asynchronously coupled sub-problems (a pipeline)

Each task in a pipeline is notionally an independent SPMD. Conduits transport
distributed data objects between the tasks and isolate the mapping of data
within a task from all other tasks.
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A PVTOL Task consists
of a distributed set of
Threads that use the
same communicator

Tasks/w Implicit Task Objects

Task  ≈ Parallel Thread

* PVL task state machines provide primitive cooperative multi-threading

Task

Sub-Task
0..*

Map

sub-Map

0..*

Communicator

sub-Communicator
0..*

Task Function

Roughly
equivalent to the

“run” method of a
PVL task

Thread

Threads may be either
preemptive or
cooperative*

The execution of code in the different CPU ranks that a task is mapped to
must happen in a SPMD manner and is therefore synchronous. Each task’s
SPMD need its own independent communication scope that is isolated from
other tasks. In the same way that the execution of a native O/S thread implies
a serialization of the threads actions, the execution of a SPMD task implies
that each CPU executes SPMD actions in the same order.
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Cooperative vs. Preemptive Threading

Thread 1 User Space
Scheduler Thread 2

yield( )

yield( )

yield( )
return from yield( )

return from yield( )

Thread 1 O/S
Scheduler Thread 2

interrupt , I/O wait

interrupt , I/O wait

interrupt , I/O waitreturn from
interrupt

return from
interrupt

Cooperative User Space Threads (e.g. GNU Pth) Preemptive Threads (e.g. pthread)

• PVTOL calls yield( ) instead of blocking
while waiting for I/O

• O/S support of multithreading not needed
• Underlying communication and

computation libs need not be thread safe
• SMPs cannot execute tasks concurrently

• SMPs can execute tasks concurrently
• Underlying communication and

computation libs must be thread safe

PVTOL can support both threading styles via an internal thread wrapper layer

With cooperative threading a thread must explicitly yield execution back to a
scheduler. With preemptive scheduling an interrupt can be used to force a
thread to yield execution back to a scheduler. Most programs are in one of two
major states. They are either waiting for I/O or processing data. Preemptive
scheduling is mandatory only when compute bound processing can take so
long that I/O can be missed. In real-time systems with bounded processing
latency requirements this is rarely the case so either threading approach will
usually succeed. Note that cooperative scheduling can be more efficient since
preemptive context switching tends to add unnecessary overhead.
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Task API

support functions get values for current task SPMD
• length_type pvtol::num_processors();
• const_Vector<processor_type>

pvtol::processor_set();

Task API
• typedef<class T>

pvtol::tid pvtol::spawn(
    (void)(TaskFunction*)(T&),
    T& params,
    Map& map);

• int pvtol::tidwait(pvtol::tid);

Similar to typical thread API except for spawn map 

The proposed task API. Note the simplicity of this API vs. the PVL Task API.
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Multiple Readers are allowed

Explicit Conduit UML
(Parent Task Owns Conduit)

Application Parent Task

PVTOL Conduit

PVTOL Task

Conduit
Data Reader

Conduit
Data Writer

0..

0..

0..

0..

1

Thread

PVTOL
Data

Object

ThreadFunction

Reader & Writer objects manage a Data Object,
provides a PVTOL view of the comm buffersOnly one writer is allowed

Application Function

Parent task owns
the conduits

Application tasks
owns the endpoints

(i.e. readers & writers)

Parent
Child

Class diagram of an explicit conduit case. This case is explicit because a
parent Task actually declares a Conduit object and passes the Conduit
interface objects into its child Tasks. This is less than ideal since the
communication between child Tasks is hard coded into the parent Task.
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Multiple Readers are allowed

Implicit Conduit UML
(Factory Owns Conduit)

Conduit Factory Function

PVTOL Conduit

PVTOL Task

Conduit
Data Reader

Conduit
Data Writer

0..

0..

0..

0..

1

Thread

PVTOL
Data

Object

ThreadFunction

Reader & Writer objects manage a Data Object,
provides a PVTOL view of the comm buffersOnly one writer is allowed

Application Function

Factory task owns
the conduits

Application tasks
owns the endpoints

(i.e. readers & writers)

Class diagram of the implicit Conduit case. As in the explicit Conduit case a
task still needs to own the Conduit. Instead of a parent Task the Conduit’s
owner is a Conduit factory Task. The Conduit factory Task is mapped across
the entire application SPMD and therefore form any connection between
Tasks. This approach is more flexible since tasks can connect to each other
via a “conduit name” or “topic” rather than needing some parent task to
explicitly form the connection.
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Conduit API
Conduit Declaration API
• typedef<class T>

class Conduit {
Conduit( );
Reader& getReader( );
Writer& getWriter( );

};
Conduit Reader API
• typedef<class T>

class Reader {
public:

Reader( Domain<n> size, Map map, int depth );
void setup( Domain<n> size, Map map, int depth );
void connect( );            // block until conduit ready
pvtolPtr<T> read( );        // block until data available
T& data( );                 // return reader data object

};
Conduit Writer API
• typedef<class T>

class Writer {
public:

Writer( Domain<n> size, Map map, int depth );
void setup( Domain<n> size, Map map, int depth );
void connect( );            // block until conduit ready
pvtolPtr<T> getBuffer( );   // block until buffer available
void write( pvtolPtr<T> );  // write buffer to destination
T& data( );                 // return writer data object

};
Conceptually Similar to the PVL Conduit API

Note: the Reader and Writer
connect( ) methods block
waiting for conduits to finish
initializing and perform a
function similar to PVL’s two
phase initialization

The Conduit API. The Conduit class is explicitly instantiated in an application
Task in the explicit Conduit case or within a Conduit factory Task in the implicit
Conduit case. Tasks that wish to send or receive data use the Reader or
Writer classes to perform the required action.
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Task & Conduit
API Example/w Explicit Conduits

typedef struct { Domain<2> size; int depth;  int numCpis;  } DatParams;

int DataInputTask(const DitParams*);
int DataAnalysisTask(const DatParams*);
int DataOutputTask(const DotParams*);

int main( int argc, char* argv[])
{

…
Conduit<Matrix<Complex<Float>>> conduit1;
Conduit<Matrix<Complex<Float>>> conduit2;

DatParams       datParams = …;
datParams.inp = conduit1.getReader( );
datParams.out = conduit2.getWriter( );

vsip:: tid ditTid = vsip:: spawn( DataInputTask, &ditParams,ditMap);
vsip:: tid datTid = vsip:: spawn( DataAnalysisTask, &datParams, datMap );
vsip:: tid dotTid = vsip:: spawn( DataOutputTask, &dotParams, dotMap );

vsip:: tidwait( ditTid );
vsip:: tidwait( datTid );
vsip:: tidwait( dotTid );

}

“Main Task” creates Conduits, passes to sub-tasks as
parameters, and waits for them to terminate

Conduits
created in

parent task

Spawn
Tasks

Wait for
Completion

Pass Conduits
to children via

Task
parameters

A simple explicit Conduit example, part 1. The parent Task declaration of the
Conduit and the passing of conduit endpoint interfaces to the child tasks is
shown.
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int DataAnalysisTask(const DatParams* p)
{

Vector<Complex<Float>> weights( p.cols, replicatedMap );
ReadBinary (weights, “weights.bin” );
Conduit<Matrix<Complex<Float>>>::Reader inp( p.inp );
inp.setup(p.size,map,p.depth);
Conduit<Matrix<Complex<Float>>>::Writer out( p.out );
out.setup(p.size,map,p.depth);
inp.connect( );
out.connect( );
for(int i=0; i<p.numCpis; i++) {

pvtolPtr<Matrix<Complex<Float>>> inpData( inp.read() );
pvtolPtr<Matrix<Complex<Float>>> outData( out.getBuffer() );
(*outData) = ifftm( vmmul( weights, fftm( *inpData, VSIP_ROW ),

VSIP_ROW );
out.write(outData);

}
}

Reader::getHandle(
) blocks until data

is received

Writer::getHandle( )
blocks until output
buffer is available

DAT Task & Conduit
Example/w Explicit Conduits

pvtolPtr destruction
implies reader extract

Writer::write( )
sends the data

Sub-tasks are implemented as ordinary functions

connect( ) blocks until
conduit is initialized

Complete conduit
initialization

Declare and Load
Weights

A simple explicit Conduit example, part 2. An implementation of the DataAnal
child Task is show where the input and output Conduit interfaces are obtained
from a parent Task.
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DIT-DAT-DOT Task & Conduit
API Example/w Implicit Conduits

typedef struct { Domain<2> size; int depth;  int numCpis; } TaskParams;

int DataInputTask(const InputTaskParams*);
int DataAnalysisTask(const AnalysisTaskParams*);
int DataOutputTask(const OutputTaskParams*);

int main( int argc, char* argv[ ])
{

…
TaskParams       params = …;

vsip:: tid ditTid = vsip:: spawn( DataInputTask, &params,ditMap);
vsip:: tid datTid = vsip:: spawn( DataAnalysisTask, &params, datMap );
vsip:: tid dotTid = vsip:: spawn( DataOutputTask, &params, dotMap );

vsip:: tidwait( ditTid );
vsip:: tidwait( datTid );
vsip:: tidwait( dotTid );

}

“Main Task” just spawns sub-tasks and waits for them to terminate

Conduits
NOT created

in parent task

Spawn
Tasks

Wait for
Completion

A simple implicit Conduit example, part 1. Since the child Tasks connect to
each other without help from the parent Task the parent Task only needs to
spawn off the child Tasks. Note that this code is nearly identical for the
different child Tasks. For some classes of application, it should be possible to
write a “generic parent” that spawns of the required child Tasks in a standard
manner.
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int DataAnalysisTask(const AnalysisTaskParams* p)
{

Vector<Complex<Float>> weights( p.cols, replicatedMap );
ReadBinary (weights, “weights.bin” );
Conduit<Matrix<Complex<Float>>>::Reader

inp(“inpName”,p.size,map,p.depth);
Conduit<Matrix<Complex<Float>>>::Writer

out(“outName”,p.size,map,p.depth);
inp.connect( );
out.connect( );
for(int i=0; i<p.numCpis; i++) {

pvtolPtr<Matrix<Complex<Float>>> inpData( inp.read() );
pvtolPtr<Matrix<Complex<Float>>> outData( out.getBuffer() );
(*outData) = ifftm( vmmul( weights, fftm( *inpData, VSIP_ROW ),

VSIP_ROW );
out.write(outData);

}
}

Reader::getHandle( )
blocks until data is

received

Writer::getHandle( )
blocks until output
buffer is available

DAT Task & Conduit
Example/w Implicit Conduits

pvtolPtr destruction
implies reader extract

Writer::write( )
sends the data

Implicit Conduits connect using a “conduit name”

connect( ) blocks until
conduit is initialized

Constructors
communicate/w

factory to find other
end based on name

A simple implicit Conduit example, part 2. An implementation of the DataAnal
child Task is shown where the Conduit endpoints are obtained from the
Conduit factory.
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Conduits and Hierarchal Data Objects

Example task function/w hierarchal mappings on conduit input & output data
…
input.connect();
output.connect();
for(int i=0; i<nCpi; i++) {
  pvtolPtr<Matrix<Complex<Float>>> inp( input.getHandle( ) );
  pvtolPtr<Matrix<Complex<Float>>> oup( output.getHandle( ) );
  do {
    *oup = processing( *inp );
    inp->getNext( );
    oup->getNext( );
  } while (more-to-do);
  output.write( oup );
}

Conduits insulate each end of the conduit from the other’s mapping

Conduit connections may be:
• Non-hierarchal to non-hierarchal
• Non-hierarchal to hierarchal
• Hierarchal to Non-hierarchal
• Non-hierarchal to Non-hierarchal

Per-time Conduit
communication possible

(implementation dependant)

Hierarchal data objects have somewhat different access semantics than
“normal” data objects. A conduit transports an entire hierarchal object which
must be iterated with the hierarchal “getNext()” functions to access the objects
data tiles.
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Replicated Task Mapping

Task 2
Rep #0

Task 3Task 1

• Replicated tasks allow conduits to abstract
away round-robin parallel pipeline stages

• Good strategy for when tasks reach their
scaling limits

Task 2
Rep #1

Task 2
Rep #2

Conduit B Conduit C

Conduit A

“Replicated” Task

Replicated mapping can be based on a 2D task map (i.e. Each row in the
map is a replica mapping, number of rows is number of replicas

Replicated Task mapping is needed in many applications. Replicated Task
mapping is useful when additional throughput is needed but a Task has been
scaled up to the reasonable limit of its data parallelism.
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PVTOL and Map Types

PVTOL distributed arrays are templated on map type.

The map is either fully defined, partially defined, or
undefined

AutoMap

The matrix is distributed and all map information is
specified at runtime

RuntimeMap

The matrix is not distributedLocalMap

Matrix<float, Dense, AutoMap> mat1(rows, cols);

Specifies the data
type, i.e. double,
complex, int, etc.

Specifies the
storage layout

Specifies the
map type:

Notional matrix construction: Focus on

PVTOL supports three different types of maps.  A LocalMap indicates
that data is not distributed, but exists entirely in the processor’s local
memory.  A RuntimeMap indicates that data is distributed across
multiple processors and that the user specifies all map information.  An
AutoMap indicates that data may be distributed across multiple
processors and that map information is fully or partially defined by the
user or the map is undefined.  When maps are partially defined or
undefined, PVTOL automated mapping technology, pMapper, will do
the following:
 - pMapper will fill in the missing details of an hierarchical map (grid,
distribution)
 - pMapper will not discover whether an hierarchical map should be
present
 - pMapper will be responsible for discovering overlap
 - pMapper will not be responsible for discovering the storage level
 - pMapper will be responsible for determining some data management
policies
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SIGNAL
FLOW

EXTRACTOR

EXECUTOR/
SIMULATOR

PERFORM.
MODEL ATLAS

SIGNAL
FLOW

GRAPH

EXPERT
MAPPING
SYSTEM

pMapper and Execution in PVTOL

OUTPUT
All maps are of type LocalMap or RuntimeMap

OUTPUT

At least one map
of type AutoMap
(unspecified,
partial) is present

pMapper is an automatic mapping system
• uses lazy evaluation
• constructs a signal flow graph
• maps the signal flow graph at data access

APPLICATION

This shows a flowchart of how data is mapped by PVTOL.  When all
maps are LocalMaps or RuntimeMaps, the map information is directly
used to allocate and distribute arrays.  If at least one map is an
AutoMap, the automated mapping system in invoked, which will
determine optimal map information.
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Examples of Partial Maps

A partially specified map has one or more of the map
attributes unspecified at one or more layers of the hierarchy.

Examples:
Grid:  1x4 
Dist:  block
Procs: 

pMapper will figure out which 4 processors to use

Grid:  1x* 
Dist:  block
Procs:

pMapper will figure out how many columns the grid should have
and which processors to use; note that if the processor list was
provided the map would become fully specified

Grid:  1x4
Dist:  
Procs: 0:3

pMapper will figure out whether to use block, cyclic,
or block-cyclic distribution

Grid:  
Dist:  block
Procs: 

pMapper will figure out what grid to use and on how many
processors; this map is very close to being completely unspecified

pMapper
• will be responsible for determining attributes that influence performance
• will not discover whether a hierarchy should be present

This slides shows examples of partial maps.  In short, pMapper will be
responsible for determining attributes that influence performance, e.g.
number of processors (Procs); block, cyclic or block-cycle distributions
(Dist); the number of blocks to partition each dimension into (Grid); or
any combination of these three attributes.  Note that pMapper is NOT
responsible for determining whether to distribute data across the
processor hierarchy.
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pMapper UML Diagram

pMapper
not pMapper pMapper is only invoked when an

AutoMap-templated PvtolView is created.

This slide shows the UML diagram for the different types of maps and
pMapper.  Note that pMapper is only invoked when a data object of
type PvtolView is created that is templated on the AutoMap data type.
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pMapper & Application

// Create input tensor (flat)
typedef Dense<3, float, tuple<0, 1, 2> > dense_block_t;
typedef Tensor<float, dense_block_t, AutoMap> tensor_t;
tensor_t input(Nchannels, Npulses, Nranges),

• For each Pvar in the Signal Flow Graph (SFG),
pMapper checks if the map is fully specified

• If it is, pMapper will move on to the next Pvar

• pMapper will not attempt to remap a pre-defined map

• If the map is not fully specified, pMapper will map it

• When a map is being determined for a Pvar, the map
returned has all the levels of hierarchy specified, i.e.
all levels are mapped at the same time

// Create input tensor (hierarchical)
AutoMap tileMap();
AutoMap tileProcMap(tileMap);
AutoMap cpiMap(grid, dist, procList, tileProcMap);
typedef Dense<3, float, tuple<0, 1, 2> > dense_block_t;
typedef Tensor<float, dense_block_t, AutoMap> tensor_t;
tensor_t input(Nchannels, Npulses, Nranges, cpiMap),

Get next pvar Map pvar

For each pvar

Get next pvar

AutoMap is
fully specified

AutoMap is
partially specified
or unspecified

This slides describes the logic PVTOL uses to determine whether or not
to invoke pMapper.  Two code examples are shown that construct a flat
array and a hierarchical array.  The first example that constructs a flat
array specifies no map information.  In this case, pMapper will
determine all map information.  In the second example that constructs a
hierarchical array, because pMapper is not responsible for determining
whether or not to allocate a hierarchical array, the programmer
specifies a hierarchical map composed of two maps.  Note that both
maps contain no information.  This indicates to pMapper that a two-
level hierarchical array should be allocated and that pMapper is
responsible for determining all map information for each level in the
array.
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Mercury Cell Processor Test System

Mercury Cell Processor System
• Single Dual Cell Blade

– Native tool chain
– Two 2.4 GHz Cells running in

SMP mode
– Terra Soft Yellow Dog Linux

2.6.14
• Received 03/21/06

– booted & running same day
– integrated/w LL network < 1 wk
– Octave (Matlab clone) running
– Parallel VSIPL++ compiled

•Each Cell has 153.6 GFLOPS (single
precision ) – 307.2 for system @ 2.4
GHz (maximum)

Software includes:
• IBM Software Development Kit (SDK)

– Includes example programs
• Mercury Software Tools

– MultiCore Framework (MCF)
– Scientific Algorithms Library (SAL)
– Trace Analysis Tool and Library (TATL)

This is a description of our original Cell test system.  The 2.4 GHz blade
was eventually replaced by a 3.2 GHz blade with 205 GFLOPS per cell
or 410 GFLOPS per dual cell blade.

Picture of workstation is taken from Mercury web site.  Picture of blade
was supplied by Mercury.
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Cell Model

Synergistic Processing Element

•128 SIMD Registers, 128 bits wide

•Dual issue instructions

Local Store

•256 KB Flat memory

Memory Flow
Controller

•Built in DMA Engine

Element Interconnect Bus
•4 ring buses

•Each ring 16 bytes wide

•½ processor speed

•Max bandwidth 96 bytes / cycle (204.8 GB/s @ 3.2 GHz)

L1
L2

64 – bit PowerPC (AS)

VMX, GPU, FPU, LS, …

•  PPE and SPEs need different
programming models

– SPEs MFC runs concurrently with
program
– PPE cache loading is noticeable
– PPE has direct access to memory

Hard to use SPMD programs on PPE and SPE

This is a block diagram of the STI Cell processor with details of some of
the features.

Max bandwidth taken from T. Chen et. al., Cell Broadband Engine
Architecture and its first implementation: A performance view, IBM,
2005 .
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Compiler Support

• GNU gcc
– gcc, g++ for PPU and SPU
– Supports SIMD C extensions

• IBM XLC
– C, C++  for PPU, C for SPU
– Supports SIMD C extensions
– Promises transparent SIMD code

 vadd does not produce SIMD code in SDK
• IBM Octopiler

– Promises automatic
parallel code with DMA

– Based on OpenMP

•GNU provides familiar product
•IBM’s goal is easier programmability

• Will it be enough for high performance
customers?

This is the state of the compilers as of Summer 2006.  Both the GNU
compiler and IBM’s XLC are freely available and included in IBM’s SDK
releases.



65

MIT Lincoln Laboratory
PVTOL-65

6/23/07

Mercury’s MultiCore Framework (MCF)

MCF provides a network across Cell’s
coprocessor elements.

Synchronization API for Manager and its workers

Worker teams can receive different pieces of data

MCF’s API provides a Task Mechanism whereby
workers can be passed any computational kernel.

Can be used in conjunction with Mercury’s SAL
(Scientific Algorithm Library)

Workers receive task and data in “channels”

Manager (PPE) distributes data to Workers (SPEs)

Workers remain alive until network is shutdown

DMA transfers are abstracted away by “channels”

This slide shows the fundamental programming model of MCF.  The
advantage of MCF over threaded methods of control is that the workers
have a small kernel that is started only once.  In a threaded model, the
worker is started again for each thread which has an expensive
overhead.
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Mercury’s MultiCore Framework (MCF)

MCF provides API data distribution “channels” across
processing elements that can be managed by PVTOL.

MCF also has built in data reorganization capabilities.  The most
common data partitioning methods used in parallel programming are
encapsulated into function calls.  This makes programming easier since
the user does not have to reinvent the data reorganization over and
over.
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Worker Functions

Manager Functions

Sample MCF API functions

mcf_w_main( )
mcf_w_mem_alloc( )
mcf_w_mem_free( )
mcf_w_mem_shared_attach( )

mcf_m_net_create( )
mcf_m_net_initialize( )
mcf_m_net_add_task( )
mcf_m_net_add_plugin( )
mcf_m_team_run_task( )
mcf_m_team_wait( )
mcf_m_net_destroy( )
mcf_m_mem_alloc( )
mcf_m_mem_free( )
mcf_m_mem_shared_alloc( )

mcf_w_dma_pull_list( )
mcf_w_dma_push_list( )
mcf_w_dma_pull( )
mcf_w_dma_push( )
mcf_w_dma_wait( )

mcf_m_dma_pull( )
mcf_m_dma_push( )
mcf_m_dma_wait( )
mcf_m_team_wait( )

mcf_m_tile_channel_create( )
mcf_m_tile_channel_destroy( )
mcf_m_tile_channel_connect( )
mcf_m_tile_channel_disconnect( )
mcf_m_tile_distribution_create_2d( )
mcf_m_tile_distribution_destroy( )
mcf_m_tile_channel_get_buffer( )
mcf_m_tile_channel_put_buffer( )

mcf_w_tile_channel_create( )
mcf_w_tile_channel_destroy( )
mcf_w_tile_channel_connect( )
mcf_w_tile_channel_disconnect( )
mcf_w_tile_channel_is_end_of_channel( )
mcf_w_tile_channel_get_buffer( )
mcf_w_tile_channel_put_buffer( )

Initialization/Shutdown Channel Management Data Transfer

Here are some of the functions available in MCF.  This list is not
comprehensive, but is intended to give the viewer a flavor of the
programming capabilities of MCF.
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Cell PPE – SPE
Manager / Worker Relationship

PPE SPE Main
Memory

PPE loads data into Main Memory

PPE launches SPE kernel
expression

SPE loads data from Main Memory
to & from its local store

SPE writes results back to
Main Memory

SPE indicates that the task is
complete

PPE (manager) “farms out” work to the SPEs (workers)

The cell consists of a general purpose processor (PPE) and a collection
of 8 special processors (SPE). Each SPEs has its own small memory.
The PPE is the manager which manages the SPE workers. The PPE
launches a task on the SPE workers. In parallel, the SPEs load the data
from main memory to their local memory, perform the computation and
write the result back to main memory.
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• PVTOL application
– Written by user
– Can use expression kernels to perform computation

• Expression kernels
– Built into PVTOL
– PVTOL will provide multiple kernels, e.g.

• Expression kernel loader
– Built into PVTOL
– Launched onto tile processors when PVTOL is initialized
– Runs continuously in background

Simple Complex

+, -, * Pulse compression Doppler filtering STAPFFT

SPE Kernel Expressions

Kernel Expressions are effectively SPE overlays

PVTOL library focuses on easy of use. The user writes an application
which uses the pre-built kernels. The kernels are composed of a
manager and a worker portion. In using the kernels, the user only
needs to interact with the manager portion of the kernel.
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SPE Kernel Proxy Mechanism

Pulse
Compress
SPE Proxy 
(on PPE)

Pulse
Compress

Kernel
(on SPE)

Name

Parameter
Set

Matrix<Complex<Float>> inP(…);
Matrix<Complex<Float>> outP (…);

outP=ifftm(vmmul(fftm(inP)));

pulseCompress(
    Vector<Complex<Float>>& wgt,
    Matrix<Complex<Float>>& inP,
    Matrix<Complex<Float>>& outP
);

get mappings from input param;
set up data streams;
while(more to do) {
  get next tile;
  process;
  write tile;
}

struct PulseCompressParamSet ps;
ps.src=wgt.data,inP.data
ps.dst=outP.data
ps.mappings=wgt.map,inP.map,outP.map

MCF_spawn(SpeKernelHandle, ps);

PVTOL
Expression or
pMapper SFG

Executor
(on PPE)

Match

Check
Signature

Call

Lightweight Spawn

Kernel Proxies map expressions or expression fragments to available SPE kernels

A pattern-matching scheme is employed to map user code to the
available kernels. This mechanism is also useful for composing
functions based on the kernels available in the PVTOL library.
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Kernel Proxy UML Diagram

Expression

Direct
Implementation

SPE Computation
Kernel Proxy

Computation
Library (FFTW, etc)

SPE Computation
Kernel

Program Statement

0..

0..

FPGA Computation
Kernel Proxy

FPGA Computation
Kernel

Manager/
Main
Processor

Worker

User
Code

Library
Code

This architecture is applicable to many types of accelerators (e.g. FPGAs, GPUs)

The software architecture is broadly applicable to a variety of hardware
hosts. The same user code can run on the Cell, on the FPGA, or on the
Grid. The PVTOL library API and the dispatch mechanism hides the
implementation details from the user.
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DIT-DAT-DOT on Cell Example

PPE DIT PPE DAT PPE DOTSPE Pulse 
Compression Kernel

for (…) {
    read data;
    outcdt.write( );
}

for (…) {
    incdt.read( );
    pulse_comp ( );
    outcdt.write( );
}

for (…) {
    incdt.read( );
    write data;
}

for (each tile) {
  load from memory;
  out=ifftm(vmmul(fftm(inp)));
  write to memory;
}

1

1

2

4

33

1

1

2

2

2

3,4
3

4

4

CPI 1

CPI 2

CPI 3

for (…) {
  a=read data; // DIT
  b=a;
  c=pulse_comp(b); //
DAT
  d=c;
  write_data(d); // DOT
}

1

2

3 4

for (each tile) {
  load from memory;
  out=ifftm(vmmul(fftm(inp)));
  write to memory;
}

2

3

Explicit
Tasks

Implicit
Tasks

This slide shows the division of work and the sequence for a Data Input
Task(DIT), Data Analysis Task(DAT) and a Data output Task (DOT). The DIT
and the DOT are PPE only tasks. The DAT is managed by the PPE but the
computationally expensive kernel runs in parallel on the SPEs
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Mercury Dual Cell Testbed

Benchmark Description

Octave
(Matlab clone)

SPE FIR Kernel

Simple
FIR Proxy

PPEs

SPEs

Benchmark Hardware Benchmark Software

Based on HPEC Challenge Time Domain FIR Benchmark

1 – 16 SPEs

While the initial timings of the benchmark TDFIR were made local to a
single SPU to determine how much performance could be expected
from the computational units in a single SPU, we also need to
understand how the TDFIR will perform at the chip level.  Octave was
chosen as the development environment since it is similar to MATLAB
which is not available on Cell.  From here it was relatively easy to take
the high performance TDFIR for a single SPU and create the parallel
version.
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Time Domain FIR Algorithm

x xx x

 +

. . .

Single Filter (example size 4)

Reference Input
data

Output point

. . .

02 13

0

0 21 3 4 5 76

M-37654321

n-1n-2

M-1M-2

•TDFIR uses complex data
•TDFIR uses a bank of filters

– Each filter is used in a tapered convolution
– A convolution is a series of dot products

•Number of Operations:

k – Filter size

n – Input size

nf  - number of filters

Total FOPs: ~ 8 x nf x n x k

•Output Size:   n + k - 1

Filter slides along
reference to form
dot products

FIR is one of the best ways to demonstrate FLOPS

201024122

6440961281

nfnkSet

  HPEC Challenge Parameters TDFIR

This is a graphical explanation of the TDFIR which uses complex data.
Note that the kernel elements are in reversed order for convolution.
Normal order gives correlation.
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•Octave runs TDFIR in a loop
–  Averages out overhead
–  Applications run convolutions many
times typically

126

8

253633216GFLOPS

16421# SPE

Maximum GFLOPS for TDFIR #1 @2.4 GHz

Set 1 has a bank of 64 size 128 filters with size 4096 input vectors

Cell @ 2.4 GHz

Cell @ 2.4 GHz

Here are timing results for TDFIR set 1 @ 2.4GHz.  All timings include
the full overhead of this application.  Note that once the number of
iterations become large enough, this application scales nicely with the
number of processors.  Cell DMAs have a limit of 16KB transfer size.
Using the DMA list option is one way of getting around this limitation.
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Performance Time Domain FIR (Set 2)

• TDFIR set 2 scales well with the
number of processors

– Runs are less stable than set 1

Set 2 has a bank of 20 size 12 filters with size 1024 input vectors

85

8

185442110GFLOPS

16421# SPE

GFLOPS for TDFIR #2 @ 2.4 GHz

Cell @ 2.4 GHzCell @ 2.4 GHz
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These are the timing results for set 2 of TDFIR which uses smaller
convolutions than set 1.  Here the overhead needs more iterations to be
averaged out since the convolutions are significantly faster.  Again,
once the overhead is averaged out, these results scale nicely with the
number of processors.
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Summary
Goal: Prototype advanced software
technologies to exploit novel 
processors for DoD sensors

DoD Relevance: Essential for flexible,
programmable sensors with large IO
and processing requirements

Approach: Develop Parallel Vector
Tile Optimizing Library (PVTOL) for
high performance and ease-of-use

Mission Impact:
•Enabler for next-generation synoptic,
  multi-temporal sensor systems

Technology Transition Plan
•Coordinate development with
 sensor programs
•Work with DoD and Industry
  standards bodies

Tiled
Processors

CPU in disk drive

•Have demonstrated 10x performance
benefit of tiled processors

•Novel storage should provide 10x more IO

FFTFFTA B C

Automated Parallel Mapper

P2P1P0

~1 TByte
RAID disk

~1 TByte
RAID disk

Hierarchical Arrays
DoD Software

Standards

PVTOL

Wideband
Digital
Arrays

Massive
Storage

•Wide area data
•Collected over many time scales

The Parallel Vector Tile Optimizing Library (PVTOL) is an effort to
develop a new processor architecture for signal processing that exploits
the recent shifts in technology to tiled multi-core chips and more tightly
integrated mass storage.  These technologies are critical for processing
the higher bandwidth and longer duration data produced required by
synoptic, multi-temporal sensor systems..  The principal challenge in
exploiting the new processing architectures for these missions is writing
the software in a flexible manner that is portable and delivers high
performance.  The core technology of this project is the Parallel Vector
Tile Optimizing Library (PVTOL), which will use recent advances in
automating parallel mapping technology, hierarchical parallel arrays,
combined with the Vector, Signal and Image Processing Library
(VSIPL) open standard to deliver portable performance on tiled
processors.


